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Abstract
In this article, we propose an exponential B-spline approach to obtain approximate
solutions for the fractional sub-diffusion equation of Caputo type. The presented
method is established via a uniform nodal collocation strategy by using an
exponential B-spline based interpolation in conjunction with an effective finite
difference scheme in time. The unique solvability is rigorously proved. The
unconditional stability is well illustrated via a procedure closely resembling the classic
von Neumann technique. A series of numerical examples are carried out, and by
contrast to other algorithms available in the open literature, numerical results confirm
the validity and superiority of our method.
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1 Introduction
The basic concept of anomalous diffusion dates back to Richardson’s treatise on atmo-
spheric diffusion in  []. It has increasingly got recognition since the late s
within transport theory. In contrast to a typical diffusion, such a process no longer fol-
lows Gaussian statistics, then the classic Fick’s law fails to apply. Its most striking charac-
teristic is the temporal power-law pattern dependence of the mean squared displacement
[], i.e., χ(t) ∼ κtα , for sub-diffusion, α < , while α >  for super-diffusion. Anomalous
transport behavior is ubiquitous in physical scenarios, and due to its universal mutual-
ity, formidable challenges are introduced. In recent decades, fractional partial differential
equations (PDEs) have entered public vision; they compare favorably with the usual mod-
els to characterize such transport motions in heterogeneous aquifer and the medium with
fractal geometry [, ]. An explosive interest has been gained to investigate the theoretical
properties, analytic techniques, and numerical algorithms for fractional PDEs [–].

As a model problem of the class of fractional PDEs described above, the fractional sub-
diffusion equation is considered here

∂αu(x, t)
∂tα

– κ
∂u(x, t)

∂x = f (x, t), a ≤ x ≤ b,  < t ≤ T , (.)
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subjected to the initial and boundary conditions

u(x, ) = ϕ(x), a ≤ x ≤ b, (.)

u(a, t) = g(t), u(b, t) = g(t),  < t ≤ T , (.)

where  < α < , κ is the positive viscosity constant, and ϕ(x), g(t), g(t) are the prescribed
functions with sufficient smoothness. In Eq. (.), the time-fractional derivative is defined
in the Caputo sense, i.e.,

∂αu(x, t)
∂tα

=


�( – α)

∫ t



∂u(x, ξ )
∂ξ

dξ

(t – ξ )α
,

with Gamma function �(·). Problem (.)-(.) describes many natural phenomena and
has widely been used in applications such as soft thin films, chemical reactions, optical
fiber materials, and wave propagation [–].

There have been some works dedicated to developing numerical algorithms to obtain
the solutions of Eqs. (.)-(.) apart from a few analytic techniques that are not always
available for general situations. Zhang and Liu derived an implicit difference scheme and
proved that it is unconditionally stable []. Yuste and Acedo studied an explicit differ-
ence scheme based on the Grünwald-Letnikov formula []. Along the same line, a group
of weighted average difference schemes were then obtained []. In [], Cui raised a high-
order compact difference scheme and its convergence was detailedly discussed; another
similar approach was the compact scheme stated in [] for the fractional sub-diffusion
equation with the Neumann boundary condition. In [], an effective spectral method
was constructed by using the common L formula in time and a Legendre spectral ap-
proximation in space. Later, this method was extended to the time-space case []. The
finite element method was considered by Jiang and Ma []. The semi-discrete lump finite
element method was studied by Jin et al. for a time-fractional model with a nonsmooth
right-hand function []. Liu et al. described an implicit RBF meshless approach for the
time-fractional diffusion equation []. Li et al. suggested an adomian decomposition al-
gorithm for the equations of the same type []. In [], the authors solved such equations
by employing a fully discrete direct discontinuous Galerkin method. Gao et al. proposed
a new effective difference scheme with the Caputo derivative discretized by the L- for-
mula []. Recently, Luo et al. established a quadratic spline collocation method for the
fractional sub-diffusion equation [], where the convergence under L∞-norm was ana-
lyzed. Sayevand et al. gave a cubic B-spline collocation method [], whose stability was
provided. A cubic trigonometric B-spline collocation approach was conducted in [], and
a wavelet Galerkin method was studied in []. In [], a Sinc-Haar collocation method
which uses the Haar operational matrix to convert the original problem into a set of linear
algebraic equations via expanding the approximation as a truncated series based on Sinc
and Haar functions was proposed.

In the present work, regarding the current interest in numerical algorithms for the frac-
tional PDEs, we showcase a robust collocation method based on exponential B-spline trial
functions to solve Eqs. (.)-(.). The resultant algebraic system is proved to be strictly
diagonally dominant, and therefore the unique solvability is ensured. A von Neumann like
procedure is proceeded, and the system is shown to be unconditionally stable. Its codes are
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tested on five numerical examples and studied in contrast to other algorithms. The pro-
posed method is highly accurate and calls for a lower cost to implement. This may make
sense to treat the equations as the model we consider here with a long time range. The
outline is as follows. In Section , we give a concise description of exponential B-spline
trial basis, which will be useful hereinafter. In Section , we construct a fully discrete expo-
nential B-spline approach on uniform meshes to discretize the model and prove that it is
stable. The initial vector, which we require to start our method, is addressed in Section .
To evaluate its accuracy, numerical examples are covered in Section .

2 Description of exponential spline functions
Let a = x < x < x < · · · < xM– < xM = b be an equidistant spatial mesh on the interval
[a, b], and for M ∈ Z

+, denote

h = (b – a)/M, s = sinh(ph), c = cosh(ph),

where p is a non-negative value that is well assigned. The exponential splines are a kind
of piecewise non-polynomial functions that are known as a generalization of the semi-
classical cubic splines. They are recognized as a continuum of interpolants ranging from
the cubic splines to the linear cases []. Also, like the polynomial splines, a basis of expo-
nential B-splines is admitted and an advisable definition is the one introduced by McCartin
[], each of which is support on finite subsegments. On the above mesh together with
another six ghost knots xj, j = –, –, –, M + , M + , M + , beyond [a, b], the mentioned
exponential B-splines Bj(x), j = –, , . . . , M + , are given as follows:

Bj(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

e(xj– – x) – e
p sinh(p(xj– – x)), if x ∈ [xj–, xj–],

ā + b̄(xj – x) + c̄ exp(p(xj – x)) + d exp(–p(xj – x)), if x ∈ [xj–, xj],

ā + b̄(x – xj) + c̄ exp(p(x – xj)) + d exp(–p(x – xj)), if x ∈ [xj, xj+],

e(x – xj+) – e
p sinh(p(x – xj+)), if x ∈ [xj+, xj+],

, otherwise,

where

e =
p

(phc – s)
, ā =

phc
phc – s

, b̄ =
p


[
c(c – ) + s

(phc – s)( – c)

]
,

c̄ =



[
exp(–ph)( – c) + s(exp(–ph) – )

(phc – s)( – c)

]
,

d =



[
exp(ph)(c – ) + s(exp(ph) – )

(phc – s)( – c)

]
.

The values of Bj(x) at each knot are given as

Bj(xk) =

⎧⎪⎪⎨
⎪⎪⎩

, if k = j,
s–ph

(phc–s) , if k = j ± ,

, others.

(.)
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The values of B′
j(x) and B′′

j (x) at each knot are given as

B′
j(xk) =

⎧⎪⎪⎨
⎪⎪⎩

 if k = j,
∓p(c–)
(phc–s) , if k = j ± ,

, others,

(.)

and

B′′
j (xk) =

⎧⎪⎪⎨
⎪⎪⎩

–ps
phc–s , if k = j,

ps
(phc–s) , if k = j ± ,

, others.

(.)

The set of Bj(x) ∈ C(R), j = –, , . . . , M + , are linearly independent and form an expo-
nential spline space on the interval [a, b]. The non-negative free p is termed as ‘tension’
parameter and p →  yields cubic spline, whereas p → ∞ corresponds to the linear spline.
The cubic spline interpolation causes extraneous inflexion points, while the exponential
splines can produce co-convex interpolation and allow to remedy this issue.

3 An exponential B-spline collocation method
Let tn = nτ , n = , , . . . , N , T = τN , N ∈ Z

+, and xj = a+ jh, j = –, , . . . , M+, h = (b–a)/M,
M ∈ Z

+. On this time-space lattice, we set about deriving the desired exponential B-spline
collocation method for Eqs. (.)-(.).

3.1 Discretization of Caputo derivative
We recall the definitions of fractional derivatives. Given a smooth enough f (x, t), the αth
Caputo derivative is defined by

C
 Dα

t f (x, t) =


�(m – α)

∫ t



∂mf (x, ξ )
∂ξm

dξ

(t – ξ )+α–m , (.)

and the αth Riemann-Liouville type derivative is defined by

RL
 Dα

t f (x, t) =


�(m – α)
∂m

∂tm

∫ t



f (x, ξ ) dξ

(t – ξ )+α–m , (.)

where m –  < α < m, m ∈ N is not less than . In common sense, (.) owns merits in
handling the initial-valued problems, and thereby is utilized in time in most instances.
(.), (.) interconvert into each other through

C
 Dα

t f (x, t) = RL
 Dα

t f (x, t) –
m–∑
l=

f (l)(x, )tl–α

�(l +  – α)
. (.)

They are equal when f (k)(x, ) = , k = , , . . . , m – , are fixed; we refer the readers to [,
] for deeper insight. An effective approximation for Caputo derivative can be derived by
rewriting Eq. (.) and using proper schemes to discretize (.), i.e.,

C
 Dα

t f (x, tn) ≈ 
τα

n∑
k=

ω
q,α
k f (x, tn–k) –


τα

m–∑
l=

n∑
k=

ω
q,α
k f (l)(x, )tl

n–k
l!

, (.)
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with several sets of coefficients ω
q,α
k , q = , , , , , (see []). Let ωα

k = ω
,α
k . Then

ωα
k = (–)k

(
α

k

)
=

�(k – α)
�(–α)�(k + )

, k = , , , . . . (.)

in which case the scheme is the one given by Gorenflo et al. []. On imposing  < α < ,
(.) simply reduces to

C
 Dα

t f (x, tn) =

τα

n∑
k=

ω
q,α
k f (x, tn–k) –


τα

n∑
k=

ω
q,α
k f (x, ) + Rq(τ ), (.)

with the truncated error Rq(τ ) satisfying Rq(τ ) = O(τ q), q = , , , , .

Lemma . The coefficients ωα
k defined in (.) fulfill

(a) ωα
 = , ωα

k < , ∀k ≥ ,
(b)

∑∞
k= ωα

k = ,
∑n–

k= ωα
k > .

Proof See references [, ] for details. �

3.2 A fully discrete exponential B-spline based scheme
Define VM+ = span{B–(x), B(x), . . . , BM(x), BM+(x)} over the interval [a, b] referred to as
an (M + )-dimensional exponential spline space. Then an approximate solution to Eqs.
(.)-(.) is sought on VM+ in the form

uN (x, t) =
M+∑
j=–

αj(t)Bj(x), (.)

with the unknown weights {αj(t)}M+
j=– yet to be determined by some certain restrictions.

Discretizing Eq. (.) by using (.) in time, we have

ω
q,α
 u(x, tn) – τακ

∂u(x, tn)
∂x

= –
n–∑
k=

ω
q,α
k u(x, tn–k) +

n–∑
k=

ω
q,α
k u(x, ) + ταf (x, tn) + ταRq(τ ).

Let αn
j = αj(tn). On replacing u(x, t) by uN (x, t) and imposing the following collocation and

boundary conditions

ω
q,α
 uN (xj, tn) – τακ

∂uN (xj, tn)
∂x

= –
n–∑
k=

ω
q,α
k uN (xj, tn–k) +

n–∑
k=

ω
q,α
k uN (xj, ) + ταf (xj, tn),

uN (x, tn) = g(tn), uN (xM, tn) = g(tn),

at each nodal point xj, j = , , . . . , M, we obtain

Aαn
j– + A′αn

j + Aαn
j+ = –

n–∑
k=

ω
q,α
k Pn–k

j +
n–∑
k=

ω
q,α
k P

j + Rn
j , (.)
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and the boundary sets

s – ph
(phc – s)

αn
– + αn

 +
s – ph

(phc – s)
αn

 = gn
 , (.)

s – ph
(phc – s)

αn
M– + αn

M +
s – ph

(phc – s)
αn

M+ = gn
 , (.)

owing to (.) and (.)-(.) with

A = –τακps + ω
q,α
 (s – ph), A′ = τακps + ω

q,α
 (phc – s),

Pm
j = (s – ph)αm

j– + (phc – s)αm
j + (s – ph)αm

j+, Rn
j = τα(phc – s)f n

j ,

where m = , , . . . , n – . As a result, using Eqs. (.)-(.) to remove the unknown vari-
ables αn

–, αn
M+ in Eq. (.) when j = , M, the above system admits a linear system of

algebraic equations of size (M + ) × (M + ) as follows:

Aαn = –
n–∑
k=

ω
q,α
k Bαn–k +

n–∑
k=

ω
q,α
k Bα + Fn, q = , , , , , (.)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

τακphs(c – ) 
A A′ A

. . . . . . . . .
. . . . . . . . .
A A′ A

 τακphs(c – )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

 
s – ph (phc – s) s – ph

. . . . . . . . .
. . . . . . . . .

s – ph (phc – s) s – ph
 

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

αm =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

αm


αm

...

αm
M–

αm
M

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, Fn = (phc – s)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

τα(s – ph)f n
 + dn



ταf n


...
ταf n

M–

τα(s – ph)f n
M + dn

M

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

in which m = , , . . . , n and dn
, dn

M are as follows:

dn
 = –(s – ph)

n–∑
k=

ω
q,α
k gn–k

 + (s – ph)
n–∑
k=

ω
q,α
k ϕ + τακpsgn

 ,

dn
M = –(s – ph)

n–∑
k=

ω
q,α
k gn–k

 + (s – ph)
n–∑
k=

ω
q,α
k ϕM + τακpsgn

 .
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The unknown weights αn depend on αn–k , k = , , . . . , n, at their previous time levels
and are found via a recursive style; once αn is obtained, αn

–, αn
M+ can further be deter-

mined with the help of Eqs. (.)-(.). On the other hand, A is an (M + ) × (M + )
tri-diagonal matrix, therefore the system can be performed by the well-known Thomas
algorithm, which simply needs the arithmetic operation cost O(M + ).

4 Initial state
In order to start Eq. (.), an appropriate initial vector α to the system is required. To
this end, we employ the initial conditions

uN (xj, ) = ϕ(xj), j = , , . . . , M,

together with the collocation constraints

u′
N (x, ) = ϕ′(x), u′

N (xM, ) = ϕ′(xM),

got via Eq. (.) explicitly to determine a unique initial vector α by

Kα = U (.)

with the notations

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

phc – s s – ph
s – ph (phc – s) s – ph

. . . . . . . . .
. . . . . . . . .

s – ph (phc – s) s – ph
s – ph phc – s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

α =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α


α

...

α
M–

α
M

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, U = (phc – s)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ϕ – (s–ph)ϕ′(x)
p(–c)

ϕ
...

ϕM–

ϕM + (s–ph)ϕ′(xM)
p(–c)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

In the same fashion, K is an (M + ) × (M + ) tri-diagonal matrix, so the solution of
Eq. (.) can also be computed by the Thomas algorithm.

5 Stability and solvability
In this section, we prove that Eqs. (.)-(.) with the discrete coefficients ωα

k are uniquely
solvable and unconditionally stable. If α̃n

j , n ≥ , is a perturbed solution of Eq. (.), we
shall study how the perturbation ρn

j = αn
j – α̃n

j , which solves

Aρn
j– + A′ρn

j + Aρn
j+ = –

n–∑
k=

ωα
k Zn–k

j +
n–∑
k=

ωα
k Z

j , (.)
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evolves over time, where Z
j , Zn–k

j are the quantities like P
j , Pn–k

j with regard to the per-
turbation. Since the classic Fourier method does not work for Eq. (.), a fractional von
Neumann procedure is employed to analyze its stability.

Lemma . System (.)-(.) is uniquely solvable since its coefficient matrices A, K are
strictly diagonally dominant.

Proof Using p >  and the following Taylor’s expansions

s – ph =
(ph)

!
+

(ph)

!
+ · · · +

(ph)k+

(k + )!
+ · · · , (.)

phc – ph =
(ph)

!
+

(ph)

!
+ · · · +

(ph)k+

(k)!
+ · · · , (.)

it is easy to check s – ph >  and another similar inequality phc – s >  by subtracting (.)
from (.). In virtue of A, A′, one gets

∣∣A′∣∣ – |A| = τακps + ωα
 (phc – s) – 

∣∣–τακps + ωα
 (s – ph)

∣∣
≥ ωα

 (phc – s) – ωα
 (s – ph)

= ωα

(
(phc – s) – (s – ph)

)

since |–τακps + ωα
 (s – ph)| ≤ τακps + ωα

 (s – ph). Then the lemma is ascribed to
s – ph < phc – s. Using (.)-(.) again results in

(phc – ph) – (s – ph) = (ph)
(


!

–

!

)
+ (ph)

(

!

–

!

)

+ · · · + (ph)k+
(


(k)!

–


(k + )!

)
+ · · · .

Due to (k)! ×  < (k)! × (k + ), k ≥ , there exist

(phc – s) – (s – ph) = (phc – ph) – (s – ph) > ,

and |A′| – |A| > , which implies A is strictly diagonally dominant, so is K. Hence, Eqs.
(.)-(.) are uniquely solvable. The proof is completed. �

The stability analysis is proceeded as follows.

Theorem . System (.)-(.) is unconditionally stable.

Proof As the usual way, we investigate a single generic mode ρk
j = ζ k

υ exp(iυjh) with i =√
– and the wave number υ . Inserting it into Eq. (.) yields

Aζ n
υ cos(υh) + A′ζ n

υ = –
n–∑
k=

ωα
k Sn–k

υ +
n–∑
k=

ωα
k S

υ ,



Zhu et al. Advances in Difference Equations  (2017) 2017:285 Page 9 of 17

where

S
υ = (s – ph) cos(υh)ζ 

υ + (phc – s)ζ 
υ ,

Sn–k
υ = (s – ph) cos(υh)ζ n–k

υ + (phc – s)ζ n–k
υ ,

by the aid of Euler’s formula exp(±iυh) = cos(υh) ± i sin(υh). Noticing that

A cos(υh) + A′ = τακps
(
 – cos(υh)

)
+ ωα

 (s – ph) cos(υh) + ωα
 (phc – s),

and the inequalities

s – ph > , phc – s > , s – ph < phc – s,

we obtain

ζ n
υ = –

n–∑
k=

ωα
k Gζ n–k

υ +
n–∑
k=

ωα
k Gζ 

υ (.)

with a non-negative fixed quantity

G =
ωα

 (s – ph) cos(υh) + ωα
 (phc – s)

τακps( – cos(υh)) + ωα
 (s – ph) cos(υh) + ωα

 (phc – s)

not more than . To show |ζ n
υ | ≤ |ζ 

υ |, we use mathematical induction. As n = , by Eq. (.),
we trivially have |ζ 

υ | ≤ |ζ 
υ | since ωα

 G ≤ . Assuming that

∣∣ζ m
υ

∣∣ ≤ ∣∣ζ 
υ

∣∣, m = , , . . . , n – , (.)

it follows from Lemma . that

∣∣ζ n
υ

∣∣ ≤
∣∣∣∣∣ –

n–∑
k=

ωα
k Gζ n–k

υ +
n–∑
k=

ωα
k Gζ 

υ

∣∣∣∣∣ ≤
(

 –
n–∑
k=

ωα
k +

n–∑
k=

ωα
k

)
G max

≤m≤n–

∣∣ζ m
υ

∣∣

= G max
≤m≤n–

∣∣ζ m
υ

∣∣,

which implies |ζ n
υ | ≤ |ζ 

υ | due to G ≤  and the assumptions (.). Hence, we realize that
the perturbation remains bounded by its initial perturbation unconditionally at any time
level. This proves what we require. �

6 Numerical experiments
In this part, we present a couple of numerical examples so as to gauge the practical perfor-
mance of our proposed exponential B-spline collocation method. In the tests, we choose
q =  except the fifth example. The computing errors are measured by

e(τ , h) =
∥∥u(x, tn) – uN (x, tn)

∥∥
L =

√√√√h
M–∑
j=

∣∣u(xj, tn) – uN (xj, tn)
∣∣,

e∞(τ , h) =
∥∥u(x, tn) – uN (x, tn)

∥∥
L∞ = max

≤j≤M–

∣∣u(xj, tn) – uN (xj, tn)
∣∣,
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Figure 1 The global errors at t = 1 for various p when α = 0.9, M = 20, and N = 5,000.

Table 1 The numerical results at t = 1 with α = 0.9, p = 5.16, and N = 5,000 for Example 6.1

M ‖u – uN‖L2 Cov. rate ‖u – uN‖L∞ Cov. rate

10 8.6951e-4 - 1.3969e-3 -
20 2.2384e-4 1.9578 3.6042e-4 1.9545
40 5.7089e-5 1.9712 9.2262e-5 1.9659
80 1.5162e-5 1.9127 2.4710e-5 1.9007

Table 2 The numerical results at t = 1 in time with p = 1.52 and M = 300 for Example 6.2

N ‖u – uN‖L2 Cov. rate ‖u – uN‖L∞ Cov. rate

10 6.8812e-4 - 9.6064e-4 -
20 3.2075e-4 1.1012 4.4793e-4 1.1007
40 1.5101e-4 1.0868 2.1097e-4 1.0862
80 7.1577e-5 1.0771 1.0003e-4 1.0765

Table 3 The numerical results at t = 1 in space with p = 1.52 and N = 5,000 for Example 6.2

M ‖u – uN‖L2 Cov. rate ‖u – uN‖L∞ Cov. rate

10 2.3131e-4 - 3.2118e-4 -
20 5.7206e-5 2.0156 7.9627e-5 2.0121
40 1.3598e-5 2.0727 1.8958e-5 2.0704
80 2.6917e-6 2.3368 3.7520e-6 2.3371

and letting ν = ,∞, the convergent rates (Cov. rate) are computed by

Cov. rate =

⎧⎨
⎩

log(eν (τ,h)/eν (τ,h))
log(τ/τ) in time,

log(eν (τ ,h)/eν (τ ,h))
log(h/h) in space.

For each problem, the free parameter p should be properly assigned because it has influ-
ence on the accuracy of exponential spline interpolation; due to the difficulty in theoreti-
cally evaluating its optimal value, numerically determining p is preferred in practice. The
resulting algebraic equations are handled by the Thomas algorithm, and the numerical
results may be compared with those obtained by other algorithms.
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Figure 2 The exact and numerical solutions at t = 1, 3, and 6 when M = 100 and N = 500.

Table 4 The global errors at different time with p = 0.01 and various M, N for Example 6.3

M, N ‖u – uN‖L2 ‖u – uN‖L∞
t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

32, 4,000 5.4324e-5 3.8735e-5 3.1716e-5 8.8587e-5 6.3211e-5 5.1768e-5
64, 4,000 1.3203e-5 9.6132e-6 7.9258e-6 2.1878e-5 1.5795e-5 1.2985e-5
128, 9,000 3.0826e-6 2.3273e-6 1.9418e-6 5.2449e-6 3.8791e-6 3.2140e-6
256, 9,000 5.3117e-7 4.7773e-7 4.2641e-7 9.5837e-7 8.4372e-7 7.3492e-7
1,024, 250 5.9928e-6 2.1116e-6 1.1412e-6 9.4652e-6 3.3298e-6 1.7970e-6
1,024, 500 3.6171e-6 1.2685e-6 6.8189e-7 5.6050e-6 1.9593e-6 1.0500e-6
2,048, 1,000 2.2589e-6 7.9847e-7 4.3255e-7 3.4336e-6 1.2092e-6 6.5273e-7
2,048, 2,000 1.4133e-6 4.9781e-7 2.6867e-7 2.1044e-6 7.3642e-7 3.9486e-7

Example . Let a = , b = , and the initial boundary conditions ϕ(x) = , g(t) = , and
g(t) = . The forcing term is given as

f (x, t) =
�( + μ)

�(μ +  – α)
tμ–αx( – x) – κtμx( – x)

to enforce the exact solution u(x, t) = tμx( – x). Taking κ = , α = ., μ =  + α, Figure 
describes the behavior of the global errors at t =  versus the variation of p with M = 
and N = ,. As the figure shows, the optimal p for this problem is roughly located
on [., .]. Retaking p = ., Table  reports the numerical results at t =  versus the
variation of M with N = ,. It is obvious that our method is considerably robust and
convergent with second-order in space as the grid is refined.

Example . Recalling the Mittag-Leffler function

Eα(z) =
∞∑

k=

zk

�(αk + )
,  < α < ,

endowed with C
 Dα

t Eα(–λtα) = –λEα(–λtα) [], we consider Eqs. (.)-(.) on the domain
[, ] with

u(x, ) = sin(πx/), g(t) = , g(t) = Eα

(
–tα

)
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Figure 3 The absolute error distributions for
p = 1.45, 2.35, 2.53, and 3.35 when M = 50 and
N = 2,500.

and the homogeneous forcing term. It is easy to verify that its exact solution takes the
form u(x, t) = Eα(–tα) sin(πx/) when κ = /π. Letting α = . and p = ., the numerical
results at t =  in time with M =  are displayed in Table , while the corresponding
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Table 5 The comparison of absolute errors between CBSCM and our method when p = 2.53

x M = 25, N = 625 M = 50, N = 2,500

CBSCM Our method CBSCM Our method

0.1 7.4297e-5 1.7521e-5 2.2881e-5 5.2238e-6
0.2 1.7128e-4 3.1447e-5 4.2725e-5 7.8796e-6
0.3 2.2488e-4 3.3028e-5 5.9053e-5 8.1580e-6
0.4 2.8563e-4 2.5425e-5 7.1249e-5 6.3822e-6
0.5 3.1076e-4 1.5134e-5 7.8544e-5 3.0497e-6
0.6 3.2060e-4 4.5617e-6 7.9982e-5 1.1163e-6
0.7 3.0518e-4 1.7614e-5 7.4401e-5 5.1068e-6
0.8 2.4201e-4 3.0270e-5 6.0392e-5 7.5532e-6
0.9 1.6825e-4 2.8820e-5 3.6264e-5 6.6400e-6

Figure 4 The convergent rates of the methods
with α = 0.6, p = 2.53, and N = 11,000.

results in space with N = , are tabulated in Table , where our method yields the
convergent approximations with the desirable accuracy.

Example . In this test, we consider a special case of α = .. Let a = , b = , κ = ,
ϕ(x) = cos(πx), g(t) = erfcx(π√t), g(t) = g(t), f (x, t) = , and the true solution (see
[])

u(x, t) = cos(πx)erfcx
(
π√t

)
,

where erfcx(·) is the scaled complementary error function given by

erfcx(z) =
√
π

exp
(
z)∫ ∞

z
exp

(
–η)dη.
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Table 6 The numerical results at t = 1 in time with p = 2 and M = 2,000 for Example 6.5

N ‖u – uN‖L2 Cov. rate ‖u – uN‖L∞ Cov. rate

q = 2 5 3.5140e-3 - 5.1249e-3 -
10 1.0602e-3 1.7288 1.5457e-3 1.7293
20 2.9124e-4 1.8641 4.2449e-4 1.8644
30 1.3357e-4 1.9224 1.9467e-4 1.9227

q = 3 5 1.2790e-3 - 1.8610e-3 -
10 1.9799e-4 2.6915 2.8777e-4 2.6931
20 2.7289e-5 2.8590 3.9643e-5 2.8598
30 8.3666e-6 2.9158 1.2150e-5 2.9167

q = 4 5 3.7550e-4 - 5.4383e-4 -
10 2.5907e-5 3.8574 3.7487e-5 3.8587
20 1.7273e-6 3.9067 2.4951e-6 3.9092
30 3.7751e-7 3.7506 5.4254e-7 3.7631

Table 7 The numerical results at t = 1 in space with p = 2, q = 3, and N = 1,000 for Example 6.5

M ‖u – uN‖L2 Cov. rate ‖u – uN‖L∞ Cov. rate

10 1.5963e-3 - 2.2245e-3 -
20 3.9985e-4 1.9972 5.5719e-4 1.9973
40 1.0001e-4 1.9993 1.3940e-4 1.9990
80 2.5006e-5 1.9998 3.4874e-5 1.9990

The computation is run with p = .. Figure  describes the numerical solutions at differ-
ent time compared to the exact solutions when M = , N = . As the graph shows, the
exact and numerical solutions are in good agreement. Table  reports the global errors at
t = , t = , and t =  with various M, N . It is visible that the collocation scheme (.)-(.)
well solve the test problem as we expected.

Example . Let κ = , ϕ(x) = , g(t) = , g(t) = g(t), and

f (x, t) =
t–αx( – x) exp(x)

�( – α)
+ tx(x + ) exp(x);

we consider Eqs. (.)-(.) on the domain [, ] solved by Eqs. (.)-(.) and the cubic
B-spline collocation method (CBSCM) []. The exact solution of the model is u(x, t) =
tx( – x) exp(x). In Figure , we display their absolute error distributions at t =  when
α = ., M = , N = , by taking p = ., ., ., and ., respectively. In line
with the graphs, we then choose p = . and show a comparison of their absolute errors
at some nodal points detailedly in Table , where the accuracy of our method is found to
be overall better than CBSCM. In Figure , we plot the global errors versus the variation of
mesh size /M in log-log scale, with α = ., p = ., and N = ,, which demonstrates
that the convergent rates of the presented method and CBSCM are all basically of order .

Example . In this test, we consider Eqs. (.)-(.) with κ =  and the initial-boundary
conditions ϕ(x) = x, g(t) = , and g(t) =  + t on the domain [, ]. The forcing function
is manufactured as

f (x, t) =


�( – α)
t–αx – κ

(
 + t)x
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Figure 5 The heat flux at x = 0 for various α with M = 500 and N = 125.

to enforce the exact solution u(x, t) = ( + t)x. The algorithm is first performed with α =
., p = , q = , , , and M = ,. The numerical results at t =  in time are tabulated in
Table . Then, fixing q =  and N = ,, the corresponding results in space are detailedly
reported in Table . As seen from these tables, our method can achieve the predicted
convergent rates both in time and space.

Example . In the last test, we consider the fractional heat transfer problem on the do-
main [, ] with κ = , ϕ(x) = , g(t) = , and g(t) = H(t – .) – H(t – .), where H(·)
denotes the Heaviside step function. As in [], the heat flux at the boundary point x = 
approximated by the forward difference is of particular interest, and the computed results
are compared with the ones obtained by the implicit finite difference method in the lit-
erature. Taking p = , M = , N = , Figure  exhibits the heat flux at x =  changing
over the time for α = ., ., and .. It is obvious that the results of these two methods
are highly consistent, which reveals that our method precisely captures the heat flux.

7 Conclusion
In this research, an effective exponential B-spline collocation method is proposed to sim-
ulate the diffusion equation with a time-fractional derivative in the Caputo sense. The
resultant algebraic system is tri-diagonal and it can rapidly be solved by the Thomas al-
gorithm with low computing cost and storage. The unique solvability and unconditional
stability of the fully discrete scheme with the temporal first-order accuracy are rigorously
discussed. The codes are studied on several numerical examples, and the reported results
validate that this method is capable of dealing with these equations. The comparisons with
CBSCM and the implicit difference scheme manifest its practicability and advantages. In
addition, the method is easy and economical to implement, so it can serve as a good alter-
native to model other complex fractional problems.
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