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Abstract
In this paper, we give a complete analysis of the equilibrium points of background
neural networks with uniform firing rates. By using continuity, monotonicity of some
functions and Rolle’s theorem, the number of equilibrium points and their locations
are obtained. Moreover, some novel sufficient conditions are given to guarantee the
stability of the equilibrium points for the network model by utilizing Taylor’s theorem.
A simulation example is conducted to illustrate the theories developed in this paper.
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1 Introduction
Dynamical analysis is one of the most important issues of recurrent neural networks and
many results on this topic have been reported in the literature; see Atteneave []; Cohen
and Grossberg []; Forti []; Hahnloser []; Zeng et al. []; Zeng and Wang []; Cao and
Wang []; Chen et al. []; Chen []; Tang et al. []; Zhang et al. []; Zuo et al. []; Zhang
et al. []; Li and Cao []; Samidurai and Manivannan [] and the references therein. It is
also an essential step towards successful applications such as signal processing and prob-
lem optimization. Analysis of the equilibrium point for the concerned recurrent neural
networks is a very important part of dynamical analysis (Cheng et al. []; Qu et al. []).
Especially, existence and stability problems of the equilibrium points for various types of
recurrent neural networks have attracted significant attention of many researchers (Mani-
vannan et al. []; Nie and Cao []; Manivannan et al. []). Generally, two ways are used
to prove the existence of equilibria for a neural network model. One way to prove this is
by using a mapping derived from the neural network being a homeomorphism (Forti and
Tesi []; Chen []; Lu []; Zhao and Zhu []). Another way uses Brouwer’s fixed-point
theorem (Forti []; Forti and Tesi []; Guo and Huang []; Wang []; Miller and Michel
[]).

In order to interpret the phenomena and exhibit how the dynamical states of recurrent
neural networks are affected by a given external background input, the background neural
network model was proposed in Salinas []. By utilizing theoretical models and computer
simulations, it has been shown that small changes in this model may shift a network from
a relatively quiet state to some other state with highly complex dynamics.
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As far as we are concerned, few references have studied the dynamical properties of the
background neural network model; see Zhang and Yi []; Wan et al. []; Xu and Yi [].
However, since the network equations (.) are nonlinear and coupled equations, neither
the well-known homeomorphism method nor Brouwer’s fixed-point theorem can be used
to easily investigate the equilibrium point of (.). The only known theoretical results in
the literature of local stability conditions of the equilibria for background neural networks
are obtained by computing eigenvalues at equilibria (Salinas []). Unfortunately, so far,
the equilibrium analysis problem for the background neural networks with firing rate (the
uniform firing rate means that the firing rate is the same for all neurons) remains far from
completion. The major difficulty stems from the network model which consists of highly
nonlinear coupled equations. The lack of basic information on equilibria creates some
difficulties in discussing dynamical properties and bifurcations of the background neural
networks.

In this paper, we give a complete analysis of the equilibrium for the background neu-
ral networks with uniform firing rate. For the first time, we transform the equilibrium
problem of the background neural network with firing rate into a root problem of a cu-
bic equation. Not following the common idea of computing roots of the cubic equation,
we analyze the equilibria through a geometrical formulation of the parameter conditions
of the background neural networks. Correspondingly, the number and coordinates of the
equilibria are determined by using continuity and monotonicity, together with Rolle’s the-
orem. Furthermore, novel sufficient stability conditions for the equilibria are given. The
studies based on the background neural network with uniform firing rate provide an in-
sightful understanding of the computational performance of system (.).

The rest of this paper is organized as follows. In Section , preliminaries are given. In
Section , we establish conditions for the exact number of equilibria for the background
networks. Locations of these equilibria are obtained. Moreover, we formulate novel suf-
ficient conditions for stability of such equilibria. In Section , a simulation example is
presented to illustrate the theoretical results. In Section , conclusions are drawn.

2 Preliminaries
The background neural network model is described by the following system of nonlinear
differential equations:

τ ẋi(t) = –xi(t) +
(
∑

j wijxj(t) + hi)

s + v
∑

j x
j (t)

(i = , . . . , n), (.)

for t ≥ , where xi denotes the activity of neuron i, hi represents its external input, wij rep-
resents the excitatory synaptic connection from neuron j to neuron i, v is the inhibitory
synaptic connection by which a neuron decreases another neuron’s gain, τ is a time con-
stant, and s is a saturation constant. All these quantities are always positive or zero. If the
firing rate is the same for all neurons, then the network equations (.) are reduced to a
nonlinear equation as follows:

τ ẋ(t) = –x(t) +
(wtotx(t) + h)

s + vNx(t)
, (.)

for all t ≥ . x denotes the uniform firing rate, wtot denotes the excitatory synaptic con-
nection, and N is the total number of neurons.



Xu et al. Advances in Difference Equations  (2017) 2017:314 Page 3 of 11

For simplicity, we consider system (.) in the following equivalent form:

ẋ(t) = –x(t) +
(ax(t) + b)

 + cx(t)
:= F(x). (.)

Herein, let τ = , a = wtot√
s > , b = h√

s > , c = vN
s > .

An equilibrium of network (.) is described as follows:

F
(
x∗) :=

–x∗( + cx∗) + (ax∗ + b)

 + cx∗ = .

Let

P(x) := –x(t)
(
 + cx(t)

)
+

(
ax(t) + b

)

= –cx(t) + ax(t) + (ab – )x(t) + b,

i.e.,

F(x) =
P(x)

 + cx .

We suppose x() >  and

x(t) = x()e–t +
∫ t


e–(t–θ ) (wtotx(θ ) + h)

s + vNx(θ )
dθ > .

It means that the trajectory of system (.) is positive.
From reference Zhang and Yi [], we have

x(t) < x() +
w

tot
vN

+
h

s
+  = x() +

a

c
+ b + .

Denote

� = x() +
a

c
+ b + .

Because  + cx(t) > , the equilibria of system (.) are determined by zeros of P(x) in the
interval I := (,�).

3 Equilibria and qualitative properties
In this section, we present novel sufficient conditions which guarantee the existence and
the number of equilibria for network (.). Our approach is based on a geometrical obser-
vation. We also establish stability criteria of these equilibria through the Taylor expansion
at some equilibrium.

Theorem  System (.) has at most three equilibria in (,�). The number of equilibria
and their locations are described in Table .
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Table 1 The number of equilibria and their locations

Conditions Number Equilibria

T111 1 E(1)1
T112 2 E(1)2 , E(1)3
T113 3 E(1)4 , E(1)5 , E(1)6
T114 2 E(1)7 , E(1)8
T115 1 E(1)9
T12 1 E(1)10
T13 1 E(1)11
T21 1 E(2)1
T31 1 E(3)1

Proof System (.) has at most three equilibria in (,�) because deg(P) = .
Next, we will discuss the zeros of

P(x) := –cx + ax + (ab – )x + b (a > , b > , c > ).

According to the definition of P(x), we have

⎧
⎪⎪⎨

⎪⎪⎩

limx→+∞ P(x) = –∞,

limx→–∞ P(x) = +∞,

P() = b > .

(.)

In order to state our results easily, we partition the parameter conditions ensuring the
number and locations of equilibria into the following subregions:

T :=
{

w
tot + vNwtoth – vNs > ,

wtoth
s

<



, P(ζ–) > 
}

,

T :=
{

w
tot + vNwtoth – vNs > ,

wtoth
s

<



, P(ζ–) = 
}

,

T :=
{

w
tot + vNwtoth – vNs > ,

wtoth
s

<



, P(ζ–) < , P(ζ+) > 
}

,

T :=
{

w
tot + vNwtoth – vNs > ,

wtoth
s

<



, P(ζ–) < , P(ζ+) = 
}

,

T :=
{

w
tot + vNwtoth – vNs > ,

wtoth
s

<



, P(ζ–) < , P(ζ+) < 
}

,

T :=
{

w
tot + vNwtoth – vNs > ,

wtoth
s

>



, P(ζ+) > 
}

,

T :=
{

w
tot + vNwtoth – vNs > ,

wtoth
s

=



, P(ζ+) > 
}

,

T :=
{

w
tot + vNwtoth – vNs = ,

wtoth
s

<



}

,

T :=
{

w
tot + vNwtoth – vNs < ,

wtoth
s

<



}

.
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The derivative P′(x) = –cx + ax + ab –  =  has two zeros:

ζ– =
a –

√
a + c(ab – )

c
,

ζ+ =
a +

√
a + c(ab – )

c
(ζ– ≤ ζ+).

We have P(ζ–) = – –a+a√
a+abc–c+abc

√
a+abc–c–c

√
a+abc–c–abc+ac–bc

c , P(ζ+) =
a+a√

a+abc–c+abc
√

a+abc–c–c
√

a+abc–c+abc–ac+bc

c . Consider the discriminant
�P′(x) of a polynomial P′ with degree 

�P′(x) := a + c(ab – ).

We separately discuss the three cases: �P′(x) > ,�P′(x) =  and �P′(x) < .
Case : �P′(x) = a + c(ab – ) > , i.e., w

tot + vNwtoth – vNs > . However, ab –  may
be positive, negative or zero. Thus, according to the sign of ab – , we need to discuss the
following three subcases.

Subcase .: ab < 
 , i.e., wtoth

s < 
 .

Equation P′(x) =  has two distinct roots ζ–, ζ+( < ζ– < ζ+) in this case.
(a) ζ–, ζ+ are the minimum point and the maximum point of P(x), respectively. By

simple computation, we obtain ζ+ < �. According to Rolle’s theorem and the
continuity of P(x), P(x) has a unique positive real zero x∗

 ∈ (ζ+,�) when P(ζ–) > .
Obviously, system (.) has a unique equilibrium E()

 : x∗
 ∈ (ζ+,�), as shown in

Figure (a).
(b) P(x) has two positive real zeros ζ– and x∗

 ∈ (ζ+,�) when P(ζ–) = . Then it follows
that system (.) has two equilibrium points E()

 : ζ– and E()
 : x∗

 ∈ (ζ+,�), as
shown in Figure (b).

(c.) P(x) has three distinct positive real zeros x∗
 ∈ (, ζ–), x∗

 ∈ (ζ–, ζ+), x∗
 ∈ (ζ+,�)

when P(ζ–) <  and P(ζ+) > . It is also clear that system (.) has three
equilibrium points E()

 : x∗
 ∈ (, ζ–), E()

 : x∗
 ∈ (ζ–, ζ+) and E()

 : x∗
 ∈ (ζ+,�), as

shown in Figure (c). P(ζ–) < , P(ζ+) >  on the solid curve.
(c.) P(x) has two positive real zeros x∗

 ∈ (, ζ–) and ζ+ when P(ζ–) <  and P(ζ+) = .
Then system (.) has two equilibrium points E()

 : x∗
 ∈ (, ζ–) and E()

 : ζ+, as
shown in Figure (c). P(ζ–) < , P(ζ+) =  on the dotted curve.

(c.) P(x) has one positive real zero x∗
 ∈ (, ζ–) when P(ζ–) <  and P(ζ+) < . Then

system (.) has a unique equilibrium E()
 : x∗

 ∈ (, ζ–), as shown in Figure (c).
P(ζ–) <  and P(ζ+) <  on the star-shaped curve.

Subcase .: ab > 
 , i.e., wtoth

s > 
 .

P′(x) =  has two distinct zeros ζ–, ζ+(ζ– <  < ζ+). P(x) has a unique positive real zero
x∗

 ∈ (ζ+,�). Then we see that system (.) has a unique equilibrium E()
 : x∗

 ∈ (ζ+,�), as
shown in Figure (d).

Subcase .: ab = 
 , i.e., wtoth

s = 
 .

P′(x) =  has one zero ζ– = , ζ+ = a

c > . P(x) has a unique positive real zero x∗
 ∈ (ζ+,�)

implying that system (.) has a unique equilibrium E()
 : x∗

 ∈ (ζ+,�), as shown in Fig-
ure (e).

Case : �P′(x) = a + c(ab – ) = , i.e., w
tot + vNwtoth – vNs = .
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Figure 1 P has one, two or three zeros in subcase 1.1.

Figure 2 P has one zero in subcases 1.2 and 1.3.

P′(x) has a multiple one a

c of multiplicity . a

c is not the extreme point of P(x). Com-
bining with (.), P(x) has a positive zero x ∈ (,�), which implies that system (.) has
a unique equilibrium E()

 : x∗
 ∈ (,�).

Case : �P′(x) = a + c(ab – ) < , i.e., w
tot + vNwtoth – vNs < .

P′(x) has no real zero. It means that P(x) has no extreme point. By (.), P(x) is a strictly
monotonically decreasing function. Thus, P(x) has a positive zero x∗

 ∈ (,�). System (.)
accordingly has a unique equilibrium E()

 : x∗
 ∈ (,�).

The proof is completed. �

Remark  It should be noted that, as shown in the proof of Theorem , we separately
discuss the existence and the number of the equilibria in three cases based on the sign of
the discriminant �P′(x). We have employed continuity and monotonicity of the function
P(x), combined with Rolle’s theorem, to estimate the coordinates and the number of the
equilibria. These techniques have provided some new analysis approaches, rather than
simply using the well-known homeomorphism method and Brouwer’s fixed-point theo-
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Table 2 Stability of the equilibrium points for (2.3)

Conditions Equilibria (stability)

T111 E(1)1 (asymptotically stable)
T112 E(1)2 (unstable),E(1)3 (asymptotically stable)
T113 E(1)4 (asymptotically stable), E(1)5 (unstable), E(1)6 (asymptotically stable)
T114 E(1)7 (asymptotically stable), E(1)8 (asymptotically stable)
T115 E(1)9 (asymptotically stable)
T12 E(1)10 (asymptotically stable)
T13 E(1)11 (asymptotically stable)
T21 E(2)1 (asymptotically stable)
T31 E(3)1 (asymptotically stable)

rem. Moreover, these results may provide important theoretical foundations to further
analyze the limit cycle and bifurcations of networks (.).

Next, we will discuss stability of the equilibrium point of system (.) by utilizing the
Taylor expansion.

Theorem  The stability of the equilibrium points of system (.) is described in Table .

Proof Let x∗ be a general equilibrium of system (.).
The Taylor expansion of F(x) at equilibrium x∗ is described by

ẋ(t) = F
(
x∗) + F ′(x∗)(x – x∗) + O

(
x – x∗). (.)

Since F(x) = P(x)
+cx , we have

F ′(x) =
P′(x)( + cx) – cxP(x)

( + cx) .

Denote Q(x) = P′(x)( + cx) – cxP(x), thus

F ′(x) =
Q(x)

( + cx) .

Then F ′(x∗) = Q(x∗)
(+cx∗ ) = P′(x∗)(+cx∗

)
(+cx∗ ) (since P(x∗) = ). The sign of F ′(x∗) is the same as that

of P′(x∗), since  + cx∗ > .
Because F(x∗) = , the sign of ẋ(t) is the same as that of F ′(x∗). Therefore, the stability of

the equilibrium is determined by the sign of P′(x∗). Concretely, P(x) is monotonically de-
creasing in (ζ+,�) and P′(x∗

 ) < . Thus, the equilibrium point E()
 is asymptotically stable.

Similarly, equilibria E()
 , E()

 , E()
 , E()

 , E()
 , E()

 , E()
 , E()

 and E()
 are asymptotically stable,

because P′(x∗
i ) < , when i = , , , , , , , , .

P(x) is monotonically increasing in (ζ+,�) and P′(x)∗ > , which means that equilibrium
point E()

 is unstable.
If P′(x∗) = , then the Taylor expansion of P(x) at equilibria x∗ is

ẋ(t) = F ′′(x∗)(x – x∗) + O
(
x – x∗),

F ′′(x) =
Q′(x)( + cx) – Q(x) · ( + cx) · cx

( + cx) ,
(.)
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where Q′(x) = P′′(x)( + cx) + P′(x) · cx – P′(x) · cx – P(x) · c. Thus, we obtain

Q′(x∗) = P′′(x∗)( + cx∗)
+ P′(x∗) · cx∗ – P′(x∗) · cx∗ – P

(
x∗) · c.

Since P(x∗) = , P′(x∗) = , we have Q′(x∗) = P′′(x∗)( + cx∗ ) and Q(x∗) = P′(x∗)( + cx∗ ) –
cx∗P(x∗) = .

Therefore, we get

F ′′(x∗) =
Q′(x∗)( + cx∗ ) – Q(x∗) · ( + cx∗ ) · cx∗

( + cx∗ )

=
Q′(x∗)( + cx∗ )

( + cx∗ )

=
P′′(x∗)( + cx∗ )

( + cx∗ )
.

It means that the sign of F ′′(x∗) is the same as that of P′′(x∗) because +cx∗ > . P′(ζ–) = 
and P′(ζ+) =  at equilibria E()

 : ζ–, E()
 : ζ+, respectively. Thus, F ′(ζ–) = , F ′(ζ+) = .

P′′(ζ–) >  because the graph of P(x) is concave down in the neighborhood of E()
 . P′(ζ–) =

, P′′(ζ–) > , thus E()
 is unstable. Similarly, P′′(ζ+) <  because the graph of P(x) is convex

up in the neighborhood of E()
 . P′(ζ+) = , P′′(ζ+) < , thus E()

 is asymptotically stable.
The proof is completed. �

Remark  It should be mentioned that we have derived the conditions for stability of the
equilibria by using the Taylor expansion. In Figures  and , we see that the equilibrium
is stable or unstable according to the sign P′(x∗) at equilibrium x∗. The method is eas-
ier and more convenient than constructing suitable Lyapunov-Krasovskii functionals or
constructing energy functions.

4 Simulations
In this section, one example will be provided to illustrate and verify the theoretical results
obtained in the above sections.

Example Case : Consider a class of background neural networks (.) with wtot =
., h = ., vN = . and s = . Thus, we obtain w

tot
vN + h

s +  = .. We
randomly select the initial point x() ∈ (, ).

Here, the parameters satisfy our conditions in Theorem : �P′(x) = . > , ab =
. < 

 .
By simple computation, equation P′(x) = –cx + ax + ab –  =  is found to have two

distinct roots ζ– = ., ζ+ = ., with P(ζ–) = –. < , P(ζ+) = . > .
(a, b, c) ∈ T, thus, system (.) has three equilibria E()

 : x∗
 ∈ (, .), E()

 : x∗
 ∈

(., .) and E()
 : x∗

 ∈ (., .). According to Theorem , E()
 and E()


are asymptotically stable, and E()

 is unstable. Figure  demonstrates the theoretical re-
sults.

In this investigation, system (.) has multiple stable equilibrium points. Thus, the net-
work belongs to the multistable neural networks. Mathematically, multistability allows the
network to have multiple stable fixed points and periodic orbits or limit cycles. Multiple
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Figure 3 The locations and stability of equilibria
of the network (2.3) with wtot = 1.8965, h
= 4.6457, vN = 0.0900 and s = 50.

Figure 4 The locations and stability of the
equilibrium point E(2)

1 of the network (2.3) with
wtot = 1.2, h = 12, vN = 0.02 and s = 63.36.

stable equilibrium points or periodic orbits are accompanied by the existence of contin-
uous attractors. Continuous attractors have been found in many applications, including
applications related to visual perception, visual images, eye memory, etc. The existence of
unstable equilibria is essential in winner-take-all problems (Yi et al. []). Therefore, the
proposed work in this manuscript can be applied in aforementioned applications.

Case : If wtot = ., h = , vN = . and s = ., then w
tot

vN + h

s +  = .. We
randomly select the initial point x() ∈ (, ).

In this case �P′(x) = , so it follows from Theorems  and  that system (.) has a unique
equilibrium point E()

 : x∗
 ∈ (, .), and it is asymptotically stable. The location and

stability of the equilibrium points of this system are illustrated in Figure .
Case : If wtot = ., h = , vN = . and s = , then w

tot
vN + h

s +  = .. We ran-
domly select the initial point x() ∈ (, ).

In this case �P′(x) < , so system (.) has a unique equilibrium point E()
 : x∗

 ∈
(, .) and it is asymptotically stable. The results are shown in Figure .

In cases  and , the network (.) has a unique equilibrium point which is stable.
Such convergent behavior is called ‘monostability’. Monostable networks can be used to
solve optimization problems. Under some conditions, the network (.) in this paper is a
monostable neural network. Therefore, the proposed work provides a novel model with
respect to optimization problems.

5 Conclusions
In this paper, the dynamical properties of equilibria of the background neural network
(.) (i.e., (.)) are analyzed, such as the number of equilibria and their locations. Firstly,
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Figure 5 The locations and stability of the
equilibrium point E(3)

1 of the network (2.3) with
wtot = 1.12, h = 10, vN = 0.03 and s = 65.

the conditions for the number and locations of the equilibria of the network were inves-
tigated. Secondly, the conditions for stability of the equilibria were derived. The paramet-
ric relations between the dynamical properties of the equilibria and network parameters
were revealed. These theories are primarily based on an observation on the geometric
structures of the equations P(x) = . These studies enrich the analytical results for the
equilibrium points of other related work.

The studies based on the background neural networks with firing rate (the uniform fir-
ing rate means that the firing rate is the same for all neurons, thus, we can regard system
(.) as one-dimensional) may be further developed for the studies on general higher-
dimensional systems, e.g., the mathematical methods in this paper can be applied to an-
alyze the equilibria of background neural networks with two subnetworks which exhibit
rival states (i.e., D background neural networks). The rivaling steady states have signif-
icant meaning in the development of practical applications of D neural networks. This
switch problem (Terman and Rubin []; Toth et al. []) and binocular rivalry (Shpiro
et al. []) are interesting topics for further research. Many practical problems, such as
mechanical design and electrical networks, can be formulated as switch problems. In re-
cent years, dynamical analysis for switched systems have attracted considerable research
interest (Cao et al. []; Syed Ali et al. []). Our manuscript has given us further insight
into providing parameter conditions for switched systems.
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