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Abstract
In this paper, a new SEIR (susceptible-exposed-infected-removed) rumor spreading
model with demographics on scale-free networks is proposed and investigated. Then
the basic reproductive number R0 and equilibria are obtained. The theoretical analysis
indicates that the basic reproduction number R0 has no correlation with the
degree-dependent immigration. The globally asymptotical stability of rumor-free
equilibrium and the permanence of the rumor are proved in detail. By using a novel
monotone iterative technique, we strictly prove the global attractivity of the
rumor-prevailing equilibrium.
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1 Introduction
With the development of online social networks, rumor has propagated more quickly and
widely, coming within people’s horizons [–]. Rumor propagation may have tremendous
negative effects on human lives, such as reputation damage, social panic and so on [–].
In order to investigate the mechanism of rumor propagation and effectively control the
rumor, lots of rumor spreading models have been studied and analyzed in detail. In ,
Daley and Kendal first proposed the classical DK model to study the rumor propagation
[]. They divided the population into three disjoint categories, namely, those who who
never heard the rumor, those knowing and spreading the rumor, and finally those knowing
the rumor but never spreading it. From then on, most rumor propagation studies were
based on the DK model [–].

In the early stages, most rumor spreading models were established on homogeneous
networks [–]. However, it is well known that a significant characteristic of social net-
works is their scale-free property. In networks, the nodes stand for individuals and the
contacts stand for various interactions among those individuals. Scale-free networks can
be characterized by degree distribution which follows a power-law distribution P(k) ∼ k–γ

( < γ ≤ ) []. Recently, some scholars have studied a variety of rumor spreading models
and found that the heterogeneity of the underlying network had a major influence on the
dynamic mechanism of rumor spreading [, –].
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It is noteworthy that the influence of hesitation plays a crucial role in process of rumor
spreading. Lately, there were a few researchers who have studied the effects of hesitation.
For instance, Xia et al. [] proposed a novel SEIR rumor spreading model with hesitating
mechanism by adding a new exposed group (E) in the classical SIR model. Liu et al. []
presented a SEIR rumor propagation model on the heterogeneous network. They calcu-
lated the basic reproduction number R by using the next generation method, and they
found that the basic reproduction number R depends on the fluctuations of the degree
distribution. However, in most of the research work mentioned above, the immigration
and emigration are not considered when rumor breaks out. Although references [, ]
proposed a SEIR model with hesitating mechanism, neither could serve as a strict proof
of globally asymptotically stability of rumor-free equilibrium and the permanence of the
rumor. In this paper, considering the immigration and emigration rate, we study and ana-
lyze a new SEIR model with hesitating mechanism on heterogeneous networks and com-
prehensively prove the globally asymptotical stability of rumor-free equilibrium and the
permanence of rumor in detail.

The rest of this paper is organized as follows. In Section , we present a new SEIR spread-
ing model with hesitating mechanism on scale-free networks. In Section , the basic repro-
duction number and the two equilibria of the proposed model are obtained. In Section ,
we analyze the globally asymptotic stability of equilibria. Finally, we conclude the paper in
Section .

2 Modeling
Consider the whole population as a relevant online network. The SEIR rumor spreading
model is based on dividing the whole population into four groups, namely: the susceptible,
referring to those who have never contacted with the rumor, denoted by S; the exposed,
referring to those who have been infected, in a hesitate state not spreading the rumor,
denoted by E; the infected, referring to those who have accepted and spread the rumor,
denoted by I ; the recovered, referring to those who know the rumor but have ceased to
spread it, denoted by R. During the period of rumor spreading, we suppose that the indi-
viduals with the same number of contacts are dynamically equivalent and belong to the
same group in this paper. Let Sk(t), Ek(t), Ik(t) and Rk(t) be the densities of the above-
mentioned nodes with the connectivity degree k at time t. Then the aggregate number of
population at time is N(t), and the density of the whole population with degree k satis-
fies

Nk(t) = Sk(t) + Ek(t) + Ik(t) + Rk(t). (.)

The transfer diagram for the SEIR rumor propagation model is shown in Figure . In this
paper, we assume that the degree-dependent parameter b(k) >  denotes the number of
new immigration individuals with degree k per unit time, and each new immigration indi-
vidual is susceptible. The emigration rate of all individuals is μ. Exposed individuals turn
into infected individuals with probability βh due to believing and spreading the rumor.
They recover from the rumor with probability β( – h). The infected individuals become
exposed individuals with probability δm. They recover from the rumor with probability
δ( – m).
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Figure 1 Transfer diagram for SEIR rumor
propagation model.

Based on the above hypotheses and notation, the dynamic mean-field reaction rate equa-
tions described by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dSk (t)
dt = b(k) – λ(k)�(t)Sk(t) – μSk(t),

dEk (t)
dt = λ(k)�(t)Sk(t) – βEk(t) + δmIk(t) – μEk(t),

dIk (t)
dt = βhEk(t) – δIk(t) – μIk(t),

dRk (t)
dt = β( – h)Ek(t) + δ( – m)Ik(t) – μRk(t),

(.)

where λ(k) >  is the degree of acceptability of k for individuals for the rumor, and the
probability �(t) denotes a link to an infected individual, satisfying

�(t) =


〈k〉
∑

i

ϕ(i)
i

P(i|k)
Ii(t)
Ni(t)

. (.)

Here, /i represents the probability that one of the infected neighbors of an individual,
with degree i, will contact this individual at the present time step; P(i|k) is the probability
that an individual of degree k is connected to an individual with degree i. In this paper,
we focus on degree uncorrelated networks. Thus, P(i|k) = iP(i)/〈k〉, where 〈k〉 =

∑
i iP(i)

is the average degree of the network. For a general function f (k), it is defined as 〈f (k)〉 =
∑

i f (i)P(i). The function ϕ(k) is the infectivity of an individual with degree k.
Adding the four equations of system (.), we have dNk (t)

dt = b(k) – μNk(t). Then we can
obtain Nk(t) = b(k)

μ
( – e–μt) + Nk()e–μt , where Nk() represents the initial density of the

whole population with degree k. Hence, lim supt→∞ Nk(t) = b(k)/μ, then Nk(t) = Sk(t) +
Ek(t) + Ik(t) + Rk(t) ≤ b(k)/μ for all t > . In order to have a population of constant size, we
suppose that Sk(t) + Ek(t) + Ik(t) + Rk(t) = Nk(t) = ηk , where ηk = b(k)/μ. Thus, we have

�(t) =


〈k〉
∑

k=

ϕ(k)
ηk

P(k)Ik(t). (.)

Furthermore,

S(t) =
∑

k

P(k)Sk(t), E(t) =
∑

k

P(k)Ek(t),

I(t) =
∑

k

P(k)Ik(t), and R(t) =
∑

k

P(k)Rk(t)

are the global average densities of the four rumor groups, respectively. From a practical
perspective, we only need to consider the case of P(k) >  for k = , , . . . . The initial con-
ditions for system (.) satisfy

 ≤ Sk(), Ek(), Ik(), Rk() ≤ ηk ,

Sk() + Ek() + Ik() + Rk() = ηk , �() > .
(.)
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3 The basic reproduction number and equilibria
In this section, we reveal some properties of the solutions and obtain the equilibria of
system (.).

Theorem  Define the basic reproduction number R = βh
(β+μ)(δ+μ)–βhδm

〈ϕ(k)λ(k)〉
〈k〉 , then there

always exists a rumor-free equilibrium E(ηk , , , ). And if R > , system (.) has a
unique rumor-prevailing equilibrium E+(S∞

k , E∞
k , I∞

k , R∞
k ).

Proof We can easily see that the rumor-free equilibrium E(ηk , , , ) of system (.) is
always existent. To obtain the equilibrium solution E+(S∞

k , E∞
k , I∞

k , R∞
k ), we let the right

side of system (.) be equal to zero. Thus, we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b(k) – λ(k)�∞S∞
k – μS∞

k = ,
λ(k)�∞S∞

k – βE∞
k + δmI∞

k – μE∞
k = ,

βhE∞
k – δI∞

k – μI∞
k = ,

β( – h)E∞
k + δ( – m)I∞

k – μR∞
k = ,

where �∞ = 
〈k〉

∑
k=

ϕ(k)
ηk

P(k)I∞
k . One has

⎧
⎪⎪⎨

⎪⎪⎩

E∞
k = (δ+μ)

βh I∞
k ,

S∞
k = (β+μ)(δ+μ)–βhδm

βhλ(k)�∞ I∞
k ,

R∞
k = (δ+μ)(–h)+hδ(–m)

hμ
I∞

k .
(.)

According to S∞
k + E∞

k + I∞
k + R∞

k = ηk for all k, we have

I∞
k =

μβhλ(k)�∞ηk

μ(β + μ)(δ + μ) – μβhδm + λ(k)�∞[(β + μ)(δ + μ) – mβhδ]
. (.)

Inserting equation (.) into equation (.), we can obtain the self-consistency equation:

�∞ =


〈k〉
∑

k=

ϕ(k)
ηk

× P(k)
μβhλ(k)�∞ηk

μ(β + μ)(δ + μ) – μβhδm + λ(k)�∞[(β + μ)(δ + μ) – mβhδ]

� f
(
�∞)

. (.)

Obviously, �∞ =  is a solution of (.), then S∞
k = ηk and E∞

k = I∞
k = R∞

k = , which is a
rumor-free equilibrium of system (.). In order to ensure equation (.) has a nontrivial
solution, i.e.,  < �∞ ≤ , the following conditions must be fulfilled:

df (�∞)
d�∞

∣
∣
∣
∣
�∞=

>  and f () ≤ .

Thus, we can obtain

βh
(β + μ)(δ + μ) – βhδm

〈ϕ(k)λ(k)〉
〈k〉 > .
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Let the base reproduction number as follows:

R =
βh

(β + μ)(δ + μ) – βhδm
〈ϕ(k)λ(k)〉

〈k〉 . (.)

System (.) admits a unique rumor equilibrium E+(S∞
k , E∞

k , I∞
k , R∞

k ) satisfying equation
(.) if and only if R > . The proof is completed. �

Remark  The basic reproductive number R is obtained by equation (.), which depends
on some model parameters and the fluctuations of the degree distribution. Interestingly,
the basic reproductive number R has no correlation with the degree-dependent immi-
gration b(k). According to the form of R, we see that increase of the emigration rate μ

will make R decrease. If b(k) =  and μ = , then system (.) become the network-based
SEIR model without demographics, and R = h

δ(–hm)
〈ϕ(k)λ(k)〉

〈k〉 , which is in consistence with
reference [].

4 Discussion
4.1 The stability of the rumor-free equilibrium
Theorem  The rumor-free equilibrium E of SEIR system (.) is locally asymptotically
stable if R < , and it is unstable if R > .

Proof Let Sk(t) = ηk – Ek(t) – Ik(t) – Rk(t), where ηk = b(k)/μ. Therefore, system (.) can
be rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

dEk (t)
dt = λ(k)�(t)(ηk – Ek(t) – Ik(t) – Rk(t)) – (β + μ)Ek(t) + δmIk(t),

dIk (t)
dt = βhEk(t) – (δ + μ)Ik(t),

dRk (t)
dt = β( – h)Ek(t) + δ( – m)Ik(t) – μRk(t).

(.)

Then the Jacobian matrix of system (.) at (, , ) is a kmax ∗ kmax as follows:

J =

⎡

⎢
⎢
⎢
⎢
⎣

A B B · · · Bkmax

B A B · · · Bkmax

...
...

. . .
...

Bkmax Bkmax Bkmax · · · Akmax

⎤

⎥
⎥
⎥
⎥
⎦

,

where

Aj =

⎛

⎜
⎝

–(β + μ) δm + λ(j)ϕ(j)P(j)
〈k〉 

βh –(δ + μ) 
β( – h) δ( – m) –μ

⎞

⎟
⎠ , Bij =

⎛

⎜
⎝

 λ(j)ϕ(j)P(j)
〈k〉 

  
  

⎞

⎟
⎠ .

By using mathematical induction, the characteristic equation can be calculated as follows:

(z + μ)kmax (z + β + μ)kmax–(z + δ + μ)kmax–

×
(

(z + β + μ)(z + δ + μ) – βhδm – βh
〈λ(k)ϕ(k)〉

〈k〉
)

= ,
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where

〈
λ(k)ϕ(k)

〉
= λ()ϕ()P() + λ()ϕ()P() + · · · + λ(kmax)ϕ(kmax)P(kmax).

The stability of E is only dependent on

(z + β + μ)(z + δ + μ) – βhδm – βh
〈λ(k)ϕ(k)〉

〈k〉 = . (.)

Then we have

z + (β + δ + μ)z + (β + μ)(δ + μ) – βhδm – βh
〈λ(k)ϕ(k)〉

〈k〉 = . (.)

According to equation (.), if R < , we can easily get (β + μ)(δ + μ) – βhδm –
βh 〈λ(k)ϕ(k)〉

〈k〉 > , i.e., z < . Hence, E is locally asymptotically stable if R <  and unsta-
ble if R > . The proof is completed. �

Theorem  The rumor-free equilibrium E of SEIR system (.) is globally asymptotically
stable if R < .

Proof First, we define a Lyapunov function V (t) as follows:

V (t) =
∑

k

ϕ(k)
ηk

[

P(k)Ek(t) +
(β + μ)

βh
Ik(t)

]

. (.)

Then, according to a calculation of the derivative of V (t) along the solution of system (.),
we have

V (t) =
∑

k

ϕ(k)P(k)
ηk

[

Ek(t) +
(β + μ)

βh
Ik(t)

]

=
∑

k

ϕ(k)
ηk

P(k)
[

λ(k)�(t)Sk(t) – (β + μ)Ek(t) + δmIk(t)

+
(β + μ)

βh
(
βhEk(t) – (δ + μ)Ik(t)

)
]

≤
∑

k

ϕ(k)
ηk

P(k)
[

λ(k)�(t)ηk +
δmβh – (β + μ)(δ + μ)

βh
Ik(t)

]

= �(t)
∑

k

ϕ(k)P(k)λ(k) +
δmβh – (β + μ)(δ + μ)

βh
∑

k

ϕ(k)
ηk

P(k)Ik(t)

= �(t)
〈
ϕ(k)λ(k)

〉
+

δmβh – (β + μ)(δ + μ)
βh

〈k〉�(t)

= �(t)


βh
[
βh

〈
ϕ(k)λ(k)

〉
+
[
δmβh – (β + μ)(δ + μ)

]〈k〉]

= �(t)〈k〉 [(β + μ)(δ + μ) – βhδm]
βh

(R – ).

When R < , we can easily find that V (t) ≤  for all V (t) ≥ , and that V (t) =  only
if �(t) = , i.e., Ik(t) = . Thus, by the LaSalle invariance principle [], this implies the
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rumor-free equilibrium E of system (.) is globally attractive. Therefore, when R < ,
the rumor-free equilibrium E of SEIR system (.) is globally asymptotically stable. The
proof is completed. �

4.2 The global attractivity of the rumor-prevailing equilibrium
In this section, the permanent of rumor and the global attractivity of the rumor-prevailing
equilibrium are discussed.

Theorem  When R > , the rumor is permanent on the network, i.e., there exists a posi-
tive constant ς > , such that lim inf I(t)t→∞ = lim inft→∞

∑
k P(k)Ik(t) > ς .

Proof We desire to use the condition stated in Theorem . in []. Define

X =
{

(S, E, I, R, . . . , Skmax , Ekmax , Ikmax , Rkmax ) :

Sk , Ek , Ik , Rk ≥  and Sk + Ek + Ik + Rk = η, k = , . . . , kmax
}

,

X =
{

(S, E, I, R, . . . , Skmax , Ekmax , Ikmax , Rkmax ) ∈ X :
∑

k

P(k)Ik > 
}

,

∂X = X \ X.

In the following, we will explain that system (.) is uniformly persistent with respect to
(X, ∂X).

Clearly, X is positively and bounded with respect to system (.). Assume that
�() = 

〈k〉
∑

k=
ϕ(k)
ηk

P(k)Ik() > , then we have Ik() >  for some k. Thus, I() =
∑

k= P(k)Ik() > . For I ′(t) =
∑

k P(k)I ′
k(t) ≥ –(δ + μ)

∑
k P(k)Ik(t) = –(δ + μ)I(t), we have

I(t) ≥ I()e–(δ+μ)t > . Therefore, X is also positively invariant. Furthermore, there exists
a compact set B, in which all solutions of system (.) initiated in X ultimately enter and
remain forever after. The compactness condition (C.) of Theorem . in reference []
is easily verified for this set B.

Denote

M∂ =
{(

S(), E(), I(), R(), . . . , Skmax (), Ekmax (), Ikmax (), Rkmax ()
)

:
(
S(t), E(t), I(t), R(t), . . . , Skmax (t), Ekmax (t), Ikmax (t), Rkmax (t)

) ∈ ∂X, t ≥ 
}

,

and

� =
⋃{

ω
(
S(), E(), I(), R(), . . . , Skmax (), Ekmax (), Ikmax (), Rkmax ()

)
:

(
S(), E(), I(), R(), . . . , Skmax (), Ekmax (), Ikmax (), Rkmax ()

) ∈ X
}

,

where ω(S(), E(), I(), R(), . . . , Skmax (), Ekmax (), Ikmax (), Rkmax ()) is the omega limit
set of the solutions of system (.) starting in (S(), E(), I(), R(), . . . , Skmax (), Ekmax (),
Ikmax (), Rkmax ()). Restricting system (.) on M∂ , we can obtain

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dSk (t)
dt = b(k) – μSk(t),

dEk (t)
dt = –(β + μ)Ek(t),

dIk (t)
dt = –(δ + μ)Ik(t),

dRk (t)
dt = β( – h)Ek(t) – μRk(t).

(.)
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Obviously, system (.) has a unique equilibrium E in X. Thus, E is the unique equi-
librium of system (.) in M∂ . We can easily find that E is locally asymptotically stable.
For system (.) is a linear system; this indicates that E is globally asymptotically stable.
Hence � = {E}. And E is a covering of X, which is isolated and acyclic (because there
exists no nontrivial solution in M∂ which links E to itself ). Finally, the proof of theorem
will be completed if it is shown that E is a weak repeller for X, i.e.,

lim sup
t→∞

dist
((

S(t), E(t), I(t), R(t), . . . , Skmax (t), Ekmax (t), Ikmax (t), Rkmax (t)
)
, E

)
> ,

where (S(t), E(t), I(t), R(t), . . . , Skmax (t), Ekmax (t), Ikmax (t), Rkmax (t)) is an arbitrary solution
with initial value in X. In order to use the method of Leenheer and Smith [], we
need only to prove W s(E) ∩ X = ∅, where W s(E) is the stable manifold of E. As-
sume it is not sure, then there exists a solution (S(t), E(t), I(t), R(t), . . . , Skmax (t), Ekmax (t),
Ikmax (t), Rkmax (t)) in X, such that

Sk(t) → ηk , Ek(t) → , Ik(t) → , Rk(t) →  as t → ∞. (.)

According to R = bβ

μ[(γ +ε+μ)(β+δ+μ)–βε]
〈λ(k)ϕ(k)〉

〈k〉 > , we have

∑

k

λ(k)ϕ(k)P(k)
〈k〉ηk

ηk >
μ[(γ + ε + μ)(β + δ + μ) – βε]

bβ
.

Then we can choose sufficiently small ξ >  such that

〈
λ(k)ϕ(k)
〈k〉ηk

(ηk – ξ )
〉

>
μ[(γ + ε + μ)(β + δ + μ) – βε]

bβ
. (.)

Since ξ > , by (.) there exists a constant T >  such that

b
μ

– ξ < Sk(t) <
b
μ

+ ξ ,  < Ek(t) < ξ ,  < Ik(t) < ξ ,  < Rk(t) < ξ (.)

for all t ≥ T and k = , , . . . , kmax.
The derivative of V (t) =

∑
k

ϕ(k)
ηk

[P(k)Ek(t) + (β+μ)
βh Ik(t)] along the solution of system (.)

is given by

V ′(t) =
∑

k

ϕ(k)
ηk

P(k)
(

E′
k(t) +

(β + μ)
βh

I ′
k(t)

)

=
∑

k

ϕ(k)
ηk

P(k)
(

λ(k)�(t)Sk(t) + δmIk(t) –
(β + μ)(δ + μ)

βh
Ik(t)

)

=
∑

k

ϕ(k)
ηk

P(k)
(

λ(k)�(t)Sk(t) +
δmβh – (β + μ)(δ + μ)

βh
Ik(t)

)

>
∑

k

ϕ(k)
ηk

P(k)
(

λ(k)�(t)(ηk – ξ ) +
δmβh – (β + μ)(δ + μ)

βh
Ik(t)

)
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=
∑

k

ϕ(k)
ηk

P(k)
(

λ(k)(ηk – ξ )
〈k〉

∑

i

ϕ(i)
ηi

P(i)Ii(t)
)

+
δmβh – (β + μ)(δ + μ)

βh
∑

i

ϕ(i)
ηi

P(i)Ii(t)

=
〈
ϕ(k)λ(k)
ηk〈k〉 (ηk – ξ )

〉∑

i=

ϕ(i)
ηi

P(i)Ii(t) +
δmβh – (β + μ)(δ + μ)

βh
∑

i

ϕ(i)
ηi

P(i)Ii(t)

=
∑

i=

[〈
ϕ(k)λ(k)
ηk〈k〉 (ηk – ξ )

〉

–
(β + μ)(δ + μ) – βhδm

βh

]
ϕ(i)
ηi

P(i)Ii(t)

> .

Consequently, V (t) → ∞ as t → ∞, which apparently contradicts the boundedness of
V (t). This completes the proof. �

Lemma  ([]) If a > , b >  and dx(t)
dt ≥ b – ax, when t ≥  and x() ≥ , we can obtain

lim inft→+∞ x(t) ≥ b
a . If a > , b >  and dx(t)

dt ≤ b – ax, when t ≥  and x() ≥ , we can
obtain lim supt→+∞ x(t) ≤ b

a .

Next, by using a novel monotone iterative technique in reference [], we discuss the
global attractivity of the rumor-prevailing equilibrium.

Theorem  Suppose that (Sk(t), Ek(t), Ik(t), Rk(t)) is a solution of system (.), satisfying
the initial condition equation (.). When R > , then limt→∞(Sk(t), Ek(t), Ik(t), Rk(t)) =
(S∞

k , E∞
k , I∞

k , R∞
k ), where (S∞

k , E∞
k , I∞

k , R∞
k ) is the unique positive rumor equilibrium of sys-

tem (.) satisfying (.) for k = , , . . . , n.

Proof Since the first three equations in system (.) are independent of the fourth one, it
suffices to consider the following system:

⎧
⎪⎪⎨

⎪⎪⎩

dSk (t)
dt = b(k) – λ(k)�(t)Sk(t) – μSk(t),

dEk (t)
dt = λ(k)�(t)Sk(t) – (β + μ)Ek(t) + δmIk(t),

dIk (t)
dt = βhEk(t) – (δ + μ)Ik(t).

(.)

We assume that k is fixed to be any integer in {, , . . . , n}. By Theorem , there exist
a positive constant  < ε < / and a large enough constant T >  such that Ik(t) ≥ ε for
t > T . Hence,

�(t) =


〈k〉
∑

i=

ϕ(i)
ηi

P(i)Ii(t) ≥ 
〈k〉

ϕ(i)P(i)
ηi

ε = ϑε > ,

where ϑ = 
〈k〉

ϕ(i)P(i)
ηi

. From the first equation of system (.), we have

dSk(t)
dt

≤ b(k) – λ(k)ϑεSk(t) – μSk(t), t > T .

By Lemma , we derive that lim supt→+∞ Sk(t) ≤ μηk
λ(k)ϑε+μ

. Then, for arbitrarily given pos-
itive constant  < ε < λ(k)ϑεηk

(λ(k)ϑε+μ) , there exists a t > T such that Sk(t) ≤ X()
k – ε for t > t,
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where

X()
k =

μηk

λ(k)ϑε + μ
+ ε < ηk .

For �(t) ≤ 
〈k〉

∑
i= ϕ(i)P(i) = M, from the second equation of system (.) for t > t, we

can get

dEk(t)
dt

≤ λ(k)M
(
ηk – Ek(k) – Ik(k) – Rk(k)

)
– (β + μ)Ek(t)

+ δm
(
ηk – Ek(k) – Sk(k) – Rk(k)

)

≤ λ(k)M
(
ηk – Ek(k)

)
– (β + μ)Ek(t) + δm

(
ηk – Ek(k)

)

= ηk
[
λ(k)M + δm

]
– Ek(k)

[
λ(k)M + δm + β + μ

]
.

Similarly, for arbitrary given positive constant  < ε < min{/, ε, (δm+β+μ)ηk
(λ(k)M+δm+β+μ) }, there

exists a t > t, such that Ek(t) ≤ Y ()
k – ε for t > t, where

Y ()
k =

λ(k)Mηk

λ(k)M + δm + β + μ
+ ε < ηk .

From the third equation of system (.), we have

dIk(t)
dt

≤ βh
(
ηk – Ik(t)

)
– (δ + μ)Ik(t) = βhηk – (δ + μ + βh)Ik(t), t > t.

Thus, for arbitrary given positive constant  < ε < min{/, ε, (μ+βh)ηk
(δ+μ+βh) }, there exists a

t > t, such that Ik(t) ≤ Z()
k – ε for t > t, where

Z()
k =

δηk

(δ + μ + βh)
+ ε < ηk .

On the other hand, from the first equation of system (.), we can get

dSk(t)
dt

≥ b(k) – λ(k)MSk(t) – μSk(t), t > T .

By Lemma , we derive that lim inft→+∞ Sk(t) ≥ b(k)
λ(k)M+μ

. Then, for arbitrary given posi-
tive constant  < ε < min{/, ε, b(k)

[λ(k)M+μ] }, there exists a t > t, such that Sk(t) ≥ x()
k +ε,

for t > t, where

x()
k =

b(k)
λ(k)M + μ

– ε > .

It follows that

dEk(t)
dt

≥ λ(k)ϑεx()
k + δmηk – (β + μ + δm)Ek(t), t > t.
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Hence, for arbitrary given positive constant  < ε < min{/, ε, λ(k)ϑεx()
k +δmηk

(β+μ+δm) }, there ex-
ists a t > t, such that Ek(t) ≥ y()

k + ε for t > t, where

y()
k =

λ(k)ϑεx()
k + δmηk

(β + μ + δm)
– ε > .

Then

dIk(t)
dt

≥ βhy()
k – (δ + μ)Ik(t), t > t.

Hence, for arbitrary given positive constant  < ε < min{/, ε, βhy()
k

(δ+μ) }, there exists a
t > t, such that Ik(t) ≥ z()

k + ε for t > t, where

z()
k =

βhy()
k

(δ + μ)
– ε > .

Since ε is a small positive constant, we have  < x()
k < X()

k < ηk ,  < y()
k < Y ()

k < ηk and
 < z()

k < Z()
k < ηk . Let

w(j) =


〈k〉
∑

k

ϕ(k)
ηk

P(k)zj
k(t), W (j) =


〈k〉

∑

k

ϕ(k)
ηk

P(k)Zj
k(t), j = ,  . . . .

From the above discussion, we found that

 < w() ≤ �(t) ≤ W () < M, t > t.

Again, by system (.), we have

dSk(t)
dt

≤ b(k) – λ(k)w()Sk(t) – μSk(t), t > t.

Hence, for arbitrary given positive constant  < ε < min{/, ε}, there exists a t > t

such that

Sk(t) ≤ X()
k � min

{

X()
k – ε,

b(k)
λ(k)w() + μ

+ ε

}

, t > t.

Thus,

dEk(t)
dt

≤ λ(k)W ()X()
k + δmZ()

k – (β + μ)Ek(t), t > t.

Therefore, for arbitrary given positive constant  < ε < min{/, ε}, there exists a t > t,
such that

Ek(t) ≤ Y ()
k � min

{

Y ()
k – ε,

λ(k)W ()X()
k + δmZ()

k
(β + μ)

+ ε

}

.

It follows that

dIk(t)
dt

≤ βhY ()
k – (δ + μ)Ik(t), t > t.
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So, for arbitrary given positive constant  < ε < min{/, ε}, there exists a t > t, such
that

Ik(t) ≤ Z()
k � min

{

Z()
k – ε,

βhY ()
k

(δ + μ)
+ ε

}

, t > t.

Turning back to system (.), we have

dSk(t)
dt

≥ b(k) – λ(k)W ()Sk(t) – μSk(t), t > t.

Hence, for arbitrary given positive constant  < ε < min{/, ε, b(k)
(λ(k)W ()+μ) }, there ex-

ists a t > t, such that Sk(t) ≥ x()
k + ε for t > t, where

x()
k = max

{

x()
k + ε,

b(k)
λ(k)W () + μ

– ε

}

.

Accordingly, one obtains

dEk(t)
dt

≥ λ(k)w()x()
k + δmz()

k – (β + μ)Ek(t), t > t.

Hence, for arbitrary given positive constant  < ε < min{/, ε, λ(k)w()x()
k +δmz()

k
(β+μ) }, there

exists a t > t, such that Ek(t) ≥ y()
k + ε for t > t, where

y()
k = max

{

y()
k + ε,

λ(k)w()x()
k + δmz()

k
(β + μ)

– ε

}

.

Thus,

dIk(t)
dt

≥ βhy()
k – (δ + μ)Ik(t), t > t.

Hence, for arbitrary given positive constant  < ε < min{/, ε, βhy()
k

(δ+μ) }, there exists a
t > t, such that Ik(t) ≥ z()

k + ε for t > t, where

z()
k = max

{

z()
k + ε,

βhy()
k

(δ + μ)
– ε

}

.

In the same way, we can carry out step h (h = , , . . .) of the calculation and get six se-
quences: {X(h)

k }, {Y (h)
k }, {Z(h)

k }, {x(h)
k }, {y(h)

k } and {z(h)
k }. We found that the first three sequences

are monotone increasing and the last three sequences are strictly monotone decreasing,
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and there exists a large positive integer N so that for h ≥ N

X(h)
k =

b(k)
λ(k)w(h–) + μ

+ εh–,

Y (h)
k =

λ(k)W (h–)X(h)
k + δmZ(h–)

k
(β + μ)

+ εh–,

Z(h)
k =

βhY (h)
k

(δ + μ)
+ εh–,

x(h)
k =

b(k)
λ(k)W (h) + μ

– εh–,

y(h)
k =

λ(k)w(h–)x(h)
k + δmz(–)

k
(β + μ)

– εh–,

z(h)
k =

βhy(h)
k

(δ + μ)
– εh.

(.)

Clearly, we found that

x(h)
k ≤ Sk(t) ≤ X(h)

k , y(h)
k ≤ Ek(t) ≤ Y (h)

k , z(h)
k ≤ Ik(t) ≤ Z(h)

k , t > th. (.)

Owing to the existence of sequential limits of equation (.), let limt→∞ �
(h)
k = �k ,

where �
(h)
k ∈ {X(h)

k , Y (h)
k , Z(h)

k , x(h)
k , y(h)

k , z(h)
k , W (h)

k , w(h)
k } and �k ∈ {Xk , Yk , Zk , xk , yk , zk , Wk , wk}.

For  < εh < /h, one has εh →  as h → ∞. Taking h → ∞, by calculating the six se-
quences of equation (.), we can obtain the following form

Xk =
b(k)

λ(k)w + μ
, Yk =

λ(k)WXk + δmZk

(β + μ)
, Zk =

βhYk

(δ + μ)
,

xk =
b(k)

λ(k)W + μ
, yk =

λ(k)wxk + δmzk

(β + μ)
, zk =

βhyk

(δ + μ)
.

(.)

From equation (.), a direct computation leads to

Zk =
βhλ(k)W

[(δ + μ)(β + μ) – βhδm]
b(k)

λ(k)w + μ
,

zk =
βhλ(k)w

[(δ + μ)(β + μ) – βhδm]
b(k)

λ(k)W + μ
,

(.)

where w = 
〈k〉

∑
k

ϕ(k)
ηk

P(k)zk , W = 
〈k〉

∑
k

ϕ(k)
ηk

P(k)Zk .
Further, substituting equation (.) into w and W , respectively, we can obtain

 =


〈k〉
βh

[(δ + μ)(β + μ) – βhδm]
∑

k

ϕ(k)
ηk

P(k)λ(k)b(k)
λ(k)W + μ

,

 =


〈k〉
βh

[(δ + μ)(β + μ) – βhδm]
∑

k

ϕ(k)
ηk

P(k)λ(k)b(k)
λ(k)w + μ

.
(.)

Subtracting the above two equations, a direct computation leads to

 = (w – W )


〈k〉
βh

[(δ + μ)(β + μ) – βhδm]
∑

k

ϕ(k)
ηk

P(k)λ(k)b(k)λ(k)
(λ(k)W + μ)(λ(k)w + μ)

.
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Obviously, it implies that w = W . So, 
〈k〉

∑
k

ϕ(k)
ηk

P(k)(Zk – zk) = , which is equivalent to
zk = Zk for  ≤ k ≤ n. Then, from equation (.) and equation (.), it follows that

lim
t→

Sk(t) = Xk = xk , lim
t→

Ek(t) = Yk = yk , lim
t→

Ik(t) = Zk = zk .

Finally, by substituting w = W into equation (.), in view of equation (.) and equation
(.), it is found that Xk = S∞

k , Yk = E∞
k , Zk = R∞

k . This completes the proof. �

5 Conclusions
In this paper, a new SEIR rumor spreading model with demographics on scale-free net-
works is presented. Through the mean-field theory analysis, we obtained the basic repro-
duction number R and the equilibria. The basic reproduction number R determines the
existence of the rumor-prevailing equilibrium, and it depends on the topology of the un-
derlying networks and some model parameters. Interestingly, R bears no relation to the
degree-dependent immigration b(k). When R < , the rumor-free equilibrium E is glob-
ally asymptotically stable, i.e., the infected individuals will eventually disappear. When
R > , there exists a unique rumor-prevailing E+, and the rumor is permanent, i.e., the
infected individuals will persist and we have convergence to a uniquely prevailing equilib-
rium level. The study may provide a reliable tactic basis for preventing the rumor spread-
ing.
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