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Abstract
This paper focuses on fault detection filter (FDF) design for continuous-time nonlinear
Markovian jump systems (NMJSs) with mode-dependent delay and time-varying
transition probabilities (TPs). By using a novel Lyapunov-Krasovskii function and
based on convex polyhedron technique, a new FDF, as the residual generator, is
constructed to guarantee the mean-square exponential stability and a prescribed
level of disturbance attenuation for admissible perturbations of NMJSs. Finally, the
numerical simulation is carried out to demonstrate the effectiveness of our method.
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1 Introduction
Subject to the random abrupt variations, Markovian jump systems (MJSs) are assumed to
be a framework to model dynamic systems, and they can be found in economic systems,
communication systems, robot manipulator systems and so on. During the past decades,
many efforts have been devoted to MJSs, which can be possibly used in the field of system
stability [–], system control [–] and filtering [–].

For MJSs, fault detection is an important research topic. In the framework of fault de-
tection, a threshold on residual signals is set. Once the value of residual evaluation func-
tion goes beyond the predefined threshold, the alert is triggered []. Up to now many
results on fault detection of MJSs have been published, see [–] and the references
therein. Generally, the fault detection method can be divided into three groups. The first
group is the filter-based method. In [], a filter is used to generate the residual signals
to detect the fault. The second group is the statistic method. In [], Bayesian theory and
the likelihood method are used to evaluate the fault. The third group is the geometric
method. In [], a geometric approach is employed to find the fault. However in general,
TPs are assumed to be time invariant. It is meaningful to focus on the case that TPs are
time variant for the possible application in real engineering. In addition, time delays are
mode-dependent sometimes, and usually the existence of nonlinear terms makes the real
fault detection problem more complicated. To our best knowledge, the studies on fault
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detection for continuous-time nonlinear MJSs (NMJSs) with mode-dependent delay and
time-varying TPs have been seldom carried out up to now, which motivates this paper. In
addition, some techniques and lemmas will be included to improve the conservatism of
theoretical results.

The remainder of this paper is organized as follows. The mathematical model under
consideration and some preliminaries are provided in Section . A FDF for continuous-
time NMJSs with mode-dependent delay and time-varying TPs is designed in Section .
The illustrative example is included to verify the correctness of obtained theoretical results
in Section , and finally the paper is concluded in Section .

Notations used in this paper are fairly standard. Let Rn be the n-dimensional Euclidean
space, Rn×m represents the set of n × m real matrix, the symbol * denotes the elements be-
low the main diagonal of a symmetric block matrix, A >  means that A is a real symmet-
ric positive definitive matrix, I denotes the identity matrix with appropriate dimensions.
diag{·} denotes the diagonal matrix. E{·} refers to the expectation operator with respect
to some probability measure P. ‖ · ‖ refers to the Euclidean vector norm or the induced
matrix -norm. The superscript T stands for matrix transposition, Ln,h = L([–h, ], Rn) de-
notes the Banach space of continuous functions mapping the interval [–h, ] into Rn with
the topology of uniform convergence.

2 Model description and preliminaries
In this paper, (�,ϒ , P) denotes the probability space, where � is the sample space, ϒ is σ -
algebra of a subset of the sample space, and P is the probability measure defined on ϒ .
The process {rt , t ∈ [, +∞)} is described by a Markovian chain with finite state space
S = {, , . . . , N}, and its transition probability matrix �(σt+�) = [π (σt+�)

il ]N×N (i, l ∈ S) is
governed by

P{rt+�t = l|rt = i} =

{
πil�t + o(�t), l �= i,
 + πii�t + o(�t), l = i,

where πii = –
∑N

l=,l �=i πil , lim�t→ o(�t)/�t = , and πil ≥ , l �= i is the transition rate from
mode i at time t to mode l at time t + �t.

In real engineering �(σt+�) is not invariable. Hence, in this paper, we assume that σt varies
in another finite set S = {, , . . . , M}, and the variations are considered as the stochastic
variation. The variation of σt is governed by a higher-level transition probability (HTP)
matrix � = [λjk]M×M (j, k ∈ S) and the transition probability of Markov chain satisfies

P{σt+�t = k|σt = j} =

{
λjk�t + o(�t), k �= j,
 + λjj�t + o(�t), k = j,

where λjj = –
∑M

k=,k �=j λjk , and λjk ≥ , k �= j is the transition rate from mode j at t to mode
k at t + �. The stochastic processes rt and σt are assumed to be independent throughout
this paper.



Wang et al. Advances in Difference Equations  (2017) 2017:262 Page 3 of 23

First, consider the Markov jump system with time-varying TPs as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = A(rt ,σt)x(t) + B(rt ,σt)x(t – τ (t, rt ,σt)) + D(rt ,σt)G(t) + E(rt ,σt)u(t)
+ Ed(rt ,σt)d(t) + Ef (rt ,σt)f (t),

l(t) = Al(rt ,σt)x(t) + Bl(rt ,σt)x(t – τ (t, rt ,σt)) + Dl(rt ,σt)G(t) + Edl(rt ,σt)d(t)
+ Efl(rt ,σt)f (t),

x(t + θ ) = ψ(t + θ ), θ ∈ [–h, ],

()

where x(t) ∈ Rn is the state vector of the system, τ (t, rt ,σt) is the mode-dependent
time-varying delay of the system, which satisfies h ≤ τ (t, rt ,σt) ≤ h and τ̇ (t, rt ,σt) ≤ dn,
h = h – h is the change region of delay. l(t) ∈ Rp is the measurable output, u(t) ∈ Rq is
the control input, d(t) ∈ Rq is the unknown disturbance input, f (t) ∈ Rq is the fault, d(t)
and f (t) are assumed to be L norm bound, ψ(t + θ ) ∈ Ln,h is the initial condition of the
state vector, G(t) ∈ Rn is the nonlinear term, such that

Mx(t) ≤ G(t) ≤ Nx(t).

To enhance the feasible region of the criteria, we can divide the bounding into two subin-
tervals

M + N


x(t) ≤ G(t) ≤ Nx(t),

Mx(t) ≤ G(t) ≤ M + N


x(t).

Model () can be represented as
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = y(t),
y(t) = A(rt ,σt)x(t) + B(rt ,σt)x(t – τ (t, rt ,σt)) + D(rt ,σt)G(t) + E(rt ,σt)u(t)

+ Ed(rt ,σt)d(t) + Ef (rt ,σt)f (t),
l(t) = Al(rt ,σt)x(t) + Bl(rt ,σt)x(t – τ (t, rt ,σt)) + Dl(rt ,σt)G(t) + Edl(rt ,σt)d(t)

+ Efl(rt ,σt)f (t).

()

In this paper, the following linear filter is designed:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋf (t) = yf (t),
yf (t) = Af (rt ,σt)xf (t) + Bf (rt ,σt)l(t),
rf (t) = Lf (rt ,σt)xf (t),
xf (t + θ ) = ψf (t + θ ), θ ∈ [–h, ],

()

where xf (t) ∈ Rn is the state vector of the filter.
To improve the sensitiveness of residual to fault, we add a weighting matrix function

Wf (s) into the fault f (t), that is, rw(s) = Wf (s)f (s), where rw(s) and f (s) refer to the Laplace
transform of rw(t) and f (t). The minimal realization of rw(s) = Wf (s)f (s) is assumed to be

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋw(t) = yw(t),
yw(t) = Aw(rt ,σt)xw(t) + Ew(rt ,σt)f (t),
rw(t) = Lw(rt ,σt)xw(t),
xw(t + θ ) = ψw(t + θ ), θ ∈ [–h, ],

()
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where rw(t) is the reference residual, and our objective is to design a fault detection filter
(FDF) which can result in the minimal difference between the reference model and the
fault detection filter.

For simplicity, for each possible rt = ri, σt = σj, i ∈ S, j ∈ S, the matrix A(rt ,σt) will be
denoted by Aij, and so on.

Define r(t) = rf (t) – rw(t), we get the filtering error system as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x̄(t) = ȳ(t),
ȳ(t) = Āijx̄(t) + B̄ijKT x̄(t – τij(t)) + D̄ijG(x) + Ēijw(t),
r(t) = L̄T

ij x̄(t),
x̄(t + θ ) = ψ̄w(t + θ ), θ ∈ [–h, ],

()

where

x̄(t) =
[
x(t), xf (t), xw(t)

]T , w(t) =
[
u(t), d(t), f (t)

]T ,

Āij =

⎡
⎢⎣

Aij  
BfijAlij Afij 

  Awij

⎤
⎥⎦ , B̄ij =

⎡
⎢⎣

Bij

BfijBlij



⎤
⎥⎦ ,

D̄ij =

⎡
⎢⎣

Dij

BfijDlij



⎤
⎥⎦ , Ēij =

⎡
⎢⎣

Euij Eldij Elfij

 BfijEldij BfijElfij

  Ewij

⎤
⎥⎦ ,

L̄ij =
[

 Lij –Lfij

]T
, K = [ I   ]T .

The problem of fault detection can be transformed into H∞ filtering problem for the sys-
tem, that is, to determine all matrices such that the filtering error system () is robustly
mean-square exponentially stable with H∞ performance γ as follows:

sup
w(t) �=

‖r(t)‖
‖w(t)‖ < γ , ()

where ‖r(t)‖ =
√

{∫ ∞
 r(t)r(t) dt}, ‖w(t)‖ =

√
{∫ ∞

 w(t)w(t)}dt.
In this paper, the residual evaluation function J(r) and threshold Jth are chosen as follows:

J(r) =
∫ t+T

t

rT (t)r(t) dt < γ , ()

Jth = sup
f (t)=

E
{∫ t+T

t

rT (t)r(t) dt
}

, ()

where [t, t + T] is the finite-time window, T denotes the timeslot, and t denotes the
initial evaluation time. The occurrence of fault can be detected by comparing J(r) and Jth

based on the relationship as follows:

J(r) > Jth ⇒ with fault ⇒ alarm, ()

J(r) ≤ Jth ⇒ without fault. ()
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Before ending the section, we give the following notations, definitions and lemmas,
which will be used in the proof of our main results.

e =
[
I · KT , , . . . , m

]T , ek =
[
 · KT , , . . . , k–, Ik , k+, . . . , m

]T ,

wk = [, . . . , k–, Ik , k+, . . . , n]T .

Definition  The filtering error system () with w(t) =  is mean-square exponentially
stable if there exist scalars α >  and β >  such that

E
∥∥x̄(t)

∥∥
 ≤ αe–βt‖ψ̄‖

h, ()

where ‖ψ̄‖h = max{suph≤θ≤ ‖ψ̄(θ )‖, suph≤θ≤ ‖ ˙̄ψ(θ )‖}.

Definition  Given a positive scalar γ , the filtering error system () is mean-square ex-
ponentially stable with H∞ performance γ if, for every system mode and delay mode, the
filtering error system () with w(t) =  is mean-square exponentially stable, and under zero
initial condition it satisfies ‖r(t)‖ ≤ γ ‖w(t)‖ for any non-zero w(t) ∈ L[, +∞].

Lemma  ([]) Let �,�, . . . ,�N : Rm → Rn be a given finite number of functions such
that they have positive values in an open subset D of Rm. Then a reciprocally convex com-
bination of these functions over D is a function of the form


α

� +

α

� + · · · +


αN
�N : D → Rn, ()

where the real numbers αi satisfy αi >  and
∑

i αi = .

Lemma  ([]) For any constant matrices E, G and F with appropriate dimensions,
FT F ≤ kI , k is a positive scalar, then

xT EFGy ≤ cxEET x +
k
c

yT GT Gy, ()

where c is a positive scalar, x ∈ Rn, and y ∈ Rn.

Lemma  ([]) For any positive definite matrix � ∈ Rn×n, scalar γ > , vector function
w : [,γ ] → Rn such that the integrations concerned are well defined, then

(∫ γ


w(s) ds

)T

�

(∫ γ


w(s) ds

)
≤ γ

∫ γ


wT (s)�w(s) ds. ()

3 Main results
In this section, based on the Lyapunov method and linear matrix inequality techniques,
the following theoretical results can be derived.

Theorem  For dn < , given positive scalars h, h and k, if there exist R, R, R, S, M, Q,
Q, U , U, U, W , Mij, Fij with appropriate dimension, such that

[
Tij �ij

∗ –γ I

]
< , (a)
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[
T̄ij �ij

∗ –γ I

]
< , (b)

[
W U
∗ R

]
> , (c)

[
W U

∗ R

]
> , (d)

[
W U

∗ R

]
> , (e)

[
R S

S R

]
> , (f)

–M +
∑
l∈S

π
(j)
il Mlj +

∑
k∈S

λjkMik < , (g)

where

Tij = Tij –
{

e – e –
M + N


(e – e)

}{
e – e – N(e – e)

}T

–
{

e – e –
M + N


(e – e)

}{
e – e – N(e – e)

}T

–
{

e – e –
M + N


(e – e)

}{
e – e – N(e – e)

}T ,

Tij = �ij + � + �T – ( – dn)eT
 Mije + hekhW + pijpT

ij ,

� =
[
UKT , U – U, U – U , –U, , , , , 

]
,

pij = [L̄ij, , , , , , , , ]T , H = hekhR + h
ekh R,

�ij =
[
ĒT

ij FT
ij , , , , , ĒT

ij KV , , , 
]T ,

T̄ij = T̄ij –
{

e – e – M(e – e)
}{

e – e –
M + N


(e – e)

}T

–
{

e – e – M(e – e)
}{

e – e –
M + N


(e – e)

}T

–
{

e – e – M(e – e)
}{

e – e –
M + N


(e – e)

}T

,

�, = FijĀij + ĀT
ij Fij + kFij +

∑
l∈S

π
(j)
il Flj +

∑
k∈S

λjkFik + K(Mij + hM + Q + Q)KT ,

�, = FijB̄ij,

�, = –R + S + ST
,

�, = R – S,

�, = –Qe–kh – R,

�, = R – S,
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�, = S,

�, = –Qe–kh – R,

�, = FijD̄ij,

�, = ĀT
ij KV ,

�, = B̄T
ij KV ,

�, = D̄T
ij KV ,

�, = H – V .

For dn ≥ , given positive scalars h, h and k, if there exist R, R, R, S, Q, Q, U , U,
U, W , Fij with appropriate dimension, such that

[
Hij �ij

∗ –γ I

]
< , (h)

[
H̄ij �ij

∗ –γ I

]
< , (i)

[
W U
∗ R

]
> , (j)

[
W U

∗ R

]
> , (k)

[
W U

∗ R

]
> , (l)

[
R S

S R

]
> , (m)

where

Hij = Hij –
{

e – e –
M + N


(e – e)

}{
e – e – N(e – e)

}T

–
{

e – e –
M + N


(e – e)

}{
e – e – N(e – e)

}T

–
{

e – e –
M + N


(e – e)

}{
e – e – N(e – e)

}T ,

Hij = �̄ij + � + �T + hekhW + pijpT
ij ,

H̄ij = H̄ij –
{

e – e – M(e – e)
}{

e – e –
M + N


(e – e)

}T

–
{

e – e – M(e – e)
}{

e – e –
M + N


(e – e)

}T

–
{

e – e – M(e – e)
}{

e – e –
M + N


(e – e)

}T

,
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�̄, = FijĀij + ĀT
ij Fij + kFij +

∑
l∈S

π
(j)
il Flj +

∑
k∈S

λjkFik + K(Q + Q)KT ,

�̄, = FijB̄ij,

�̄, = –R + S + ST
,

�̄, = R – S,

�̄, = –Qe–kh – R,

�̄, = R – S,

�̄, = S,

�̄, = –Qe–kh – R,

�̄, = FijD̄ij,

�̄, = ĀT
ij KV ,

�̄, = B̄T
ij KV ,

�̄, = D̄T
ij KV ,

�̄, = H – V .

Then the filtering error system () is mean-square exponentially stable with H∞ perfor-
mance γ .

Proof For dn < , choosing the following Lyapunov function candidate

V (t, i, j) =
∑

i=

Vi(t, i, j), ()

where

V(t, i, j) = x̄T (t)Fijx̄(t),

V(t, i, j) =
∫ t

t–h

x̄T (s)Kek(s–t)QKT x̄(s) ds,

V(t, i, j) =
∫ t

t–h
x̄T (s)Kek(s–t)QKT x̄(s) ds,

V(t, i, j) =
∫ 

–h

∫ t

t+β

ȳT (α)Kek(α–t+h)RKT ȳ(α) dα dβ ,

V(t, i, j) =
∫ 

–h

∫ t

t+β

ξT (α)Kek(α–t+h)WKTξ (α) dα dβ ,

V(t, i, j) = h

∫ –h

–h

∫ t

t+β

ȳT (α)Kek(α–t+h)RKT ȳ(α) dα dβ ,

V(t, i, j) =
∫ t

t–τij(t)
x̄T (s)Kek(s–t)MijKT x̄(s) ds,

V(t, i, j) =
∫ 

–h

∫ t

t+β

x̄T (α)Kek(α–t+h)MKT x̄(α) dα dβ
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with

ξ (t) =
[
x̄T (t), x̄T(

t – τ (t)
)
K , x̄T (t – h)K , x̄T (t – h)K , G(t), ȳT (t)K ,

G(t – h), G
(
t – τ (t)

)
, G(t – h)

]T .

Let L be the infinitesimal generator of random process. Then we have

LV (t, i, j) =
∑

i=

LVi(t, i, j), ()

where

LV(t, i, j) = x̄T (t)Fij
(
Āijx̄(t) + B̄ijKT x̄

(
t – τij(t)

)
+ D̄ijG(t) + Ēijw(t)

)
+ x̄T (t)

(∑
l∈S

π
(j)
il Flj +

∑
k∈S

λjkFik

)
x̄(t),

LV(t, i, j) = x̄T (t)KQKT x̄(t) – e–kh x̄T (t – h)KQKT x̄(t – h) – kV(t, i, j),

LV(t, i, j) = x̄T (t)KQKT x̄(t) – e–khx̄T (t – h)KQKT x̄(t – h) – kV(t, i, j),

LV(t, i, j) = hekhȳT (t)KRKT ȳ(t) –
∫ t

t–h

ek(s–t+h)ȳT (s)KRKT ȳ(s) ds – kV(t, i, j)

≤ hekhȳT (t)KRKT ȳ(t) –
∫ t

t–h
ȳT (s)KRKT ȳ(s) ds – kV(t, i, j),

LV(t, i, j) = hekhξT (t)Wξ (t) –
∫ t

t–h
ek(s–t+h)ξT (s)Wξ (s) ds – kV(t, i, j)

≤ hekhξT (t)Wξ (t) –
∫ t

t–h
ξT (s)Wξ (s) ds – kV(t, i, j),

LV(t, i, j) ≤ h
ekh ȳT (t)KRKT ȳ(t) – h

∫ t–h

t–τij(t)
ȳT (s)KRKT ȳ(s) ds

– h

∫ t–τij(t)

t–h
ȳT (s)KRKT ȳ(s) ds – kV(t, i, j)

≤ h
ekh ȳT (t)KRKT ȳ(t) –

h

τij(t) – h
ξT (t)(e – e)R(e – e)Tξ (t)

–
h

h – τij(t)
ξT (t)(e – e)R(e – e)Tξ (t) – kV(t, i, j)

≤ h
ekh ȳT (t)KRKT ȳ(t) – ( + γ)ξT (t)(e – e)R(e – e)Tξ (t)

– ( + γ)ξT (t)(e – e)R(e – e)Tξ (t) – kV(t, i, j),

where  ≤ γ = τij(t)–h
h–τij(t) ≤ ,  ≤ γ = h–τij(t)

τij(t)–h
≤ .

For matrix
[ R S

S R

]
> , it holds that

–ξT (t)

[√
γ(eT

 – eT
 )√

γ(eT
 – eT

 )

]T [
R S

S R

][√
γ(eT

 – eT
 )√

γ(eT
 – eT

 )

]
ξ (t) ≤ . ()
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Hence

–γξ
T (t)(e – e)R(e – e)Tξ (t) – γξ

T (t)(e – e)R(e – e)Tξ (t)

≤ –ξT (t)(e – e)R(e – e)Tξ (t) – ξT (t)(e – e)R(e – e)Tξ (t).

We can obtain

LV(t, i, j) ≤ h
ekh ȳT (t)KRKT ȳ(t)

– ξT (t)

[
eT

 – eT


eT
 – eT



]T [
R S

S R

][
eT

 – eT


eT
 – eT



]
ξ (t) – kV(t, i, j).

Remark  When τij(t) = h or τij(t) = h, it can be derived that ξT (t)(e – e) =  or
ξT (t)(e – e) = , respectively. Hence the inequality holds.

LV(t, i, j) ≤ x̄T (t)KMijKT x̄(t)

–
(
 – τ̇ij(t)

)
e–khx̄T(

t – τij(t)
)
KMijKT x̄

(
t – τij(t)

)
– kV(t, i, j)

+
∑
l∈S

π
(j)
il

∫ t

t–τlj(t)
x̄T (s)KMljKT x̄(s) ds

+
∑
k∈S

λjk

∫ t

t–τlj(t)
x̄T (s)KMikKT x̄(s) ds,

LV(t, i, j) ≤ hekhx̄T (t)KMKT x̄(t) –
∫ t

t–h
x̄T (s)KMKT x̄(s) ds – kV(t, i, j).

Remark  For dn < , it can be concluded that –( – τ̇ij(t)) < , which means V(t, i, j) and
V(t, i, j) can be used to improve the conservatism of criteria.

According to the Leibniz-Newton formula,

ξT (t)UKT
[

x̄(t) – x̄(t – h) –
∫ t

t–h

ȳ(s) ds
]

= ,

ξT (t)UKT
[

x̄(t – h) – x̄
(
t – τij(t)

)
–
∫ t–h

t–τij(t)
ȳ(s) ds

]
= ,

ξT (t)UKT
[

x̄
(
t – τij(t)

)
– x̄(t – h) –

∫ t–τij(t)

t–h
ȳ(s) ds

]
= ,

ȳT (t)KVKT[
–ȳ(t) + Āijx̄(t) + B̄ijKT x̄

(
t – τ (t)

)
+ D̄ijG(t) + Ēijw(t)

]
= .

()

Then the following inequality can be concluded:

LV (t, i, j) ≤ ηT (t)�ijη(t) –
∫ t

t–h

ζ T�ζ ds +
∫ t

t–τij(t)
x̄T (s)K�KT x̄(s) ds

–
∫ t–h

t–τij(t)
ζ T�ζ ds –

∫ t–τij(t)

t–h
ζ T�ζ ds – kV (t, i, j), ()
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where

�ij =

[
ϒij �ij

∗ 

]
,

� =

[
W U
∗ R

]
, � =

[
W U

∗ R

]
, � =

[
W U

∗ R

]
,

η(t) =
[
ξT (t), wT (t)

]T , ζ =
[
ξT (t), yT (s)

]T ,

ϒij = �ij + � + �T – ( – dn)eT
 Mije + hekhW ,

� =
[
UKT , U – U, U – U , –U, , , , , 

]
,

�ij =
[
ĒT

ij FT
ij , , , , , KT ĒijV T , , , 

]T ,

� = –M +
∑
l∈S

π
(j)
il Mlj +

∑
k∈S

λjkMik .

For case : M+N
 x(t) ≤ G(t) ≤ Nx(t).

Consider

M + N


(
x(t) – x(t – h)

) ≤ G(t) – G(t – h) ≤ N
(
x(t) – x(t – h)

)
,

M + N


(x(t – h) – x
(
t – τij(t)

) ≤ G(t – h) – G
(
t – τij(t)

) ≤ N
(
x(t – h) – x

(
t – τij(t)

))
,

M + N


(
x
(
t – τij(t)

)
– x(t – h)

) ≤ G
(
t – τij(t)

)
– G

(
x(t – h)

)
≤ N

(
x
(
t – τij(t)

)
– x(t – h)

)
.

We get

 ≤ –
{

G(t) – G(t – h) –
M + N


(
x(t) – x(t – h)

)}

× {
f (t) – f (t – h) – N

(
x(t) – x(t – h)

)}
,

 ≤ –
{

G(t – h) – G
(
t – τij(t)

)
–

M + N


(
x(t – h) – x

(
t – τij(t)

))}

× {
G(t – h) – G

(
t – τij(t)

)
– N

(
x(t – h) – x

(
t – τij(t)

))}
,

 ≤ –
{

G
(
t – τij(t)

)
– G(t – h) –

M + N


(
x
(
t – τij(t)

)
– x(t – h)

)}

× {
G
(
t – τij(t)

)
– G(t – h) – N

(
x
(
t – τij(t)

)
– x(t – h)

)}
.

The following inequality can be concluded:

LV (t, i, j) ≤ ηT (t)�ijη(t) –
∫ t

t–h

ζ T�ζ ds +
∫ t

t–τij(t)
x̄T (s)K�KT x̄(s) ds

–
∫ t–h

t–τij(t)
ζ T�ζ ds –

∫ t–τij(t)

t–h
ζ T�ζ ds – kV (t, i, j), ()
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where

ϒij = ϒij –
{

e – e –
M + N


(e – e)

}{
e – e – N(e – e)

}T

–
{

e – e –
M + N


(e – e)

}{
e – e – N(e – e)

}T

–
{

e – e –
M + N


(e – e)

}{
e – e – N(e – e)

}T ,

�ij =

[
ϒij �ij

∗ 

]
.

Consider the following performance index:

J = E
{∫ t

t

[
rT (s)r(s) – γ wT (s)w(s)

]
ds

}

= E
{∫ t

t

[
rT (s)r(s) – γ wT (s)w(s) + LV (s, i, j)

]
ds

}
+ E

{
V (t, i, j)

}
– E

{
V (t, i, j)

}
.

For E{V (t, i, j)} =  and E{V (t, i, j)} ≥ , we have

J ≤ E
{∫ t

t

[
rT (s)r(s) – γ wT (s)w(s) + LV (s, i, j)

]
ds

}

= E
{∫ t

t

[
ηT (s)�ijη(s) –

∫ s

s–h

ζ T (s)�ζ (s) du +
∫ t

t–τij(s)
x̄T (u)K�KT x̄(u) du

–
∫ t–h

t–τij(t)
ζ T (s)�ζ (s) du –

∫ t–τij(t)

t–h
ζ T (s)�ζ (s) du – kV (s, i, j)

]
ds

}
,

where

�ij =

[
Tij �ij

∗ –γ I

]
,

Tij = ϒij + pijpT
ij .

With (a)-(m), it can be derived that �ij < .
For case : Mx(t) ≤ G(t) ≤ M+N

 x(t).
Consider

M
(
x(t) – x(t – h)

) ≤ G(t) – G(t – h) ≤ M + N


(
x(t) – x(t – h)

)
,

M(x(t – h) – x
(
t – τij(t)

) ≤ G(t – h) – G
(
t – τij(t)

) ≤ M + N


(
x(t – h) – x

(
t – τij(t)

))
,

M
(
x
(
t – τij(t)

)
– x(t – h)

) ≤ G
(
t – τij(t)

)
– G

(
x(t – h)

)
≤ M + N


(
x
(
t – τij(t)

)
– x(t – h)

)
.



Wang et al. Advances in Difference Equations  (2017) 2017:262 Page 13 of 23

We get

 ≤ –
{

G(t) – G(t – h) – M
(
x(t) – x(t – h)

)}
×

{
f (t) – f (t – h) –

M + N


(
x(t) – x(t – h)

)}
,

 ≤ –
{

G(t – h) – G
(
t – τij(t)

)
– M

(
x(t – h) – x

(
t – τij(t)

))}
×

{
G(t – h) – G

(
t – τij(t)

)
–

M + N


(
x(t – h) – x

(
t – τij(t)

))}
,

 ≤ –
{

G
(
t – τij(t)

)
– G(t – h) – M

(
x
(
t – τij(t)

)
– x(t – h)

)}
×

{
G
(
t – τij(t)

)
– G(t – h) –

M + N


(
x
(
t – τij(t)

)
– x(t – h)

)}
.

Then the following inequality can be concluded:

LV (t, i, j) ≤ ηT (t)�̄ijη(t) –
∫ t

t–h

ζ T�ζ ds +
∫ t

t–τij(t)
x̄T (s)K�KT x̄(s) ds

–
∫ t–h

t–τij(t)
ζ T�ζ ds –

∫ t–τij(t)

t–h
ζ T�ζ ds – kV (t, i, j), ()

where

�̄ij =

[
ϒ̄ij �ij

∗ 

]
,

ϒ̄ij = ϒij –
{

e – e – M(e – e)
}{

e – e –
M + N


(e – e)

}T

–
{

e – e – M(e – e)
}{

e – e –
M + N


(e – e)

}T

–
{

e – e – M(e – e)
}{

e – e –
M + N


(e – e)

}T

.

Consider the following performance index:

J = E
{∫ t

t

[
rT (s)r(s) – γ wT (s)w(s)

]
ds

}

= E
{∫ t

t

[
rT (s)r(s) – γ wT (s)w(s) + LV (s, i, j)

]
ds

}
+ E

{
V (t, i, j)

}
– E

{
V (t, i, j)

}
.

For E{V (t, i)} =  and E{V (t, i)} ≥ , we have

J ≤ E
{∫ t

t

[
rT (s)r(s) – γ wT (s)w(s) + LV (s, i, j)

]
ds

}

= E
{∫ t

t

[
ηT (s)�̄ijη(s) –

∫ s

s–h

ζ T (s)�ζ (s) du +
∫ t

t–τij(s)
x̄T (u)K�KT x̄(u) du

–
∫ t–h

t–τij(t)
ζ T (s)�ζ (s) du –

∫ t–τij(t)

t–h
ζ T (s)�ζ (s) du – kV (s, i, j)

]
ds

}
,
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where

�̄ij =

[
T̄ij �ij

∗ –γ I

]
,

T̄ij = ϒ̄ij + pijpT
ij .

With (a)-(m), it can be derived that �̄ij < .
Next, we discuss the stability of the filtering error system () with w(t) = , which is

equivalent to the stability of the filtering error system () without w(t).
For case  and case , with () and (), we can get the following inequalities respec-

tively:

LV (t, i, j) ≤ ξT (t)ϒijξ (t) –
∫ t

t–h

ζ T�ζ ds +
∫ t

t–τij(t)
x̄T (s)K�KT x̄(s) ds

–
∫ t–h

t–τij(t)
ζ T�ζ ds –

∫ t–τij(t)

t–h
ζ T�ζ ds – kV (t, i, j),

LV (t, i, j) ≤ ξT (t)ϒ̄ijξ (t) –
∫ t

t–h

ζ T�ζ ds +
∫ t

t–τij(t)
x̄T (s)K�KT x̄(s) ds

–
∫ t–h

t–τij(t)
ζ T�ζ ds –

∫ t–τij(t)

t–h
ζ T�ζ ds – kV (t, i, j).

()

Considering �ij < , �̄ij < , one can obtain ϒij < , ϒ̄ij < .
Then with (a)-(m) it can be concluded

LV (t, i, j) ≤ –kV (t, i, j). ()

Hence

L
(
ektV (t, i, j)

)
= ekt(LV (t, i, j) + kV (t, i, j)

) ≤ . ()

With Dynkin’s formula, one can obtain

EV (t, i, j)ekt = EV (t, i, j)ekt + E
∫ t

t

L
(
eksV (s, i, j)

)
ds

≤ EV (t, i, j)ekt . ()

Then

λmin(Fij)E
∥∥x̄(t)

∥∥ ≤ EV (t, i, j) ≤ EV (t, i, j)e–k(t–t).

According to the definition of V (t, i, j), we have

EV (t, i, j) ≤ [
λmax(Fij) + hλmax(Mij) + hλmax(M) + hλmax(Q) + hλmax(Q)

+ h
λmax(R) + h

λmax(W ) + h
λmax(R)

]
E‖ψ‖

h. ()
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The following inequality can be concluded:

E
∥∥x̄(t)

∥∥ ≤ ae– k
 (t–t)E‖ψ̄‖h, ()

where

a =

√
(λmax(Fij) + hλmax(Mij) + hλmax(M) + hλmax(Q) + hλmax(Q) + h

 λmax(R) + hλmax(W ) + h
λmax(R))

λmin(Fij)
.

By Definition , it can be derived that the fault detection system () without w(t) is mean-
square exponentially stable. Then, based on Definition , we can conclude that the filtering
error system () is mean-square exponentially stable with H∞ performance γ .

Now let us consider the case dn ≥ . Choose the Lyapunov function candidate as follows:

V (t, i, j) =
∑

i=

Vi(t, i, j).

Remark  For dn ≥ , it can be concluded that –( – τ̇ij(t)) ≥ , which means V(t, i, j) and
V(t, i, j) will increase the conservatism of theoretical results. Hence, in this case, V(t, i, j)
and V(t, i, j) will not be included to construct the Lyapunov function.

Then the following inequality can be concluded:

LV (t, i, j) ≤ ηT (t)�̄ijη(t) –
∫ t

t–h

ζ T�ζ ds

–
∫ t–h

t–τij(t)
ζ T�ζ ds –

∫ t–τij(t)

t–h
ζ T�ζ ds – kV (t, i, j),

where

�̄ij =

[
ϒ̄ij �ij

∗ 

]
,

ϒ̄ij = �ij + � + �T + hekhW .

As above proof, it can be concluded that

E
∥∥x̄(t)

∥∥ ≤ ae– k
 (t–t)E‖ψ̄‖h, ()

where

a =

√
(λmax(Fij) + hλmax(Q) + hλmax(Q) + h

λmax(R) + hλmax(W ) + h
λmax(R))

λmin(Fij)
.

Considering Definition , it can be derived that the filtering error system () without w(t)
is mean-square exponentially stable. Then, combined with Definition , we can conclude
that the filtering error system () is mean-square exponentially stable with H∞ perfor-
mance γ . The proof of Theorem  is thus completed. �
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Based on Theorem  and LMI techniques, the fault detection filter design problem is
addressed as follows.

Theorem  For dn < , given positive scalars h, h and k, if there exist R, R, S, M, Q,
Q, U , U, U, W , Mij, Fij with appropriate dimension, such that

[
Tij �ij

∗ –γ I

]
< , (a)

[
T̄ij �ij

∗ –γ I

]
< , (b)

[
W U
∗ R

]
> , (c)

[
W U

∗ R

]
> , (d)

[
W U

∗ R

]
> , (e)

[
R S

S R

]
> , (f)

–M +
∑
l∈S

π
(j)
il Mlj +

∑
k∈S

λjkMik < , (g)

where

Tij = Tij –
{

w – w –
M + N


(w – e)

}{
w – w – N(w – w)

}T

–
{

w – w –
M + N


(w – w)

}{
w – w – N(w – w)

}T

–
{

w – w –
M + N


(w – w)

}{
w – w – N(w – w)

}T ,

Tij = �ij + � + �T – ( – dn)wT
 Mijw + hekhW + pijpT

ij ,

� = [U , , , U – U, U – U , –U, , , , , ],

pij = [, Lij, –Lfij, , , , , , , , ]T , H = hekhR + h
ekh R,

T̄ij = T̄ij –
{

w – w – M(w – w)
}{

w – w –
M + N


(w – w)

}T

–
{

w – w – M(w – w)
}{

w – w –
M + N


(w – w)

}T

–
{

w – w – M(w – w)
}{

w – w –
M + N


(w – w)

}T

,

�ij =

∣∣∣∣∣∣∣∣
ET

uijFT
ij       ET

uijV   
ET

ldijF
T
ij ET

ldijB̂
T
fij      ET

ldijV   
ET

lfijF
T
ij ET

lfijB̂
T
fij ET

wijFT
ij     ET

lfijV   

∣∣∣∣∣∣∣∣

T

,
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�
ij
, = FijAij + AT

ij Fij + kFij +
∑
l∈S

π
(j)
il Flj +

∑
k∈S

λjkFik + Mij + hM + Q + Q + leklQ,

�
ij
, = AT

lijB̂
T
fij,

�
ij
, = Âfij + ÂT

fij + kFij +
∑
l∈S

π
(j)
il Flj +

∑
k∈S

λjkFik ,

�
ij
, = FiAwij + AT

wijFi + kFij +
∑
l∈S

π
(j)
il Flj +

∑
k∈S

λjkFik ,

�
ij
, = FijBij,

�
ij
, = B̂fijBlij,

�
ij
, = –R + S + ST

,

�
ij
, = –Qe–kh – R,

�
ij
, = R – S,

�
ij
, = S,

�
ij
, = –Qe–kh – R,

�
ij
, = FijDij,

�
ij
, = B̂fijDlij,

�
ij
, = AT

ij V ,

�
ij
, = BT

ij V ,

�
ij
, = DT

ij V ,

�
ij
, = H – V .

For dn ≥ , given positive scalars h, h and k, if there exist R, R, S, Q, Q, U , U, U,
W , Fij with appropriate dimension, such that

[
Hij �ij

∗ –γ I

]
< , (h)

[
H̄ij �ij

∗ –γ I

]
< , (i)

[
W U
∗ R

]
> , (j)

[
W U

∗ R

]
> , (k)

[
W U

∗ R

]
> , (l)

[
R S

S R

]
> , (m)
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where

Hij = Hij –
{

w – w –
M + N


(w – w)

}{
w – w – N(w – w)

}T

–
{

w – w –
M + N


(w – w)

}{
e – e – N(w – w)

}T

–
{

w – w –
M + N


(w – w)

}{
e – e – N(w – w)

}T ,

Hij = �̄ij + � + �T + hekhW + pijpT
ij ,

H̄ij = Hij –
{

w – w – M(w – w)
}{

w – w –
M + N


(w – w)

}T

–
{

w – w – M(w – w)
}{

w – w –
M + N


(w – w)

}T

–
{

w – w – M(w – w)
}{

w – w –
M + N


(w – w)

}T

,

�ij =

∣∣∣∣∣∣∣∣
ET

uijFT
ij       ET

uijV   
ET

ldijF
T
ij ET

ldijB̂
T
fij      ET

ldijV   
ET

lfijF
T
ij ET

lfijB̂
T
fij ET

wijFT
ij     ET

lfijV   

∣∣∣∣∣∣∣∣

T

,

�̄
ij
, = FijAij + AT

ij Fij + kFij +
∑
l∈S

π
(j)
il Flj +

∑
k∈S

λjkFik + Q + Q + leklQ,

�̄
ij
, = AT

lijB̂
T
fij,

�̄
ij
, = Âfij + ÂT

fij + kFij +
∑
l∈S

π
(j)
il Flj +

∑
k∈S

λjkFik ,

�̄
ij
, = FiAwij + AT

wijFi + kFij +
∑
l∈S

π
(j)
il Flj +

∑
k∈S

λjkFik ,

�̄
ij
, = FijBij,

�̄
ij
, = B̂fijBlij,

�̄
ij
, = –R + S + ST

,

�̄
ij
, = –Qe–kh – R,

�̄
ij
, = R – S,

�̄
ij
, = S,

�̄
ij
, = –Qe–kh – R,

�̄
ij
, = FijDij,

�̄
ij
, = B̂fijDlij,

�̄
ij
, = AT

ij V ,

�̄
ij
, = BT

ij V ,

�̄
ij
, = DT

ij V ,

�̄
ij
, = H – V .
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Then the filtering error system () is mean-square exponentially stable with H∞ perfor-
mance γ , and the desired parameters of FDF are determined by

Bfij = F–
ij B̂fij, Afij = F–

ij Âfij, Lfij = L̂fij. ()

Proof First define Fij = diag{Fij, Fij, Fij}. Based on (a)-(m) and (), one can obtain
(a)-(m). Then, combined with Theorem  and Definition , it can be concluded that
the filtering error system () is mean-square exponentially stable with H∞ performance
γ . The proof of Theorem  is thus completed. �

4 Simulation results
In this section, we will verify the proposed methodology by giving an illustrative example.
Consider MJNDSs with parameters, Markovian switching modes and state-space matrices
as follows:

A =

[
– 
. –

]
, B =

[
–. .
. –

]
, D =

[
. 
 .

]
,

Eu =

[
.
.

]
, Ed =

[
.
.

]
, Ef  =

[
.


]
,

Al = [ . . ], Bl = [ .  ], Dl = [ . . ],

Edl = ., Efl = .,

A =

[
– .
– –

]
, B =

[
– .
. –.

]
, D =

[
. 
 .

]
,

Eu =

[
.
.

]
, Ed =

[
.
.

]
, Ef  =

[
.


]
,

Al = [ . . ], Bl = [ . . ], Dl = [ . . ],

Edl = ., Efl = .,

G(t) = .
(∣∣x(t) + 

∣∣ +
∣∣x(t) – 

∣∣).

The piecewise homogeneous TP matrices are

� =

[
–. .
. –.

]
, � =

[
–. .
. –.

]
, � =

[
–. .
. –.

]
.

The HTP matrix is

� =

⎡
⎢⎣

–. . .
. –. .
. . –.

⎤
⎥⎦ .

Other parameters are τ(t) = . + . sin(t), τ(t) = . + . cos(t), h = ., h = .,
h = ., dn = ., M = , N = .I , γ = ., k = .. The weighting matrix is W (s) =
/(s + ). Then, based on (), it can be concluded that Aw = –, Ew = , Lw = . Based on
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Theorem , the filtering parameters are determined as follows:

Af  =

[
–. .
–. –.

]
, Bf  =

[
.
.

]
,

Lf  = [ . . ],

Af  =

[
–. –.
–. –.

]
, Bf  =

[
.
.

]
,

Lf  = [ . . ],

Af  =

[
–. –.
–. –.

]
, Bf  =

[
.
.

]
,

Lf  = [ . . ],

Af  =

[
–. .
–. –.

]
, Bf  =

[
.
.

]
,

Lf  = [ –. . ],

Af  =

[
–. –.
. –.

]
, Bf  =

[
.
.

]
,

Lf  = [ . –. ],

Af  =

[
–. .
–. –.

]
, Bf  =

[
.
.

]
,

Lf  = [ . . ].

Remark  It is noticed that dn = ., which means that our theoretical results are suitable
for the case that the derivative of time delay is bigger than .

For numerical simulation, the initial state is ϕ(θ ) = [., –.]T , r = , σ = . The dis-
turbance input d(t) is the uniform distribution noise between [–, ]. The fault signal f (t)
is a square wave signal with unit amplitude. Corresponding numerical simulation results
are shown in Figures -.

Figure 1 Evolution of system jumping mode
with time-varying TPs.
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Figure 2 Time response of disturbance input
d(t).

Figure 3 Time response of residual signal r(t).

Figure 4 Evolution of residual evaluation
function J(r).

Remark  Figure  depicts the evolution of system jumping mode with time-varying
TPs, which is more random compared with time-invariant TPs. Figure  depicts the
time response of disturbance input d(t). Figure  depicts the time response of the resid-
ual signal r(t). Figure  depicts the evolution of residual evaluation function J(r). Fig-
ure  depicts the time response of warning signal. For the case without fault, one can get∫ 

 rT (t)r(t) dt = .. We can choose threshold Jth = .. Then, considering the case
that fault exists, one can get

∫ .
 rT (t)r(t) dt = . > Jth. From Figure  it can be found

that the alert is triggered at about . seconds, which means that it will take . seconds
to detect the fault.
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Figure 5 Time response of warning signal.

5 Conclusions
In this paper, the problem on fault detection filter design for continuous-time NMJSs with
mode-dependent delay and time-varying TPs has been investigated. Based on Lyapunov-
Krasovskii function approach and convex polyhedron technique, a FDF has been con-
structed for the possible application in fault detection such that the mean-square expo-
nential stability and a prescribed level of disturbance attenuation are satisfied. Finally, the
typical numerical example has been included to verify the correctness of theoretical re-
sults.
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