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Abstract

The aim of this work is to study asymptotic properties of a class of fourth-order delay
differential equations. Our results in this paper not only generalize some previous
results, but also improve the earlier ones. Examples are considered to elucidate the
main results.
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1 Introduction
This paper is concerned with the oscillatory behavior of solutions of nonlinear fourth-

order differential equations of the type

b

() (")) + / 4, 8)f (x(g(x.£))) do (&) = 0, D)

a

where the following conditions are satisfied:

(A1) 7€ C([19,00),(0,00)), ¥(r) > 0 and « is a quotient of odd positive integers;

(A2) q,g € C([19,00) x [a,b],R), q(7,&) > 0, g(t,&) is not zero on any half line [1;, 00) x
[a,b], Ty > 10,4(7,&) < tfort > 19 and & € [a, b], g(1, §) is continuous, nondecreasing
with respect to & and lim;_, » g(,§) = o0;

(As) 0 € C([a,b],R), o is nondecreasing and the integral of equation (1.1) is in the
Riemann-Stieltjes sense;

and the function f € C(R, R) satisfies one of the following conditions:

(S1) f(x)/x* > ky >0 for x #0;
(Sy) f’(x)/[f(x)llTTa > ky > 0 for x #0 and f(uv) > u®f(v) for uv > 0.

By a solution of equation (1.1), we mean a function x(t) € C[z,,00), T, > 7o such that
r(t)(x"(t)) is continuously differentiable for all T > 7, and satisfies equation (1.1) for all
T € [14,00) . Here, we consider only proper solutions x(t) to equation (1.1) with property
sup{|x(z)| : T > t} > 0 for any t > 7,. A solution of equation (1.1) is called oscillatory if it
has arbitrary large zeros, otherwise it is called nonoscillatory.

In recent years there has been much research activity concerning the oscillation behav-
ior of solutions of nonlinear differential equations (see [1-21]). In the last few years, many
© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.


http://dx.doi.org/10.1186/s13662-017-1312-1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-017-1312-1&domain=pdf
mailto:o.bazighifan@gmail.com

Moaaz et al. Advances in Difference Equations (2017) 2017:261 Page 2 of 13

papers have appeared on the oscillatory theory of fourth-order differential equations (see
2,16, 22-25]).
The aim of this paper is to study the oscillatory behavior of the solutions of nonlinear

fourth-order differential equations (1.1) under the assumption

R |
/ ——ds < 0, (1.2)
70

rla ()

and we consider the function f with and without monotonicity. The results obtained es-
sentially generalize the results from Zhang [24] and also improve some results from Bac-
ulykova [2]. Examples are provided to illustrate new results.

In order to discuss our main results, we need the following lemmas.
Lemma 1.1 ([15]) If the function y satisfies y)(t) > 0,i=0,1,...,n, and y"*V(r) <0, then

o Y@
™! T Y (m-1)

Lemma 1.2 ([1]) Let y € C"([to,00),(0,00)). Assume that y"(t) is of fixed sign and not
identically zero on [y, 00) and that there exists T, > Ty such that y"V(z)y"(r) < 0 for all

T > 1. Iflim; . ¥(T) # 0, then for every € (0,1) there exists T, > T such that

m
(n-1)

y(t) > ! |y(”_1)(r)| Jort >1,.

2 Main results

In this section, we establish new oscillation criteria for solutions of equation (1.1). For the

sake of convenience, we insert the following notation:

R1(‘L')=/ rl/%(s)ds’ Ri(r):/ Ri_1(u)du, i=2,3,
b
Q) - / 4(1,8)do(€),

and F,(t) = max{0, F(1)}.

Lemma 2.1 Ifx(t) is an eventually positive three times continuously differentiable function
such that r(t)x" (t) is continuously differentiable and (r(t)x"'(t)) < 0 for large t, then one
of the following cases holds for large t:

(C) A (r)>0, %" (1) >0, %" (1) >0,
(C) #(r)>0, x"(1) <0, %" (1) >0,
(C3) #(r)<0, x"(1) >0, %" (1) <0,

(Cy) A (v)>0, x"(t) >0, x" (1) <0.

The proof is immediate and hence is omitted.
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Theorem 2.1 Assume that (1.2) and (S;) hold. If there exist continuously differentiable
functions p, ¥ € C([19,00),(0,00)) such that

) 3a o ’ a+l
/ (klP(S)Q(S)<g(SS,a)> __ 2 r(s)(e,(5)) )ds:oo,

(o + 1) (y82p(s))” (2.1)

k 1/ 2
/ (z?(u)/ [ 1/ / &8 4, (g)d] dV—Z;EZ;)du:oo, (2.2)
a+l
R

(2.3)

and

o+1

kllL . 3 o a+l 1 B
fm (i roecao- (%) mgeg) -

for some pq, 1o € (0,1), then every solution of (1.1) is oscillatory.

Proof Let x be a nonoscillatory solution of equation (1.1) on the interval [z, 00). Without
loss of generality, we may assume that x(7) > 0. From Lemma 2.1, there exists 7; > 7 such
that x(t) has one of the four cases (C;)-(C4) for t > 17. For Case (C;), we define

r(m)&" (@)

o(t) = p(1) (D)

Then w(t) > 0. By differentiating, we obtain

o0 = 20 (0 1 p(ryTEELNT o Lo, 5)
p(7) x%(t) x*+(1)

It follows from Lemma 1.2 that

X() > %Hx'”(r) (2.6)
for all u € (0,1) and every sufficiently large 7. From (1.1), (A3) and (S;), we see that
o/ b
(O @)Y = - [ 0w e (oletr, ) dote)
< -k Q(r)x" (g(t,a)). (2.7)
Thus, by (2.5), (2.6) and (2.7), we get
’ a /" a+l
' (1) < P (T)w(r) - klp(t)Q(t)M - a'urz,o(r)r(r)<x (T)) . (2.8)
p(t) x*(t) 2 %(7)

From Lemma 1.1, we have that

x(t) > %x’(t).
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Integrating this inequality from g(z,a) to t, we get

*(g(r,a)) _ g(x,a)

x(r) — 13

’

which with (2.8) gives

o'(7)
p(7)

o'(1) <

2 1
o(t) ~ kip(1)Qx )( ¢ “)) T 3t

2 (@)Y
By using the inequality

o

Bz —AzltT(Z < a—B‘“lA_“ for A,B>0andz >0,

(o + 1)L
withA=%__© ___ pg_ o we get
2 poro’ 2 = o) g

) gn,a)\** 2% r(r)(p) (1))
w(T)S—klp(T)Q(T)( . > +(a+1)a+1 (utlp(r)e

This implies that

T 3a o / a+l
/ (/qp(sm(s)(g( “)) 2 r9le.(r) )dsfw(n)

(@ + 1)+ (us*p(s)”

for every p € (0,1) and all sufficiently large 7, which contradicts (2.1).

w e (7).
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(2.9)

(2.10)

(2.11)

Consider Case (Cy) holds. From Lemma 1.1, we get that x(t) > t4'(t), by integrating this

inequality from g(7,&) to 7, we get

g(t,&)
T

x(g(,8)) = ().

Hence, from (S;), we have

- klg“ii,é)

f(x(g(,8))) = x* (7).

Integrating (1.1) from 7 to « and using «'(t) > 0, we obtain

() (" (1)) = () (2 ()" / / (5, £)f (x(g(s,£))) do () ds

§—k1x“(r)/r fa g (:;E) .

Letting u — oo, we see that

o) b
() (D))" = () / / 16,695 do ¢ as,

and so,

’”(r)>x(r)[ e )/ / 2655 )d ]W.

(2.12)
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Integrating again from 7 to co, we get

oo [ 00 b o : 1l/a
x”(T)S—x(r)/ [%/ /q(s,é)%da(g)ds} dv.

(2.13)
Now, we define
w(z) = 9(0)2.
x(1)
Then w(t) > 0 for T > 7;. By differentiating and using (2.13), we find
oy 9() %"(7) &' (1))
wi(t) = 70 w(t) + 9 (1) @) ?H(1) 200)
it S S g%(s,) e
<=0 [ [?GSZ:.K a5 6% do@)dﬂ v
" Z((T’)) w(r) - %Wz(f). (2.14)
Thus, we obtain
: [k (> &) v @)
w(r) < —z?(r)/r [TV)/; /a q(s,é)s—a do(é)ds:| dv + T(t) (2.15)
Then we get
" Tkt g8 R ()
/q (ﬂ(u)/u I:m/v /a q(s, &) o da(é)ds:| dv—4ﬁ(u)>du
<w(n).
This contradicts (2.2).

Assume that Case (Cs) holds. Since r(r)(x"(r))* is nonincreasing, we have that
r(s)(x”(s))* < r(r)(®”(r))* for all s > v > 7;. This yields

2(s) < [0 (" () ] =

plle(s)’
Integrating this inequality from t to u, we get
x"(u) —x"(t) < [r(r)(x’”(r))a]l/a /u 1/; ds.
o r(s)
Letting u — 00, we see that

—x(7) < [r(@) (" ()] Ru(x). (2.16)

By integrating the last inequality from t to co, we obtain

X (1) < [rO) (" ()] Ra(). (217)
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Integrating again from t to oo, we find

1/

(1) = —[r(x) (x" (1)) "] “Rs(r). (2.18)

Next, we define

_ r(r)(x”’(t))“.

x*(7)

¥ (7)

Thus, we see that ¥(t) < 0 and satisfies

oy @) (@) (),
v'(t) = () - 1 (0) % (7).

Hence, from (1.1), (2.17) and (S;), we have

b o 1+a
V) < -k f q(r,s)’% do () - aRy(2)y & (7).

Since g(7,&) < 7 and x'(7) < 0, we have that x(g(z,&)) > x(t). Therefore, we get

l+a

¥'(7) <~k Q(z) —aRy(T)Y @ (). (2.19)
From (2.18), we have
R ()Y (r) = -1 (2.20)

Multiplying (2.19) by R§ () and integrating from 7; to 7, we obtain

R (0)y () - RS () ¥ (11) +a/ Ry(S)RY(s)yr(s) ds

1

+/q/IRg‘(s)Q(s)ds+a/rR2(s)R§‘(s)1ﬁl+Ta(s)ds50,

71 1
which with (2.20) gives

L+ R )y (m) = ko / RE(5)Qs) ds

3t

+a / Ro(s)RE(s)[1(5) + Ra(s)yr " (s)] dis.

1

Using inequality (2.11) with A = R3, B=1 and z = -, we get

o

Lia « »
Y(s) + Rs(s)y @ (s) = _WRB (s)-
It follows that
T ot+1R
/ | <k1R‘§(S)Q(S) - (a‘j 1) R38) ds <1+ RE(0) ¥ (1),

but this contradicts (2.3).
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In Case (C4). In view of the proof of Case (C3), we have (2.16) holds. From Lemma 1.2,
we have that x(z) > § L124"(7) for all u € (0,1) and every sufficiently large . Thus, from
(A,), there exists 7o > 77 such that

x(g(t a))

x”(g ra) > 2g *(t,a) (2.21)

for T > 15. Next, we define

_r(@&"(x))”
p(7) = NI (2.22)

We note that ¢(7) < 0 for 7 > 1. By differentiating and using (1.1), (A3) and (S;), we obtain

x%(g(t,a)) ("(g(r,a)))® 1 sl

VO =MDy waor et
Hence, (2.21) yields
k 20 “—H
w(r)<—— (1,a)Q(r) —a———¢ « (7). (2.23)

l/ot( )

From (2.16), we get
R (t)e(r) > -1.

Multiplying (2.23) by R{ () and integrating from 7, to 7, we obtain

o

ky
L+ R (@)o(0) =

T Ra-l l+a
+a/ R() ((p(s)+R1(s)(pT(s)) ds.

1
, T /at(s)

/ R ()6 (5, @) Q(s) ds

2

By following the same steps as in Case (C3), we get that

l o+l
/<<1M R¥(s)g**(s,a)Q(s) — (a(j1> rl/“(S1)R1(S)>dS

<1+ R{(2)e(r2),

which contradicts (2.4). This contradiction completes the proof of Theorem 2.1. O

Theorem 2.2 Assume that (1.2) and (S,) hold, and let g(t,&) have a positive partial
derivative on I x [a, b] with respect to t. If there exist continuously differentiable functions
0,9 € C([tg,00), (0,00)) such that

* 2a)*  rs)(pL(s) _
/fo (p Q) =t T 1 (akasps)g 5, )" > s =o%, (2:24)

1) 0o 1 00 1/a o 19/2(14)
/TO (’9‘“’/,, (ﬂ/ QWS) @ FWV“ (229
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* af (FRs(s))HY
/ 0 (f(Rs(S))Q(S) - s )ds - o0, (226)
and
a+l
* o 124 2 o 1 _
fro (Rl (s)f(gg (r,a)) Qs) - (a N 1) rl/"‘(S)Rl(s)) ds = o0 (2.27)

for some iy, 1o € (0,1), then every solution of (1.1) is oscillatory.

Proof Let x be a nonoscillatory solution of equation (1.1). Without loss of generality, we
may assume that x(7) > 0. By Lemma 2.1, there exists 17 > 7o such that x(t) has one of the
four cases (Cy)-(Cq) for t > 11. For Case (Cy), since g(t, &) is nondecreasing with respect
to &, &'(7) > 0 and f’(x) > 0, we have that f(x(g(7,a))) <f(x(g(z,£))). Thus, from (1.1), we

get
(r(T)(x" ()%
Falmay ~ 9
Now, we define
r(T) " (r))*

o(t) = 'O(T)fi(x(g(t,a))) .

By differentiating and using (S,), we get

/(1) = 2D o) - p(0) Q)
p(t)
~kop(r) DO o i) (2 (2.28)

f1+1/01 (x(g(-[’ ﬂ)))

From (A;), there exists 7o > 77 such that g(z,a) > ©; for T > 1,. Hence, from Lemma 1.2
and x® < 0, we obtain

xf(g(‘[,ﬂ)) > %szm(g(f,ﬂ)) > %szw(f)

for all u € (0,1) and 7 > 1. Therefore, (2.28) yields

p'(2) pky 12¢(t,0)  wn

L()/('L') = p('L') w(r) - ;O(T)Q(T) - T Ww o (T) (229)

By following the same steps as in Case (C;) of the proof of Theorem 2.1, we get a contra-
diction with (2.24).
For Case (C,). From (1.1), (S;) and (A3), we obtain

(r(0) (" (1)) < ~f (x(g(z,@))Q(x).

By integrating this inequality from 7 to co, we obtain

o) ()" = / F(x(e(s,))) Qs) ds.
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Since f’(x) > 0, we get

///( )>f1/at ( ( )[ QS)dS)

Integrating again from 7 to co, we have

#(0) = (lete /r(r(v)/ Q) ) @

Next, we define

(1)

w(t) = ﬁ(f)m'

Then w(t) > 0 for T > 7;. By differentiating and using (2.13), we find

, 19/(1,) 00 1 00 1/
w(t) < ﬁ(r)w(t)_ﬂ(ﬂ/r (m/‘: Q(s)ds) dv
1 x'(7) )2 Sfx(g(r,a) ,
-—0 , ,a).
« (T)(f”“(x(g(r,u))) fl—é(x(g(r,a)))x(g(T e (r:)
Since x”(1) < 0, we see that x'(g(z, a)) > x'(1)

) /(1) ©/1 [ Ve kyg(t,a) 2
w(r)sﬁ(r)w(r)—ﬁ(r)/r (W/ Q(S)d5> dv- 2 ),

Then we get

/ x® /71 o0 Ve o 19,2(7»')
W(‘L’)E—l?(‘f)/r (m/‘/ Q(S)ds) dv + rbm

Integrating again from 7, to 7, we have

¢ 92w
/ (ﬁ(”)/ (()/ QS)dS) - 4k2g<ua>ﬁ(u>)d”fw(’”’

which contradicts (2.25).
If Case (C3) holds. As in the proof of Case (C3) of Theorem 2.1, we have that (2.16), (2.17)
and (2.18) hold. Then we define

_r(n) " (1)
YOS
Thus, we see that ¥ (t) < 0 and satisfies

[r(D)&"(1)*]  r(r)" ()"
fx(r)) S?(x(1))

Y'(r) = f (x(1)) ().
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Hence, from (1.1), (2.17) and (S,), we have

b l+a
V(o) < - / q(r,sﬂ% do (&) - keRo (D) (2).

Since «/(7) < 0, we get f(x(g(t,£))) = f(x(t)). Therefore, we obtain
V(1) < -Q() ~ kaRo(D)Y & (7).

From (2.18) and (S;), we have
FRs (@)Y (2) = -1. (2.30)

Multiplying (2.19) by f(Rs(t)) and integrating from ; to 7, we obtain

F(Rs(0))¥r(2) —f (Rs(m)) ¥ (m) +/ Ro(s)f' (Ra()) v (s) ds

3l

. / F(R(9) Q) ds + ko / "R (Ro(9) ¥ ¥ (5)ds < 0.

Using inequality (2.11) with A = kyf(Rs(s)), B =f"(Rs(s)) and z = -y, we get

: a® (f'(Ry(s)))**
_/1.1 (f(RS(s))Q(S) - (Ol + 1)a+1 RZ(S) k‘if"’(Rg(S)) ) ds

<1+f(Rs(n))¥ (),

but this contradicts (2.26).

In Case (C4). In view of the proof of Case (C4) of Theorem 2.1, we have (2.16) and (2.21)
hold. By defining ¢(7) as the form (2.22), we note that ¢(z) < 0 for T > 7;. Thus, from (1.1)
and (Ap), we get

flxg(r,a) &"g(r,a))* 1  an

¢'(r) = -Q(7) e @) “,1/a(r)‘p7(r)' (2.31)

From (2.21) and (S;), we see that

Solete.a) = (@) (o ete.a)".

Hence, (2.31) yields

1 a+l
—o0———¢ @ (7).
* Ten)? (1)

o0 = (5w

By following the same steps as in Case (Cs), we get that

T o+l
/ (Rﬂsy(%gz(r,a))Q(s)—(a‘jl) rua(:)zel(s))dsf1+R7(’2)‘”(’2)'

which contradicts (2.27). This contradiction completes the proof of Theorem 2.2. g
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Theorem 2.3 Assume that (1.2) and (S;) hold. If the differential equations

(’r(;)( ()" ) +k1Q(r)(M) #(2)=0, (232)

X'(7) +x(z /r |:r(v/ / ga( E)d &)d ]l/adV=0, (2.33)

(@) +kwm =0 (234
and

(rm) (' (0)) + klzuzgz"‘(r,a)Q(r)x“(r)zo (2.35)

are oscillatory for some iy, 4o € (0,1), then every solution of (1.1) is oscillatory.

Proof Proceeding as in the proof of Theorem 2.1, for Case (C;), we have that (2.10) holds.
Then, if p(7) =1, we get

% (1) <0 (2.36)

g(t,a) 3“+au 2 aa
2 rl/a(l—) -

o' (7) +/<1Q(r)<

for all u € (0,1). Hence, from [1], we see that (2.32) has a nonoscillatory solution for every
u € (0,1), which is a contradiction.
The rest of the proof is the same, and hence is omitted. O

From Corollary 1 in Dzurina [3], if

ds =
o TVe(s)

and

T a+l
liminf?l/“(t)[/ 7V () ds:| qt)> —

T—>00

then equation
(7o) (4 (1)) +q()u*(z) = 0 (2.37)

is oscillatory. In the following theorem, by using the results of Dzurina [3], we will establish
new oscillation criteria for solutions of equation (1.1) under the conditions

[e%e] 2 e’}
/ % ds=oco and / Ry(s) ds = 0. (2.38)
0 70

rla ()

Theorem 2.4 Assume that (1.2), (2.38) and (S;) hold, and let (2.4) hold for some 11, € (0,1).
If

o o T a+l
limint (T)(’“gs(T’“)> (/ s ds) Q) > =, (2.39)

t>o00 T2 213 rie(s) 4k,
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1/a
.. 2 1
1‘,“;1}.}“"’0) /; [ ( )/ / d (E)d] dv > 4_k1’ (2.40)
and
Q@) ([T g
h,nlg.}f Ro0) (/TO Ry(s) ds) > _kl (2.41)

for some py € (0,1), then every solution of (1.1) is oscillatory.
Example 2.1 Consider the fourth-order differential equation

1 8ter(§+3)

(€ (xw(f))s)/ + _/o ﬁxs(f -§)ds, (2.42)
where § > 0 is a constant. We note that

Rit)=¢", i=1,23 and Q(r)=25e>.
If we choose p(t) = ﬁ(r) =1and k; =1, then it easy to see that conditions (2.1), (2.2), (2.3)

and (2.4) hold for 8 > 2
oscillatory for § >

56 Thus, from Theorem 2.1, every solution of equation (2.42) is

256 :

Example 2.2 Consider the delay differential equation
(ef W(r)) +befx(t-1)=0, t>1, (2.43)

where b > 0. According to Corollary 4 in [2], equation (2.43) is oscillatory if b > % If we
choose p(t) = ¥(r) =1 and k; = 1, then we conclude that (2.1) and (2.2) are satisfied and
(2.3) and (2.4) hold for b > i. Hence, by Theorem 2.1, every solution of equation (2.43) is
oscillatory for b > i. Then our results supplement and improve some results obtained in

[2]. In particular, we consider the equation
(ef W(‘L’)) +25¢2e 7 x(t —y) =0, 1>y, (2.44)

where y = sin”! % Since b = 25+/2¢* > i, every solution of equation (2.44) is oscillatory.
For example, x(t) = €7 sin(z) is a solution of equation (2.44). On the other hand, [24]
showed that every nonoscillatory solution of

T-1/2

(€2'(@) + S—x(z -1 =0, 721,

e12
1

tends to zero as T — 00, and we note that b = <

N

Acknowledgements
The authors express their sincere gratitude to the editors and the anonymous referee for careful reading of the original
manuscript and useful comments.

Competing interests
The authors declare that they have no competing interests.



Moaaz et al. Advances in Difference Equations (2017) 2017:261 Page 13 0f 13

Authors’ contributions
All authors read and approved the final manuscript.

Author details
"Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt. ?Department of
Mathematics, Hadhramout University, Hadhramout, Yemen.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 11 July 2017 Accepted: 8 August 2017 Published online: 31 August 2017

References
1. Agarwal, RP, Grace, SR, O'Regan, D: Oscillation Theory for Difference and Functional Differential Equations. Kluwer
Academic, Dordrecht (2000)
2. Baculikova, B, Dzurina, J, Graef, JR: On the oscillation of higher-order delay differential equations. J. Math. Sci. 187(4)
387-400 (2012)
3. Dzurina, J, Stavroulakis, IP: Oscillation criteria for second-order delay differential equations. Appl. Math. Comput. 140,
445-453 (2003)
4. Elabbasy, EM, Moaaz, O, Aimehabresh, ES: Oscillation properties of third order neutral delay differential equations.
Appl. Math. (Irvine) 7, 1780-1788 (2016)
5. Elabbasy, EM, Moaaz, O, Bazighifan, O: Oscillation criteria for fourth-order nonlinear differential equations. Int. J. Mod.
Math. Sci. 15(1), 50-57 (2017)
6. Elabbasy, EM, Barsoum, MY, Moaaz, O: Boundedness and oscillation of third order neutral differential equations with
deviating arguments. J. Appl. Math. Phys. 3, 1367-1375 (2015)
7. Elabbasy, EM, Moaaz, O: On the oscillation of third order neutral differential equations. Asian J. Math. Appl. 2016,
ama0274 (2016)
8. Elabbasy, EM, Moaaz, O: New oscillation results for class of third order neutral delay differential equations with
distributed deviating arguments. Glob. J. Sci. Front. Res. 15(9), Version 1.0 (2015)
9. Elabbasy, EM, Moaaz, O: Oscillation criteria for third order nonlinear neutral differential equations with deviating
arguments. Int. J. Comput. Sci. Manag. Res. 5(1) (2016)
10. Elabbasy, EM, Moaaz, O: On the asymptotic behavior of third-order nonlinear functional differential equations.
Serdica Math. J. 42(2), 157-174 (2016)
11. Erbe, LH, Kong, Q, Zhang, BG: Oscillation Theory for Functional Differential Equations. Dekker, New York (1995)
12. Grace, SR, Bohner, M, Liu, A: Oscillation criteria for fourth-order functional differential equations. Math. Slovaca 63(6),
1303-1320 (2013)
13. Gyori, |, Ladas, G: Oscillation Theory of Delay Differential Equations with Applications. Clarendon, Oxford (1991)
14. Hale, JK: Theory of Functional Differential Equations. Springer, New York (1997)
15. Kiguradze, IT, Chanturia, TA: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations.
Kluwer Academic, Dordrecht (1993)
16. Li, T, Baculikovd, B, Dzurina, J, Zhang, C: Oscillation of fourth-order neutral differential equations with p-Laplacian like
operators. Bound. Value Probl. 2014, 56 (2014)
17. Li, T, Han, Z, Zhao, P, Sun, S: Oscillation of even-order neutral delay differential equations. Adv. Differ. Equ. 2010,
184180 (2010)
18. Li, T, Thandapani, E, Tang, S: Oscillation theorems for fourth-order delay dynamic equations on time scales. Bull. Math.
Anal. Appl. 3, 190-199 (2011)
19. Li, T, Zhang, C, Thandapani, E: Asymptotic behavior of fourth-order neutral dynamic equations with noncanonical
operators. Taiwan. J. Math. 18(4), 1003-1019 (2014). doi:10.11650/tjm.18.2014.2678
20. Liu, XZ, Fu, XL: Nonlinear differential inequalities with distributed deviating argument and applications. Nonlinear
World 4, 409-427 (1994)
21. Moaaz, O: Oscillation Theorems for Certain Second Order Differential Equations. LAP LAMBERT Academic Publishing
(2014)
22. Tripathy, AK, Panigrahi, S, Basu, R: Oscillation results for fourth-order nonlinear neutral differential equations with
positive and negative coefficients. J. Math. Sci. 194(4), 453-471 (2013)
23. Tripathy, AK: Oscillation criteria for a class of nonlinear fourth order neutral differential equations. Math. Slovaca 63(2),
243-262 (2013)
24. Zhang, C, Li, T, Sun, B, Thandapani, E: On the oscillation of higher-order half-linear delay differential equations. Appl.
Math. Lett. 24, 1618-1621 (2011)
25. Zhang, C, Li, T, Saker, SH: Oscillation of fourth-order delay differential equation. J. Math. Sci. 201(3), 296-309 (2014)


http://dx.doi.org/10.11650/tjm.18.2014.2678

	On the asymptotic behavior of fourth-order functional differential equations
	Abstract
	Keywords

	Introduction
	Main results
	Acknowledgements
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


