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1 Introduction

The calculus on time scales, which was initiated by Hilger in 1990 [1], has received con-
siderable attention in recent years due to its broad applications in economics, population’s
models, quantum physics and other science fields.

In the past 20 years, there has been much research activity concerning Volterra integral
equations and the dynamic integral inequalities on time scales which usually can be used
as handy tools to study the qualitative theory of dynamic integral equations and dynamic
equations on time scales. We refer the reader to [2—21] and the references therein. How-
ever, nonlinear Volterra-Fredholm type dynamic integral inequalities on time scales have
been paid little attention to. To the best of our knowledge, Meng and Shao [22] and Gu
and Meng [23] have established the linear Volterra-Fredhlom type dynamic integral in-
equalities on time scales. On the other hand, various Volterra-Fredholm type inequalities
including continuous and discrete versions have been established. For example, Pachpatte
[24, 25] has established the useful linear Volterra-Fredholm type continuous and discrete
integral inequalities. Ma [26—28] has established some nonlinear Volterra-Fredholm type
continuous and discrete integral inequalities. Liu and Meng [29] have investigated some
new generalized Volterra-Fredholm type discrete fractional sum inequalities.

The aim of this paper is to give some explicit bounds to some new power nonlinear
Volterra-Fredhlom type dynamic integral inequalities on time scales, which can be used
as handy and effective tools in the study of Volterra-Fredhlom type dynamic equations on
time scales.

Throughout this paper, a knowledge and understanding of time scales and time scale
notations is assumed. For an excellent introduction to the calculus on time scales, we refer
the reader to [30, 31].
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2 Preliminaries
In what follows, T is an arbitrary time scale, C,; denotes the set of rd continuous func-
tions. R denotes the set of all regressive and rd continuous functions, R* = {P € R,
1+ u(t)P(t) > 0,t € T}. R denotes the set of real numbers, R, = [0, +00), while Z denotes
the set of integers.

In the rest of this paper, for the convenience of notation, we always assume that =
[to,a] NT, wherety € T, €T, a > to.

Lemma 2.1 ([30]) Suppose u,b € C,y(I), a € R,. Then
u (@) <a@®ut) + b)), teT,

implies

u(t) < u(to)ea(t, o) + /tea(t,o(r))b(r)Ar, teT.

to

Lemma 2.2 ([32]) Leta>0,p > q >0, then

ab < 9 a-piv, P4 k1,
p

forany k > 0.

Theorem 2.1 Assume that u,a,f,g,l,h1, hy, h3, ha, hs € Cou(D), u(®), a(t), f(t), g(t), 1(t),
i (2), ha(t), hs(t), ha(), hs(t) are nonnegative. Suppose that u(t) satisfies

uf(t) <a(t) + /tf(t)[uq(r) + /T [g(s)ur(s) + /S I(V)MH(V)AV} Asi|Ar

to

3 o o T
+ h(D)u™ () At + hy(7) hs(s)u™(s)AsAt, tel, (1)
hzl/;o /fo ' /t‘O ’

where p, q, r, n and m; (i =1,2,3,4) are constants withp > q>0,p>r>0,p>n>0,
p>m;>0(i=1,2,3,4).If

3
mi—p

m; i
Apgrnmyimymzms = § :;k ’

i=1

o T
m
+/ h4(r)/ —4k(’”4_1”)/1’h5(s)egpqm(s,to)AsAt
to to P

| e, (zac
to

<1, (2)
then
C Ao (£) ,
+ p
u(t) < [a(t) Ll [ to)] (3)
1- )‘qumlmzmsnm
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for t € I and for any k > 0, where

Commamamy = Z/ h; (‘[)|: Jclmi P)/Pa(.t) + p km /pi|Af
+/ h4(7)/t0 h5(5)[r;4 (ma=p /pa(s)+ » k’"“/p}AsAt, (4)

Apgrn(t) = /f(f { Al p/pa(f)+qukq/P

+/ [g(s)[fk(r—p)/pa(s)+ukr/z¢:|
to p p

‘ / l(v)[ﬁk(”‘p)/pa(v)+uk”/p:|Av]As}Ar, )
to p p
and
t s
Bygrn(®) ft)[ Kape . / [fk“-wfpg(sn / Ek(”_p)/pl(V)Av]As}. 6)
to p to p

Proof Define a function z(t), t € I, by

= /tf(t)[uq(r)+/T[g(s)u’(s)+fsl(v)u”(v)Av}As}Ar

3 o o T (7)
+ hi(T)u™(t) AT + ha(z) | hs(s)u™(s)AsAT,
; ‘[0 /to ' v/to °
then
() <a(®) +z() or u(t) < (at)+ Z(t))’l’ ®)

By Lemma 2.2 and (8) for any k > 0, we have

wi(t) < [a(t) + 2(0)]

IA

K9P [a(t) + 2(£)] + ’%kw,

TR
IA

"I TIY RIS

u'(t) < [alt) +2(t)] KrPP[a(t) + 2(0)] + ’%k”ﬁ,

IA

W'(t) < [al®) + 2(8)]7 < ZK"PP[a(e) + ()] + l%k”/p,

wi(t) < [at) +20)] 7 < ZkPP[age) + 2(0)] + L= pemle, i 21,2,3,4.
V4 V4
Substituting the last seven inequalities into (7) we have
z(8) < / f(@) {|: K9 P'P[a(7) +2(7)] + p_qkq’p]
V4

/ [ (s)|: KPPl a(s) + z(s)] + %k”p]
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+ /S z(v)[ﬁk(n-m/p[a(v) rzv)] + 222 kn/p] Av] AS} Ar
to p p
3 . -

+ ; /;0 hi(f)[jk(””iﬂ’)/ﬁ[a(‘[) + z(r)] + %kmi/p} At

o T —
+/ h4('()f h5(5)[ﬂk(”’4_”)/p[a(5) +z(s)] +wkm4/”:| AsAT
to to p p

- Cpm1m2m3M4 +qurn(t)

+ /t:f(r)[gkw”f’z(r) + f T Bk“”)’f’g(s)z(s)

0

N
+/ Ek("1’)/1”1(1/)z(1/)Av:| As]At
to p
3. pa g,
+> f — kPP (T)z(T) AT
1 Jn P

+ / ha(7) / hs(s)[ﬂk(’”‘*‘”)/”z(s)]AsAt.
to to p

Fix any arbitrary % € I. Since A, (¢) is nondecreasing for each ¢ € I, then, for ¢ € T, where

7= [to,£] N'T, from the above inequality we have

Z(t) =< Cpm1m2m3m4 +qurn(?)

+ /tf(t) [gk(q_p)/pz(t)

+ /T [lk(’_p)/pg(s)z(s) + /s ﬁk("_f’)/f’l(v)z(v)Av:| As] AT
to p

to
3. ra g,
+ Z/ —Lkmi=PP (1) z(T) AT

i-1 7t

+ / ha(T) / hs(s)[@kmsz(s)}mm, tel 9)
to to p

Let

3 o,
N = Comymymsmy + Apgrn @) + Y / %k(”’f‘p)/phi(r)z(t)At
i=1 Yo

‘ / * (o) / ' hg(s)[%k(’”‘*‘p)/”z(s)]AsAr, (10)

then (9) can be restated as
t q T 7
Z(t) <N + f f(r)[—k(qp)/pz(r)+ / [—k(’p)/pg(s)z(s)
to p to p

+ /S Ek(”f”)/pl(v)z(v)Av] Asi|Ar, (11)

to
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for t €. Since z(t) is nondecreasing, by (11) we have

t T
2(t) <N + / f(f)[zk(q—p)/p + / [fk(r—p)/pg(s)
to p to p
+ / Ek(”“")/pl(v)Av] As]z(r)Ar. (12)
to p
Set
t q T r
w(t) =N + / f(@) [—/AHW + / [—k("p)/”g(s)
to P to p
‘n (n—-p)/,
+ —kK"PIPI(W)Av | As |z(T) AT, 13)
to p
then
A — 1 1a-pip Ir (r-p)lp
wh (@) = )| Liaie 4 [ | Zgeping(s)
p to p
¥ / Zk(”“’)/pl(v)Av] As]z(t)
to p
11 a-p), T o
<f @) Lxarir 4[] Zxoing(s)
p to p
¥ / fkm-mfpzw)m} As]w(t)
to p
= qurn(t)w(t), te 7, (14)
where B,,(t) is defined as in (6). Using Lemma 2.1, from (14), we get
w(t) < Neg,,, (t,to), tel. (15)
From (12), (13) and (15), we have
2(t) < Neg,,, (tto), tel. (16)
Let ¢ = £ in the above inequality, we have
2(£) < Nes,,,, (¢, to)-
Since 7 € I is arbitrary, from the above inequality with 7 replaced by ¢ we get
Z(t) < NBqum (t, t()), tel. (17)
Using (17) on the right side of (10) and according to (2) we get

Comimymzmy + Apgrn )

1- )‘quml mom3my

N<
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From (16) and (18) we have

Cpm1m2m3m4 + AMV"(Z) e T

Z(t) =< qurn (t) t())’ te 1. (19)

L = Apgrnmymymsma
Since 7 € I is arbitrary, from (19) with Z replaced by ¢ we get

Z(t) < Cpm1m2m3m4 +qurn(t)

equm (t, t()), tel. (20)

1- )‘qumlmzm3m4

Now the desired inequality in (3) follows by using (20) and combining with (8). This com-
pletes the proof of Theorem 2.1. O

Whenp=2,qg=r=n=my =1, h(t) =0, h3(t) =0, h4(¢) =0 in Theorem 2.1 we get a
new Volterra-Fredholm-Ou-Iang type inequality as follows.

Corollary 2.2 Let u(t), a(t), f(£), g(t), I(¢), hi(¢t) and o be defined as in Theorem 2.1. If u(t)

satisfies

Wi t) <a(p) + /tf(t)[u(t) + ./T[g(s)u(s) + /S l(V)u(V)AV] AS]AI

+ / h(Du(t)Ar, tel, (21)
to
and
1 a1 [
A21111000 = Ek 2 f hi(t)ep,,, (T, t0)AT <1, (22)
to
then
1
C Ay (¢ 2
u(t) < [u(t) , Goooo # Al to):| (23)
1 - A21111000
fort eI and for any k > 0, where
o 1 1
C21000 = f hl(f)[—k_l/zﬂ(f) + —/(1/2:|A'L', (24)
o 2 2

Ay (t) = /tf(f){ %k_ma(t) + %km

+ /f [g(s)[%k’l/za(s) + %km]

+ /s l(v)[%k_ma(v) + %km]Av} As}At, (25)

and

B (£) =f(t)[%k1/2 + /t[%kmg(s) + /S %k”zl(v)Av} As:|. (26)
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When p =1 in Theorem 2.1, we get the following inequality.

Corollary 2.3 Let u(t), a(t), f(t), g(t), I(2), hi(t) (i=1,2,3,4,5),q,r,n,m; (i =1,2,3,4) and
a be as in Theorem 2.1. If u(t) satisfies

u(t) < a(t) + /tf(t)[u‘l(r) + /T I:g(s)uf(s) + /5 l(v)u"(v)Av] AS}AT

0 0

3 o o T
+ h(D)u™(t) At + ha(t) | hs(s)u™(s)AsAt, tel, (27)
hZI/tO </t0 ! -/to ’

and

3 a

)\lqrnmlmzm3M4 = Zmi/(mi_lf hi(f)equm (T, ) AT
i=1 to
o T
+/ h4('()f m4k”‘4_1h5(5)egpqm(s, to) AsAT
to to
<1, (28)

then

Clm1m2m3m4 + Alqm(t)

u(t) <a(t)+ equm(t, to) (29)

1- )\lqrnmlmzrn3;'n4
for t € I and for any k > 0, where
3 o
C1m1m2m3m4 = Z/ hi(‘l:)[mikmi—lﬂ(f) +(1- Wli)kmi]A‘L'
i=1 %
+/ h4(l’)/ hg(s)[m4l<"’4_1a(s) +(1 —m4)km4]AsAr, (30)
to to
t
Avgrn(t) = / f (r){qk"‘la(f) +(1 - g)k?
to

+ /T [g(s) [k a(s) + (1 - r)K"]

+ /S l(V)[nk”_la(v) +(1- n)k”]Av] As} AT, (31)
and
Bign(t) =£(2) [qk”” . / t|:rk”g(s) . / S nk”ll(v)Av} As}. (32)

Whenp=1,g=r=n=m =my =1, hy(t) =0, h3(¢t) = 0 in Theorem 2.1, we get the

following inequality.
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Corollary 2.4 Let u(t), a(t), f(¢), g(t), I(t), h1(t), ha(t), h5(t) and o be defined as in Theo-
rem 2.1. If u(t) satisfies

u(t) < a(t) + /tf(t)[u(r) + /I |:g(s)u(s) + /S l(v)u(v)Av] Asi|Ar

0

+/ hl(r)u(r)Ar+f h4(r)/ hs(s)u(s)AsAt, tel, (33)
to to to
and
)»11111001=/ i (t)ep, (T, t0) AT
to
+/ h4(7,')/ hs(s)epy, (s, to) ASAT
to to
<1, (34)

then

Cuoor + Aun(2)

() < ale) + TP ey (6 1) (35)
fort €I and for any k > 0, where

Cito01 = /t: (t)a(t) At + /: ha(7) /tof hs(s)a(s) AsAT, (36)

A (b) = /t:f(t){a(t)+ /tor |:g(s)a(s)+ /to Sl(v)a(v)Av]As}At, (37)
and

Bin(t) = f(t)[1+ /t:[g(sn /t: l(V)AV] As:|. (38)

Remark 2.1 When a(t) = ug (ug is a constant), I(¢) = 0 and /4 (¢) = 0, (35) will deduce in-
equality (2.1) given in [16], so Corollary 2.4 can be taken as a generalization of Theorem 2.1

given in [16].

Remark 2.2 Though the inequalities discussed in Theorem 2.1 and its corollaries be-
long to a class of nonlinear Volterra-Fredholm type dynamic integral inequalities on time
scales, the estimates obtained in (3), (23), (29) and (35) cannot be derived by some known

results given in [16, 17].

Using procedures similar to the proof of Theorem 2.1, we can get a more general result

as follows.
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Theorem 2.5 Suppose that u(t), a(t), fi(t), g(t) (i = 1,2,...,n) and hi(t) € Cyu(l)

(j=12,...,1) are nonnegative (n and | are some positive integers). If u(t) satisfies

wioy=a0+ Y [ tﬁ(f)[uqi(r) o[ g,-(s)u’i(s)As]At
i=1 Y0 b

l o
+Z/ h(D)u™ (t)At,
j=1 7t

fortel, wherep>q;>0,p>1;>0,p>m;>0and k >0 are constants, and

, o

!
m .
A= Z L PW/t hi(t)ep(t, to) At <1,

0

then

1

A©) eg(t, to):| !

ult) < [a(t) ‘ C;T

fort el, where
c=> / hj(r)|:—’k(m/“’)/pa(t) - bk*ﬂﬂp} A,
j=1 to p p
n t . — .
A(f) = Z/ fi(f){ @k(qi—w/pa(f) LT
i=1 to p p
+ / g(s) I:ﬁk(”'_l’)/pa(s) + uk”’/”} As} Ar,
to p p

and

n . t )
B(t) = Zﬁ(t)[%k(‘?i‘l’)/l’ +/ :—;k(’f‘p)/”gi(s)As}
-1

to

(39)

(41)

(42)

(44)

Theorem 2.6 Let u(t), f(¢), g(t), a(t) be as in Theorem 2.1 and h;(t) (i=1,2,...,1) € C,a(I)

are nonnegative. If u(t) satisfies
u’(t) < alt) + /tf(t)[uq(r) + /Ig(s)uf(s)As] AT

/ o
+ Z/t hi(m)H;(7,u(1)) A,
i=1 © 10

(45)

for t € I, where p, q and r are constants withp >1,p>q>0,p>r >0 and H;,L; : I x

R, — R, satisfying

0< Hi(tx I/l) _Hi(t; V) =< Li(t, V)(M - V)¢ i=12,..., l)

(46)
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foru>=v>0and

K-pip Lo pa -1 k-p)lp
A;qr = Z/ hi(t)Li<t,p ke )eB;qy(r,to)At <1, (47)
pr =y p p
then
Cr+Ar, (2) ;
u(t) < [a(t) + L —ep (1, to)] (48)
1 a* par
par
for t € I and for any k > 0, where
1
o -1 k(-p)lp
=3 / hi(r)Hi(r,p KP4 2 a(r))At, (49)
i=1 7t p p
t
X 9, -p) P—9.4
Ar L (0) = / f(t){—k(q PIpg(r) ¢+ — kP
to p p
+ f g(s)[zk("")/pa(s)+Ek’/p] AS}AI, (50)
to p p
and
B @ —f@| err s [T rrgs)a 51
o =f(t)| = + — g(s)As |. (51)
p to p

Proof Define a function z(t) by

t T ! o
zZ(t) = / f(r)[uq(t) +/ g(s)u’(S)As} AT + Z/ hi(r)Hi(t,u(f))Ar, tel. (52)
to to i=1 Yo

Then
1
() <a(t)+z() or u(f)< (a(t) + E(t))ﬁ. (53)
By Lemma 2.2, for any k > 0, we have

u(t) < [a(t) + E(t)]ll’ < —k"PP[a(t) +2(0)] + I%Ik””,

1
p

wi(t) < [a(t) + 20]7 < TP [a(p) +2(8)] + ‘I%k‘m’,

S IRY

KPP a(t) + 2(0)] + E=L k.

' (t) < [a(e) +2(1)] p

=

TIY NI

Substituting the last relations into (52) and using (4:6), it follows that
t p—
20 < / f(r){ [@k“/f’ [a(x) +2(1)] + ukq/p}
to p p

o OT <) [ LKD) 209+ ’%W] As} At
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+ Z/ (T)H; <r }9 K p)/p[ (7) +z(r)] kl/l"> T
- Z/ J(T)H; (r l =Pp g (1) + k””)Ar
+ Z hi(t)H; kY p)/pa(t) + kl/p AT

p

X q , (-p)p= T e
=C, +A,, 1)+ /Of(r)[l;k(q PIrz(c) + / g(s);k( p)/pz(s)As]Ar

]

!
¢ 1 1 -1
+E / h,-(r)—k(l”’)/pL,»(r,—k(l_p)/”a(r)+p—k1/”)2(r)Ar,
= Jn P p p

zZ(t) < C* +A;q,(t /t f(t)[gk(q—p)/Pz(r) + /tor g(s);k(r—p)/!’z(s)As} AT
+ Z/ h; (r) k =Piry, ( pkl PPg(z) + p;lkw’)i(f)Ar, tel. (54)

Here C; and A, . and defined in (49) and (50), respectively. From (54) and employing a

procedure similar to (9)-(20), we obtain the desired inequality (48). O

3 Applications
In this section, we apply our results to study the boundedness, uniqueness and continuous
dependence of the solutions of certain Volterra-Fredholm type dynamic integral equations

of the form

uP(t) = a(t) + /tF(r,u(t),/r G(s,u(s))As)Ar
+ /O(H(t,u(r),/rL(s,u(s))As>At, (55)

fortel,whereu,a:] > R, FFH:IxRxR—->R, GandL:IxR—>Randp>0isa

constant. The following theorem gives a bound on the solutions of equation (55).

Theorem 3.1 Assume that the functions F, G, H and L in (55) satisfy the conditions

|[E(t,u,v)| <f(@)(1ul? + v]), (56)

G(t, )| < g(®)lul’, (57)

and

3
[Ht,wv)| <Y h@lul™ + @], |LEw)] < hs(@)|ul™, (58)

i=1
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fortel, u,v eR, wheref(t), g(t), hi(¢) (i=1,2,3,4,5), m; (i =1,2,3,4), p, q and r are the
same as in Theorem 2.1, if

3

m; mz‘l’
)‘qumlmzm3m4 = 2 —
i=1 p

h i(T)es, (o) (t,0) AT

+/ ha( 1:)/ i ma p)/ph5(s)eB (s, t0)AsAT

<1, (59)

then all solutions of equation (55) satisfy

s, (1 m]" (60)

Cpm1m2 mzmy T qur(t)

u(t) < [a(t) +

1- )‘qumlmzmsmzx

for t € I and for any k > 0, where

pm1m2m3Wt4 = Z/ |: ml_p)/pﬂ(f) +

+ f " (o) / rhg(s)[% Kimap)lp () + P F kmw}mm, (61)

_i/<rni/p:| At
p

Apr®) = / f(r{ Ko Pae) + L

/ (s)[ krp)/pa(s)+ » k’/p]As}Ar, (62)
and
By ®) =1 )[ Kaplr / [gléf-f’”ﬁg(s)]m]. (63)

Proof From (55) and the conditions (56)-(58), we have

‘u(t)’ < }a(t)’ +/f(r)|:|u(t)|q+/ g(s)‘u(s)}rAs:|Ar
+Z/ AT +/ h4(r)/r h5(S)’M(S)’m4ASAt, (64)

for ¢ € I. By a suitable application of Theorem 2.1 to |u(¢)| in the last inequality follows the
desired (60) immediately. O

Secondly, we consider the uniqueness of the solutions of equation (55).

Theorem 3.2 Assume that the function F, G, H and L in (55) satisfy the conditions:

|F(t,u1,v1) = F(t, tiz, v2) | < f (@) (|1 = ] + [v1 = va]), (65)

’G(t, u) — G(t, v)| §g(t)|u” (66)
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|H(t,u1,v1) = H(t, g, v2)| < hu(2) |} — 1| + a ()01 — 1o, 67)
|L(t, u) - L(t, v)| < h5(t)|u" -

’

where f, g, h, ha and hs are the same as in Theorem 2.1, and if

A= /a hi(t)ep(t, to) AT + /a h4(t)/rh5(s)eg(s, to)AsAT <1,

to to 2]

where

B = £(6) [1 . / g(s)As}

0

then if p=m/n (m,n € N) and m is odd, (55) has at most one solution on 1.

Proof Let u(t) and v(t) be two solutions of equation (55) on I. From (55) and conditions
(65), (66) and (67), we have

|u? (£) = VP (2)|

< /t[F(t,u(t),/r G(s, u(s)) —F(r,v(t),/‘r G(s,v(s))]As) AT
+ /a [H(t,u(t),/rL(s, u(s))As) —H(T,V(T),/TL(S,U(S))AS):|A‘L',

< /tf(l')[|u1’(f) —VP(7)| + /T |G(s, u(s)) - G(s,v(s))|As]AtAs
+ /a I (v)|u (t) = vP(1)| AT + /a h4(r)/T |L(s,u(s)) = L(s, v(s))| AsAT
<[ tf(r)[iup(r) @)+ [ gl - vp(sms]m

+/ah1(t){u”(r)—u”(r)|At+/ah4(r)/rh5(s)|up(s)—vp(s)}AsAr, tel.

0 0

(68)

An application of Corollary 2.4 (with a(z) = 0) to the function |« (t) — vP(¢)| in (68) yields
|u?(£) = vP(£)| <0

for all ¢ € I. Hence u”(t) = v¥(¢) on I. This completes the proof of Theorem 3.2. O

The next result deal with the continuous dependence of the solutions of (55) on the
functions F, G, H and L. For this purpose we consider the following variation of (55):

uP(t) =a(t) + ftl?(r,u(r),/r @(s,u(s))As)At

to

+ /aﬁ(r,u(r),/tZ(s,u(s))As>Ar, (55)
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for t € I, where F,H:I x RxR— R, G,L:I x R — R and p > 0 is a constant as
in (55).

Theorem 3.3 Counsider (55) and (55). If
(i)
|F(t, u, 1) = F(¢, Mz,V2)| Sf(t)(|1411j - M€| + v = va),
|G(t) Lt) - G(t’ V)| Sg(t)|up - UP|’
|H(t, u1,v1) — H(t, uy, V2)| < h1(t)|uf - u’§| + ha(t) vy — 1o,

’

|L(t, u) - L(t, v)| < h5(t)|up 7

(ii) |a(t) —a(t)| <e&/2;

(iii) A = ft‘; h(t)ep(t,t)) AT + f;g ha(T) ftz hs(s)eg(s, to) ASAT < 1, where
B(e)=f(®[1 + ftf) g(s)As];

(iv) for all solutions u of (55),

/t
]

At <¢gld

F(r,ﬁ(t),/‘r G(s,ﬁ(s))As) —f(r,ﬁ(t),/rﬁ(s,ﬁ(s))As>

to

and

AT < €/4,

H(r,ﬁ(r),/rL(s,ﬂ(s))As) —ﬁ(r,ﬁ(r),/TZ(s,ﬁ(s))As)

0

[
to

fort el and uy,uy, vi,v2 € R, where € > 0 is an arbitrary constant, then

C+A(®)
1-A

!uPU)—ﬁPuM:Se[1+ qxamo}, (69)

fort eI where

C= fta h(t)At + /ta h;;(r)/tI hs(s)AsAT

and

A(t) = /tf(r)[l + /rg(s)Asj| At.

Hence u? (t) depends continuously on F, G, H and L. In particular, if u does not change sign,

it depends continuously on F, G, H and L.

Proof Let u(t) and #(t) ba solutions of (55) and (55), respectively. Then from (55) and (55),

we have

| (£) - (0)|

< |a(e) - (o) +/

to

F(r, u(t), /r G(s, u(s))As)
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AT

_1?<7:,ﬁ(f), /T E(S,E(s)) As)

+ /a H(r,u(r),/rL(s, u(s))As) —H(r,ﬂ(r),/TZ(s,ﬂ(s))As)

AT

<el2+ /t F(r,u(r),/T G(s,u(s))As> —F(f,ﬁ(r),/r G(s,ﬁ(s))As) AT
+ /t F(f,ﬁ(r),/r G(s,ﬁ(s))As) —f(t,ﬁ(r),/ra(s,ﬁ(s))As) At
+ /w H(r,u(r),/fL(s, u(s))As) —H(r,ﬂ(t),/fL(s,ﬁ(s))As) At
+ /w H(r,ﬁ(r),/fL(s,ﬁ(s))As) —ﬁ(r,ﬁ(t),[fZ(s,ﬁ(s))As) At

<o [0 -wo)]+ [ g0l -wo|as]ac

+ /a hl(r)|u”(r)—ﬁp(t)}Ar + /a h4(r)/r h5(s)’u”(s) —ﬁ”(s)‘AsAr,

]

|u? () - (t)| < & +/tf(r)|:|up(t)—ﬁ”(r)| +/Tg(s)|up(s)—ﬁp(s)|As]Ar

+ /a hl(r)|up(7:) —ﬁ”(r)|Ar

0

+/ah4(t)fth5(s)|up(s)—ﬁp(s)|AsAr, tel (70)

Now by applying Corollary 2.4 (with a(t) = ¢) to the function |#”(¢) — u”(t)|, the last in-
equality provides the desired inequality (69). Evidently, if the function A(t) and eg(z, to)
are bounded on I,

|u”(t) —ﬁ”(t)| <&M

for some M > 0 and ¢ € I. Hence #” depends continuously on F, G, H and L. This completes
the proof of Theorem 3.3. d
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