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Abstract

It has been recently noticed that there is a finite number of two-dimensional classes
of product-type systems of difference equations solvable in closed form. We present a
new class of this type. A detailed analysis of the form of its solutions is given. Our
results complement the previous ones on such systems and present one of the final
steps in describing the forms of their solutions.
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1 Introduction

Many types of difference equations and systems have been studied so far. A part of the
studies can be found in [1-24]. Some types of the systems essentially obtained by sym-
metrization of scalar ones were studied in [8—10], which was a motivation for further in-
vestigations in the field [6, 7, 11, 12, 14—24]. Historically, perhaps the first main problem
of interest in the whole area was finding formulas for their solutions. For known methods
for finding the formulas the reader can consult, for example, [1-5]. A note of ours from
2004 has influenced some investigation in this direction since that time (see, for example,
[13, 15-24] and the references therein).

In the study of some classes of equations and systems, product-type ones appear as
boundary cases. Finding formulas for positive solutions to the equations and systems in
the boundary cases is a routine problem, so not of theoretical interest nowadays. It can be
of practical interest only if another system or equation is reduced to such one. However,
if all solutions are not positive, the problem is very complicated. The boundary cases of
equations and systems have motivated us to study them for the case of non-positive ini-
tial values. In fact, the equations and systems on the complex domain have attracted our
special attention. Our study started in [21], where a system with two dependent variables
was investigated. The form of the system in [21] strikingly suggested the study of the solv-
ability of the other systems of related forms (see, e.g., [16, 22]). Since the system, as well as
a couple of other ones later studied (see, e.g., [22]), was of the form

z, =24 wh

— w3 a4
n—my " n—my? Wn=W zZ

n-ms“~n-my’

ne No, (1)
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it naturally suggested the study of the solvability of this, as well as of some related sys-
tems. This motivated us to include some coefficients in (1) and study the solvability of
such systems, which was for the first time done in [15], where we showed the solvability
theoretically and gave some hints on how to deal with more concrete cases, that is, for
some special values of parameters a, b, ¢ and d. Later we realized that complete pictures
of the form of the solutions of this type of systems could be given by studying all the quan-
tities appearing there in detail. References [18] and [24] were the first ones which gave the
complete pictures of the forms of the solutions to the systems studied therein. Later in [17]
we devised another method which deals with the solvability problem, although technically
somewhat complex. For some quite recent results on product-type systems see [19], [20]
and [23].

To finish the project of studying the solvability of product-type systems with two depen-
dent variables (see [15,17-24] and the related references therein), we have to study a few
more. Here we study the system

a b c d
Zpy1 =QZ,W,, Wnil = ,Bwnfzzn,l; ne NO: (2)

where a,b,c,d € Z, o, B,z_1,29, W_2,Ww_1, Wy € C. In fact, we assume that «, 8,z_1,29, Ww_3,
w_1, wo € C\ {0}, to avoid dealing with non-defined or trivial solutions. We will give a com-
plete picture of the forms of the solutions to system (2) for all the values of the parameters
and initial values.

2 Auxiliary results
Some classical auxiliary results that are employed in the section that follows are quoted in
this one.

Lemma 1 (see, e.g., [3, 25]) Let

k
Ri(s) =bi [ J(s - s)),

j=1
Sj# s, j#t, and by #0. Then

k s

> a

j=1

s])

foreach m e {0,1,...,k -2}, and

-1

(S/) bk

ks
27,

Jj=1

P

Four more or less widely known formulas are listed in the following lemma (see, e.g.,
[3, 5]). A recurrent relation connecting this type of sums is given in [18].

Lemma2 Let
n
)(z) = Zj’"z"l, neN,
j=1

me Ny andzeC.
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Then
1-272"

(0) _
S zZ) = )

n @) 1-2z
() 1-(n+1)2" + nz"!

n b

1-2)?

@ 1+z—(m+1)22" + 2n® + 2n - 1)2" — 222

Sy (Z) = 3 ’
(1-2)

@ 32z -1)2 = 312" (z-1)? + 3nz"(z22 = 1) - (" = 1)(z> + 4z + 1)

Sy (Z) = (1 — 2)4 )

foreveryze C\ {1} and n e N.

The following lemma describes the nature of the zeros of a polynomial of the fourth
order in detail (see [26]).

Lemma 3 Let

Put)=t*+ bt +ct® +dt +e,

Ao = ¢ = 3bd +12e, Ay =2¢3 = 9bcd + 27b%e + 27d* — 72ce,
1

A= E(ALAS—Af), P =8c-3b?,

Q=0b%+8d - 4bc, D = 64e —16¢% + 16b*c — 16bd — 3b*.

(a) If A <0, then two zeros of Py are real and different, and two are complex conjugate.
(b) If A >0, then all the zeros of Py are real or none is. More precisely,

1° ifP< 0 and D <0, then all four zeros of Py are real and different;
2° if P> 0 or D > 0, then there are two pairs of complex conjugate zeros of Py.

(c) If A =0, then and only then Py has a multiple zero. The following cases can occur:

1° ifP<0,D<0and Ay #0, then two zeros of Py are real and equal and two are real
and simple;

2° if D>0or (P>0 and (D +#0 or Q#0)), then two zeros of Py are real and equal
and two are complex conjugate;

3° if Ao =0and D #0, there is a triple zero of P4 and one simple, all real;

4° if D=0, then

4.1° if P <0 there are two double real zeros of Pa;
4.2° if P> 0 and Q = 0 there are two double complex conjugate zeros of Pa;
4.3° if Ao = 0, then all four zeros of Py are real and equal to —b/4.

3 Mainresults

The main results in this paper are proved in this section.

Theorem 1 Assume that b,c,d € Z,a =0, «, B,z_1,20, W_2, Ww_1,wg € C\ {0}. Then
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(@) if ¢+ bd #1, the general solution to (2) is given by

o = H*ﬁdfgjgj)m’l ,Bb 1(C:bzd bd(c+bd) -1 leI(Cerd)'"*l, o
B U= S G @)
Zaypes = 0 14’1%(,6,’;201)”’ ,Bb 1—(35511);:4 Z;jtli(ubd)’" lecz(”bd)m, o
W*ﬁ*wa )
W3ms2 = ad%ﬁ%—lzd(ﬁba’) Wc_(1c+bd)m, ©

) if ¢+ bd =1, the general solution to (2) is given by

Z3m = a1+bd(m71)ﬂbmzbdwbcl, (9)
Z3msl = a1+bdmﬁbmwg, (10)
Zames = a1+bdm13b(m+1 bcliwbcz’ (11)
W3y = ad’”ﬂ”’wo, (12)
W3m+1 = dmﬁm+1 dlw 2 (13)
Wi = ad’”ﬂ’”“zgwfl. (14)
Proof Since a =0, we have
Zpel = O[Wz; Wnil = ,sz_zzi,i_p n € Ny. (15)
From (15), we have
= Ba'wihd, >3, (16)
which implies that
m-1 i
W3m+i = (adﬁ)zj:o (crbdy Wi‘ﬁbd)m’ me er = 0: 1; 2. (17)
Hence,
W3y = dz/mol(ﬁbd)/ﬁ “L(c+bdy (c+bd) , (18)
"L (c+bdy (c+bd)™
W3m+l = (Old,B)ZFO . (ﬁWC_ZZfl) .
o Z;Zal(ﬁbdy‘ /32;"20 (c+bdy Zit(lubd)m Wi(2c+bd)m’ 19)

W3m+2 _ ( dﬁ) j= 0 (C+hd)] (ﬂw_lzg) (C+bd)m

d Z,’-Zal (c+bdy ﬂz;gombd)/ Zg(c+bd)m wc(c+bd)m . 20)

= 1
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Using (18)-(20) in the first equality in (15), we get

Zay = a1+bdz;';52(c+bdy ﬂb Z;Z61(c+bd)/zgd(c+bd)’”’1Wécl(mhd)m’l, (21)
Zape = o Zj"ggl (c+bdy ﬁb Z}'jgl (c+bdy Wg(ﬁbd)m, (22)
Zam = o T (erbay ﬂb Z}ZO(Hbd)leiaf(ubd)m Wlicz(wbd)m' (23)
From (18)-(23) and some calculations, we easily get (3)-(14), as desired. O

Theorem 2 Assume that a,c,d € Z,b =0, a, 8,z_1,20, W_2, w_1,wy € C\ {0}. Then system
(2) is solvable in closed form.

Proof Since b = 0 system (2) becomes
Zpl = OlZZ, Wnil = IBWZ—ZZZ—P n € Ny, (24)

which is system (2.11) in [17]. Hence, if ¢ # O the theorem follows from Theorem 2.2 in
[17], while the case ¢ = 0 follows from equations (2.13) and (2.14) in [17], as well as the
second equation in (24). O

The case d = 0 has been recently studied in [20], where, among others, the following

theorem was proved.

Theorem 3 Assume that a,b,c € Z,d =0, a, 8,20, w_p, w_1,wg € C\ {0}. Then system (2)
is solvable in closed form.

Theorem 4 Assume that a,b,c,d € Z, abcd # 0, «, B,2_1,20, W_2, Ww_1,Wg € C\ {0}. Then
system (2) is solvable in closed form.

Proof From «, 8,2z_1,20, W_2, W_1, Wy € C\ {0} and (2) we get z,w,, # 0 for n € Ny. Hence,

b Zntl
n~ a’
azl

w n e N, (25)

who = BPwhe b, e N, (26)

n+l = n
and consequently
l-c gb bd+c,
Zna=o P ZZHZ”_ICang, (27)

for n > 2.
Note also that

b b

a 2
z1 = azgwy, 2z = a(azgwh)* (Bwy2h)" = o't B2 Zs whowgt,

(28)

1+a+a® pb(1+a), abd a®+bd_, abc. bc_  a®b
:3 Z('_ll 20 Wy WaiW, .

z=adwl=a
Let § = al™p?,

a =d, b =0, c=bd+c, dy = —-ac, =1 (29)
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then
b d
Zn+2 = &z Vl+1z lzn lzn » N >2,
and consequently

Y1 1 di \91 by, 1 di
Znea = 8 (53“ 2,120 Tt 3) 2, 2y 1Z0in

= §n+a Zalal +by Zb1a1+cl Zc1a1+d1 diay

n-2 n-3
= 8§02, b2 A
=4 2y 2y lzn 2%n-3
for n > 3, where
ay =aya; + bl, b2 = blﬂl + ¢y, Cy:=cCa; + dl,

d2 = dlﬂl, y2 = yl +d4a.

Assume

_ Yk Ok bk ok, Ak
Zniy =8 Zi+2-kZni1-kZn—k%n—k-1?

fora k> 2andeveryn >k +1,and

ax = aag-1 + by, by = biagy + cx-1,
Ck = 1k + dii, dy = dvax_,

Yk = Yk-1 + Af-1.

Using (30) in (31), we get

_ Sk a b1 C1 di ak bk Ck dk
Zn+2 =3 (82n+1—kzn—kzn—k—lZn—k—Z) Zyi1-kZn—k“n—k-1

:8yk+akza1ak+bk biag+cg _crag+dy _diay
n+l-k “n-k n-k-1 “n-k-2

 SVke1 Kkl bkil kel kel
=8 K%k Znk1Znk—2)

for n > k + 2, where

Aks1 = i + by, br = biag + ¢ Cki1 = C1ax + di,
YVik+1 = Yk + Ak.

Hence, by induction we have proved that (31)-(33) hold.
From (31)-(33) and (28), we get

a b, c d,
Zyeo _8)1” IZ n— IZ n— lzln IZ n—1

2 3 2
_ (al—clgb)yn—l (a1+a+a ﬂb(Ha)Zﬁ)ng ”’dw‘fg‘w’f‘lwg b)“n—l

2 by
% (Olha,BbZl_MliZg wljczwgb) n I(OIZSWS)CW 1Zgn -1

Page 6 of 22

(30)

(31)

(32)

(33)

dk+1 = dlak,
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_ a(l_c)y"-l +(l+a+a®)ay 1 +(1+a)by_1+cn_1 ﬂbyn_1+b(1+a)u,,_1+bbn_1

abday,_1+bdb,_ _(a®+bd)a,_1+a®b,_1+acy_1+du_1 . abcay_1+bcby_1 . beay_,
_ Z, w_, w2y

2
a“bay_1+abby_1+bcy,_
WO n—-1 n—-1 n—-1

- bd, —can-1_, b beay_1 . b
= /271 ﬁbj’mlzilﬂnzgnﬂ cdp lwfzﬂn Wflﬂn 1W0ﬂn+1, (34)

for n > 2.

From (32) one sees that ay, by, ¢ and d are solutions to
Kira = Mkiis + Di¥paa + Q& + diXr, ke, (35)

and, along with (33) (for kK =1,0,-1,-2), we also obtain

a3=0, a,=0, a,=0, a=1 (36)
Yy3=y2=y1=%=0, =1 (37)
and
k-1
Y= a (38)
j=0

The solvability of (35) is well known, from which, along with (36), a formula for ay is
obtained. Using it in (38), a formula for yy is obtained by Lemma 2. Hence, (27) is solvable.

We have
w
4= neN, (39)
ﬁwn—z
2 = a2, neN,, (40)
so that
Wyss = adﬂl’”wzﬂwzd”wxi, neNp. (41)

We also have
wi = Bw,z%  and  w, = Buf 2L, (42)

As above we get

b d
Wiz = PNy W Wil W mz k-1, (43)
where n = a? 1%, a; satisfies (35) and (36), and y; is given by (38).
From (43) with k = n + 1 and by using (42) we get

a b, C d,
W3 = nyn+1 W2n+1 W1n+1 Won+1 W_T‘l

_ (adﬂl—a)yml (,B Wc_lzg)aml (,BWC 2Zd1)br1+1 wgyul WﬁTl
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— adym,l ﬁ(l_ﬂ)yn+1+“n+l+bn+l Ziillhﬁl Zgﬂnﬂ Wibz;ﬁl chim-l‘*'dnﬂ ng-l

- ad}’nﬂ ﬂ)’n+3*ﬂ)’n+2 Zf(lﬂnﬂ—ﬂﬂml)zganﬂ Wc(gnﬂ—ﬂanﬂ)

X Wi(l‘ln+1*a“n)wgn+3*ﬂan+2’ (44)

for n € Ny.
As we have already seen, formulas for a; and yx can be found. Using them in (44) we
show the solvability of (41). Some calculations show that (34) and (44) present a solution
to (2), from which the result follows. |

Corollary 1 Assume that a,b,c,d € Z, abcd #0, o, 8,2_1,20, w_, w_1,wo € C\ {0}. Then
the general solution to (2) is given by (34) and (44), where ay satisfies (35) and (36), and yi
is given by (37) and (38).

Theorem 4 gives a general form of solutions to system (2) when abcd # 0, but does not
present explicit formulas for sequences a, and y, involved in the solutions. Now we give
some explicit formulas for them in more concrete cases, following some arguments related
to the system in [19]. Since ac # 0, we can find the zeros of the characteristic polynomial
associated to (35)

pa(r) = 2* —ar3 — (bd + c)A + ac. (45)

To do this, we consider the following equivalent equation with a parameter [25]:

2
(O RS RIS

The parameter is chosen so that (as — 2(bd + ¢))? = (a® + 4s)(s> — 4ac), that is,

s> +a(bd —3c)s —a’c - (bd + ¢)? = 0. (47)
We have
(Az_gk+£)2_<x/a2+4s)\_as—2(bd+c))2:0’ (48)
22 2 2v/a? +4s
or equivalently
22 (6_1 va? +4S>A+ s as —2(bd + c) _o, (49)
2 2 2 2Ja? +4s
AZ_(&_Z_x/a2+4s>)\+£_as—2(bd+c):0 (50)
2 2 2 2Ja%+4s

Let p = a(bd - 3c), q = —a®c— (bd + ¢)?, and s = u + v. Assuming that uv = —p/3, from (47)
we get u® + V3 = —q. Hence, u® and 13 are solutions to z* + gz — p3/27. Thus

s g ¢ p* 3 q |¢ p?
Py D S O I R B S (N (51)
2 4 27 2 4 27
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or

1
s:E(jAl_m+jm+m), 52)

by using the change of variables p = —A(/3 and g = —A;/27 in (51).

For s given in (52) we solve equations (49) and (50). So, the zeros of polynomial (45) are

a ~a’*+4s 1 |a? Q

PRI S i Y P S (53)
4 4 2\ 2 2Va? + 4s
a ~a*+4s 1 |a? Q

PV e gy R S S (54)
4 4 2\ 2 2Va? +4s
a ~a’*+4s 1 |a? Q

A= — T P - (55)
4 4 2\ 2 2Va? + 4s
a ~a*+4s 1 |a? Q

M=——m————— — = [ — =5+ ————, (56)
4 4 2\ 2 2Va? +4s

where

Ao :=3a(3c - bd), (57)

A= 27(6136 + (bd + c)z), (58)

Q:=-a® - 8bd - 8c. (59)

By Lemma 3, the nature of A;, j = 1,4, depends also on

1

A= ﬁ(zmg -A}), (60)
P=_3ad% (61)
D = a(48c - 16bd - 3a°). (62)

Zeros of ps are mutually different and different from 1. If a = 1, ¢ = 2 and bd = 3, polyno-
mial (45) becomes

pa(h) =2 =23 =50 +2=(A-2)(3% + 2> +21 - 1).
Since in this case A < 0, all the zeros of the polynomial are different. Since p4(1) #0, 1 is
not a zero of the polynomial. In fact, there are many polynomials of the form in (45) such
that A < 0. For example, they are those for which holds 3ac < abd, that is, Ay < 0.
Since A; # A, i #J,

Ay = NAL + A + y3As + yary, neEN, (63)

where y;, i = 1,4 are constants, is the general solution to (35).
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Equalities (36), along with Lemma 1 applied to polynomial (45), yield

4 )\(1+3
j
a, =
! ZI: pi%y)
i
An+3 )\’Vl+3
= L + 2
(A= A2)(A1 = Az) (A1 —Aa) (Ao — A)(Ap — A3) (Ao — Aq)
}Ln+3 )Ln+3
+ 3 + 4 , (64)
(A3 = A3 —A2)(A3 —Aa)  (Ag —A)(Aa — A2) (g — A3)
for n > -3, from which, along with (38) and the fact that A; #1, i = 1,4, is obtained:
n-1 4 j+3 4 311
X AP(AT -1

P ) s M QG ik M) (65)

) F P00 -1

Moreover, (65) holds for n > -3.
Zeros of py are different and one of them is 1. In this case it must be p4(1) =1—a — bd —
¢ +ac =0. Hence,

(a-1)(c-1)=bd, (66)
which implies

pa(A) =A* —ar® —(ac—a+ 1)1 +ac

=(A=1)(** - (a-DA* - (a - DA - ac). (67)
Let A; = 1. To find the other zeros of p,, we have to solve the equation
WBo(@-D22-(@a-1Dr—ac=0.
By using the change of variables A = ¢ + ”T‘l and some simple calculations, we get
B+pt+3=0,

where

ﬁ:

(1-a)a+2) . (2(a—1)3 (a—1) )
——F— and g=- + +ac).
3 27 3

Using the standard arguments, as those in getting (51), we obtain

—-1 . p ~2 >3 . p =2 >3
SRS DY K BNV .
3 2 4 27 2 4 27

where ¢ is such that €2 =1, ¢ #1.
For example, if a = 3 and ¢ = 2, then bd =2 #0, A #0 and

pa(h) =2 =322 —4r+ 6= (A -1)(A* - 22 =21 - 6),

so by Lemma 3, the polynomial has four different zeros, and one of them is 1.
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Equality (64) holds with, say, A; = 1. Further, we have

n-1 n-1 4 j+3 4 3(qm
1 A A7 (A
= - + —— = (69)
L ;i=2p4(xi> 32 ac ' L P00 —1)

for n € N. It is easily shown that (69) also holds for n = —j, j = 0,3.

This analysis, along with Corollary 1, implies the following result.

Corollary 2 Assume that a,b,c,d € 7, abcd # 0, «, B,z_1,20, W2, w_1,Wo € C \ {0} and
A #0. Then the following statements are true:

(@) If (a—1)(c—1) # bd, then the general solution to (2) is given by (34) and (44), where
(@n)ns_3 is given by (64), (y,)n=_3 is given by (65), while &;, j = 1,4, are given by
(53)-(56).

b) If(a—1)(c—1) = bd and 3 — 2a # ac, then the general solution to (2) is given by (34)
and (44), where (a,)n>—3 is given by (64) with X1 =1, (yu)n>—3 is given by (69), A1 =1,
while Aj, j = 2,4, are given by (68).

1 is the only double zero of p,. Polynomial p4 has a double zero equal to 1 if (66) holds
and

py(1)=3-2a-ac=0, (70)

that is, if and only if

3
c==-2. (71)
a

Then we have
pa(W) =2 —ad® + Ba- A +3-2a=(-1*(A*+ (2-a)i + 3 -2a),

and consequently

a-2++a?+4a-8
Ao =1, A3a = 5 . (72)

From (71) we must havea =3 and c=-1,ora=1andc=1,0ora = -1 and ¢ = -5, or
a=-3and c=-3.
If a =c=1,then

paW) =2 =23 A +1=(A-1*(A* +2 +1),

and consequently

-1+i/3

Mo =1, A3g =
1,2 3,4 5

Since (66) holds we see that this case is not possible when abcd # 0.
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Ifa=3,c=-1, then
pa(h)=2* =322 +50-3=(A-1)*(A* -1 -3),

and consequently

1+ 4/13
Mo =1, A3a = 7 (73)
If a = c=-3, then
pa(d) = 2" 4327 —130+9= (A - 1)*(A* + 51 +9),
and consequently
-5+i/11
A2 =1, A3q = s (74)
If a =-1and c = -5, then
paW) =2+ 23 =70 +5= (A -1)*(A* + 31 +5),
and consequently
-3+i/11
A2 =1, A34 = — (75)
In these four cases, we have [19]
I’l(l - )\3)(1 - )\4) + 3)»3)\4 - 2)\3 — 2)\4 +1
a, =
! (1= 23)%(1 - 14)?
)\.n+3 )‘.n+3
+ 23 + 24 (76)
(A3 =123 —Ag) (g —1)2(hg — A3)
and
_ WX_I: ](1 - )»3)(1 - )»4) + 3)\3)\,4 - 2)\3 - 2)\4 +1
"L (1= 21— he)?
j+3 j+3
R po e )
(A3 -1)2(A3—A4) (g —1)?(hg — A3)
(I’l - ].)I’l 1’1(3)\.3)»4 - 2)\,3 - 2)\,4. + 1)
= +
2(1-23)(1 - A4) (1=23)2(1 - 1q)?
A1) A3 -1) 77

T =100 - ) (k- 10— Aa)

Pa has only one double zero different from 1. Assume that A = m ¢ {0,1} is a double zero
of ps4. Then we have

m* —am® — (bd +c)m+ac=0 and 4m® —3am® —bd —c=0. (78)

If m is not a triple zero, then it must be 12m? — 6am # 0, that is, a # 2m.
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From (78), we get
pad) = At —ard + (3am2 - 4m3)A +3m* - 2am®
=(\—m)? (kz +@2m —a)) + m(3m — 25{)), (79)
and consequently

a—2m =+ -8m? + dam + a>

Al =M, A34 = 2

(80)
Hence, if we additionally assume that 2a # 3m, 3am?* — 4m® € Z, 3m* — 2am® € 7, we
get a family of polynomials of the form in (45) which have double zeros different from 1.
For example, if a = m € Z \ {0,1}, then from (79) it follows that
pa(h) = (A —a)*(A* +ak +a®).
Since, in the case Ay = Ao, A; # Aj, 2 <i,j < 4, we have
an = (N + Y2y + Y3y + yary, mnEN, (81)
where y; and i = 1,4 are constants, and the solution satisfying (36) is

_ M+ 3)(Ag — A3)(ha — Aa) — A2 (20 — A3 — Aa))
(A2 = A3)%(Ag — A4)?

n+3 n+3
A Al

n

+ + . 82
(A3 =22)% (A3 = Aa)  (ha = 22)*(ha — A3) (52
From (38) and (82) and by Lemma 2, we get
- "i(k’;z((i +3)(h2 = 23)(ka = Aa) = Aa(242 — A3 = hg))
! pn (A2 = A3)% (A2 — 14)?
. )»1;3 . )\’/;3 )
(A3 =22)*(A3 = 1a) (g —22)*(Aa — A3)
A5 — A (n—1)As*3 N (A5 —2A3h3 — 2A344 + 3A2A3ha) (M) - 1)
(A2 = 23) (A2 = Aa)(1 = A2)? (A2 =23)* (A2 = X4)?(A2 = 1)
ABs -1 Aoy -1
+ % k) + a3~ 1) . (83)
(A3 =22)?(A3 =Aa)(A3 = 1) (ha = 22)?(ha = A3)(Aa = 1)

Corollary 3 Assume that a,b,c,d € 7, abcd # 0 and «, B,z_1,20, w2, w_1,wo € C \ {0}.
Then the following statements are true:

(a) If only one of the zeros of ps is double and different from 1, say Ay and )y, then the
general solution to (2) is given by (34) and (44), where (a,,)u>—3 is given by (82),
(Yn)n=—3 is given by (83), while Aj, j = 1,4, are given by (80), where m ¢ {0,1},
2m #a #3m and 3am® — 4m®3,3m* — 2am’ € Z.

(b) If1is a unique double zero of polynomial pa, say A = ky = 1, then the general solution
to (2) is given by (34) and (44), where (a,)n>—3 is given by (76), (Yn)n>—3 is given by
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(77), while X, j = 1,4, are given by (73) when a =3, ¢ = -1, by (74) when a = ¢ = -3,
and by (75) when a = -1, ¢ = -5.

Pa has two pairs of different double zeros. In this case it must be D = 0, which implies
that a = 0 or 16bd = 48c — 3a>. The case a = 0 is impossible due to the condition abcd # 0.
In the other case we have A =0 if and only if

34° — 48¢\ > ; 32°\*\\*
4( 3a| 3¢+ — =27\ a’c+ |4c—- — s
16 16
that is,
234° = :I:(Sza6 —27a%c+ 212c2). (84)
From (84) we have
17a° - 27a%c + 2122 = 0,

from which it follows that a3/c = %(1 + 44), which is impossible due to the rationality of

a’/c, or is
2
a® —2"alc+ 212 = (oz3 - 26c) =0,

which implies ¢ = a3/2°.
Assume ¢ = a%/2°. Then

a_ at ar  a®\?
p4(/\):x4—ax3+§x+2—6=(AZ————>

(for more details see [19], p.14).

Hence
a a
A = 1(1 ++/3), Aza = 1(1 -V3), (85)
are two double zeros of py, for each a # 0.
Since
al++/3)/4 41,

for every a € Z, ps cannot have two pairs of double zeros such that one of them is equal

to 1.
The general solution to (35) in this case is of the following form:

ay=(n+vamA] +(y3+yan)ks, neN, (86)

for some constants y;, i = 1, 4. The solution with initial conditions (36) is

A2 (1(hg — Aa)® + A2 — 4hohy + 322)
a, =
" (Ao — Ag)t
. A2 (n(hg — Aa)? + AJ — ddghg + 313)
(Ag — Ag)*
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From (38), (87) and Lemma 2, we get

) i W2 (kg — Aa)? + A2 — 4Aghg + 312)
= p (2 = A4)*

. W2y = Aa)® + A2 — ddghy + 3A§))

(hg = 22)*
R A U . (A5 —4A3hs + 302202 (MF - 1)
(Aa = 2a)* (1 = Ap)? (A2 = Aa)* (A2 - 1)
A3 —nAL + (n—-1)Ag . (AF — 42223 + 30300 (M) - 1) (88)
(Mg = 22)2(1 = Aq)? (Aa = 22)*(Ag = 1)

Corollary 4 Assume that a,b,c,d € Z, abcd # 0 and «, B,z_1,20, w—_a,w_1,wo € C \ {0}.
Then the following statements are true:

(a) If polynomial py has two pairs of double zeros both different from 1, then the general
solution to (2) is given by (34) and (44), where (an)n>—3 is given by (87), Wn)n>—3 is
given by (88), while );, j = 1,4, are given by (85).

(b) The characteristic polynomial (45) cannot have two pairs of double zeros such that

one of them is equal to 1.

Triple zero case. In this case we must have A = Ay = 0 or equivalently Ag = A; = 0, that

is,
a=0 or bd-=3c

Since abcd # 0, the case a = 0 is not possible. If ¢ = bd/3, then
Aq =27¢(a’ +16¢).

Since the case ¢ = 0 is excluded, we must have ¢ = —43/16.
We have

=it -+ Ll (-2 (1+
Pait)= 2" 716\ 2 2

(see, for example, [19], p.15), and consequently

» j:1,3; )‘-4:__' (89)
Thus, for every a # 0, a/2 is a triple zero of p4, and p, cannot have a zero of the fourth
order.

Hence

an= (1 +yan+ysm’)A +vadl, neN, (90)

where y; and i = 1,4 are constants, is the general solution to (35) in this case.
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Further, by using the initial conditions in (36), we obtain

A3 A (3A1 —5A4)
n=l-——m-s=, Vo=
(Aa —21) 2(Ag — A1)
M Vo
3= Vo= ————.
2(h1 — ha) T -m)?
Thus
A3 3 -5\ 1 A3
ay=1-—2 LI et n>-3 (91)
(=13 2 -1)2  2(1-214) (e -1)3
when Ay =1, while if 41 #1, then
A3 A(3A1 = 54 A WAk
4, = (1 B i, 13M 24)1/1 . 1 nz))»f o (92)
(Aa—21) 2(Aa — A1) 2(A — Aa) (Aa—21)

for n > -3.
From (38), (91) and Lemma 2, it follows that

_(1 A3 B-5M)n-1)n (m-Ln2n-1) A% -1) (©3)
S Ve 4 -1 12(0-2s)  (a-D*
From (38), (92) and Lemma 2, it follows that
(1~ 25 -1 . A3(BA1 = 5A4)(1 — mAf ™t + (m = 1)AY)
" (ha—21)% ) M -1 2(hg — A1)2(1 = Ap)?
ML+ A -2+ (22 = 2n - D)A) — (n - 1)20)H)
+
2(A = Aa)(L = 2q)3
ABor-1
1 —1) (94)

+
(e —21)3(ha - 1)
form e N.

Corollary 5 Assume that a,b,c,d € Z, abcd # 0 and o, B,z_1,20, W—_2, w_1,wo € C \ {0}.
Then the following statements are true:
(a) If polynomial (45) has a triple zero different from 1, then the general solution to
system (2) is given by (34) and (44), where (a,)n>—_3 is given by (92), (yn)n>—3 is given
by (94), while ), j = 1,4, are given by (89).
(b) If polynomial (45) has a triple zero equal to 1, say A1, Ay and )3, then the general
solution to system (2) is given by (34) and (44), where (a,)u>—3 is given by (91),
Vn)n=—3 is given by (93), while 1, j = 1,4, are given by (89) with a = 2.

Theorem 5 Assume that a,b,d € 7, abd #0, ¢ =0, a, 8,z_1,29, wo € C\ {0}. Then system
(2) is solvable in closed form.

Proof We modify our method in [18, 24]. We have

Zpy1 = azZWﬁ, Wnil = ,BZZ_l, n € Ny, (95)
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and consequently
ba,bd
zZnn =af’ziz,),, neN.

Let § = a8?,

a, = a, bl = 0, Cc = bd, Nn= 1.

Then clearly
= N b L a N
Zpil = 212y MEN.
Hence,

_ ap b1 _aq \4_b _q
Zps1 =8 (azn—lzn—2znf3) Zn-1%n-2

_ gyi+ay Aa1+by brar+e ca
=4 2y Zy_2 Zy_3

_ s, b o
_8 Zn—lzn—Zzn—S’

for n > 2, where

ay =aia; + bl, b2 = bllll + ¢y, Cy = (14,
Assume
Zn+1 = SykZZilkaﬁkaZﬁkfp
for a k > 2 and every n > k, and
ax = aag-1 + by, by = biag_y + ci-1, Ck = C1ax-1,

Yk = Yk-1 + k-1
Further, by (98), it follows that

vk (s, b 1 ak bk ck
Zn+l = 8 ((Szn—kzn—k—lzn—k—2) Zy—kZn-k-1

_ Qyk+ag  Magtbi bagtcg cia
=9 Zn—k Zpk-1 “n-k-2

_SVkel k1 bkl Ckel
=&k Zy—k “n—k-1%n-k-2?

for n > k + 1, where

Aps1 = @ray + by, b1 = g + ¢,

Ck+1 = C1ak, Vi1 := Yk T G-

Hence, by induction we see that (99)-(101) hold.

Y2 =) tai.

Page 17 of 22

(96)

97)

(99)

(100)

(101)
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Setting k = n in (99), and employing (28), we get

ay by ¢
Zps1 = 872"z 2]

- (o) i) "

_ Yn+an pbyn Cn  Aan+by _ bay
=" Bz z, w,

= )1 gy zlj‘f””‘l Zg"! wg“", (102)
for n > 2.
From (100) we see that ay, by and ¢, are solutions to
Xke3 = MXpy2 + biXp + aXp, ke, (103)
and that along with (100) and (101) (for k = 0,-1,-2), we obtain
a_p = 0, a1 = 0, ag = 1, (104)
Yy2=yY1=Y% =0, =1 (105)
and
k-1
Y=Y _a. (106)
j=0

The solvability of (103) is well known, from which along with (104) is obtained a formula
for ay, which along with (106) and Lemma 2 yields a formula for yx. Hence, (96) is solvable.
Using (102), in the second equation in (95), is obtained:

bd%a,_4 _da,_  bda,_
W, = ady”'2,3bdy”‘3+1271 an 4Z0an 2w0 w3 >, (107)

It is shown that equations (102) and (107) are solutions to system (2), so it is solvable, as
claimed. 0

Theorem 5 gives a general form of solutions to system (2) in the case ¢ = 0, abd # 0, but
it does not present explicit formulas for a, and y, involved in the solutions. We give some
explicit formulas for them, following also some arguments in [19]. Since bd # 0, we find
the zeros of the characteristic polynomial associated to (103)

ps(A) =23 —ar? - bd. (108)
For A = s + £, the equation p3() = 0 becomes

s a*  2a®+27bd
N —ES—TZO. (109)

We know that

1 3 _i3
sj:STﬂ<sf\/A1—,/A%—4Ag+e’\/A1+,/A%—4Ag), (110)

Page 18 of 22
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j=0,2, where
A =a* =: -3p, Ay =2a® +27bd =: -27q, (111)

€3 =1and € #1, are the zeros of (109).
Hence, the zeros of p; are

1 j 3 2 3,43 2 3 ;
3\3/5(51\/A1—,/A1 —4A0+£’\/A1+,/A1 —4A0), j=0,2. (112)

Zeros of p3 are mutually different and different from 1. In the case A2 — 4A3 #0, we get
bd(4a® + 27bd) #0.1f 0 # bd # —4a>/27, then the zeros of (108) are mutually different. If
also a + bd #1, then they are different from 1. The case a = bd = k € N is such one.

A a
1,
)

Zeros of p3 are different and one of them is 1. In this case we have a + bd = 1. Hence
ps(W)=2-ar’+a-1=(-1)(A*-(@-Dr-(a-1)),

and consequently

a-1++a?+2a-3

5 (113)

A=l A3 =

Since p;(1) = 3 — 2a # 0, when a € Z, the polynomial in (108) cannot have the unity as a
double zero.
It is well known that the general solution to (103) in this case is

a, = 061)\14 + 052)\.51 + 0!3)\;, ne N, (114)

where «, j = 1,3, are constants, which due to ¢; = bd # 0 can be prolonged for every non-
positive index.
From (114) and by Lemma 1 with R3(s) = 1_[?:1(5 - 1)), we get

)\'n+2 )\'VH—Z )L}’l+2
a, = L + 2 + 3 , (115)
M —A2)A1—A3) (Ao —A)(Ra—A3) (A3 — ARz —Ao)
for n > -2 (see, for example, [18]).
From (106) and (115), it follows that
n-l 3 502
j
Yn = — (116)
0 ]Zﬂ: p3(4)
for m e N.
Equation (116) shows that
_ MO -1) . (5 - 1)
P =20 = 2) = 1) (kg = A) (2 = 23) (ks — 1)
A1
35— 1) neN, 117)

(A3 = A1)(A3 = A2) (A3 = 1)’

when A; #1,j=1,3.
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If one of the zeros of ps is 1, say, A3, then

B -1) N A -1) N n
(M =2)M =12 (Aa-A)(a -1 (M -1 -1)

(118)

for n € N. Moreover, equations (117) and (118) hold for n > -2.

Corollary 6 Assume that a,b,c,d € Z, abd #0, c =0, &, B,z_1,20, wo € C\ {0} and A} #
4A3. Then the following statements are true:
(a) Ifa+ bd #1, then the general solution to (2) is given by (102) and (107), where
(@n)n=—2 is given by (115), (yu)n>-2 is given by (117), while Aj, j = 1,3, are given by (112).
(b) Ifa+ bd =1, then ps has a unique zero equal to 1, say As, and the general solution to
(2) is given by formulas (102) and (107), where (a,,),>_2 is given by (115) with i3 =1,
(Yn)ns—2 is given by (118), while Aj, j = 1,3, are given by (113).

ps3 has a double zero. Since it must be A? = 4A}, we have bd = —4a®/27, so that
4
) =23 —ar?+ —da’.
p3(2) 77

The following condition must also be satisfied: p5(1) = 0. Hence, A1 = —a/3, Ay3 = 2a/3,
and consequently

2\ 2
p3(A) = <k—§> (A+g).

Due to bd € Z, we get a = 3a, for some a € Z. Now note that 2a/3 #1, for every a € Z, so
that 1 cannot be a double zero of ps.
Hence

an=r + (@ +asn),, neN, (119)

where &;, i = 1,3, are constants. Using initial conditions (104) we obtain

_ M2 4 (A = 240 + n(hg — A)AGH

. , (120)
(Ay —21)?
form > -2.
From (106) and (120), it follows that
) ”2‘1: N4 (g = 24 + (A — ) 121)
In = (A2 — A1)? ’
i
forneN.
Equation (121) along with Lemma 2 yields
o= AT -1) N (A2 =2x)A (M =1) A2 —nAl T+ (m—1)A)) (122)
-2 -1 (o -A)2(Aa-1) (o =2)(Ap-1)2 7

for m e N.
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On the other hand, if A; =1 # A = A3 (a = —3), then we get

__" (A2 =22 (M =1) A3 —na™ + (n—1)A%)
L Y PP 1 R I — (123)

for n € N. Moreover, (122) and (123) hold for n > -2.

Corollary 7 Assume that a,b,c,d € 7, abd #0, c = 0, a, B8,2_1,20, wo € C \ {0} and A? =
4A3. Then the following statements are true:

(@) Ifa+ bd #1, then the general solution to (2) is given by (102) and (107), where
(@n)n=—2 is given by (120), (¥,)n>—2 is given by (122), where Ay = —a/3 and Ly 3 = 2a/3.

(b) If only one of the zeros of the polynomial (108) is equal to 1, say, A1, then the general
solution to system (2) is given by (102) and (107), where (a,),>—_2 is given by (120)
with Ay = 1, while (y,)y>_2 is given by (123).

(c) It is not possible that two zeros of polynomial (108) are equal to one.

Case when all the zeros of ps are equal. We have p3(1) = p5(A) = p5(1) = 0. So, p5(A) =0

would imply A = a/3. From p} (1) = 3A? — 2aX, we see that a/3 is a unique zero of ps if a = 0,

which contradicts the assumption abd # 0. Hence, the case is not possible.
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