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Abstract

In this paper, the global robust Mittag-Leffler stability analysis is preformed for
fractional-order neural networks (FNNs) with parameter uncertainties. A new
inequality with respect to the Caputo derivative of integer-order integral function
with the variable upper limit is developed. By means of the properties of Brouwer
degree and the matrix inequality analysis technique, the proof of the existence and
unigueness of equilibrium point is given. By using integer-order integral with the
variable upper limit, Lur'e-Postnikov type Lyapunov functional candidate is
constructed to address the global robust Mittag-Leffler stability condition in terms of
linear matrix inequalities (LMIs). Finally, two examples are provided to illustrate the
validity of the theoretical results.
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1 Introduction

Recently, dynamical neural networks (DNNs) have been widely applied in all kinds of sci-
ence and engineering fields, such as image and signal processing, pattern recognition, as-
sociative memory and combinational optimization, see [1-5]. In practical applications,
DNNs are always designed to be globally asymptotically or exponentially stable. There
have been many excellent results with respect to the stability of DNNs in the existing
works, see [6-16].

During the implementation of DNN, the effects of measurement errors, parameter fluc-
tuations and external disturbances are inevitable. Hence, it is significant that the designed
neural networks are globally robustly stable. In Refs. [17-34], the global robust stability
conditions were presented for integer-order neural networks (INNs).

Recently, in Refs. [6—8], the stability of a class of FNNs with delays was discussed, and
some sufficient conditions were presented by applying Lyapunov functional approach. In
Ref. [9], Wang et al. investigated the global asymptotic stability of FNNs with impulse ef-
fects. In Ref. [11], Yang et al. discussed the finite-time stability for FNNs with delay. By
employing the Mittag-Leffler stability theorem, Ref. [35] considered the global projective
synchronization for FNNs and presented the Mittag-Leffler synchronization condition in
terms of LMIs. In Ref. [12], Wu et al. discussed the global Mittag-Leffler stabilization for
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FNN s with bidirectional associative memory based on Lyapunov functional approach. Ref.
[13] considered the boundedness, Mittag-Leffler stability and asymptotical w-periodicity
of fractional-order fuzzy neural networks, some Mittag-Leffler stability conditions were
developed. In addition, Ref. [32] investigated the robust stability of fractional-order Hop-
field DNNs with the norm-bounded uncertainties, and some conditions were presented.
It should be noted that, in the above papers with respect to FNNs, the Lyapunov function
for solving the stability of FNNs is the absolute value function V() = >/, 8;|x;|, see [8—
13, 32], or the quadratic function V (t) = x” Px, see [14] and [35]. Obviously, the activation
function of neural networks is not applied in the Lyapunov function, hence, the obtained
stability results in the above papers have a certain degree of conservatism.

Motivated by the discussion above, in this paper, we investigate the global robust Mittag-
Leffler stability for FNNs with the interval uncertainties. The innovations of this paper
are mainly the following aspects: (1) a new inequality for the Caputo derivative of integer-
order integral function with the variable upper limit is developed; (2) the proof of the
existence of equilibrium point is presented by means of the properties of Brouwer degree;
(3) the integral item foz it fi(s)ds is utilized in the construction of Lyapunov functional;
(4) the criteria of the global robust Mittag-Leffler stability are established in terms of LMIs.

The rest of this paper is organized as follows. In Section 2, some definitions, lemmas and
a system model are given. In Section 3, the proof of global robust Mittag-Leffler stability
of equilibrium point for FNNs with interval uncertainties is presented. In Section 4, two
numerical examples are provided to demonstrate the correctness of the proposed results.
Some conclusions are drawn in Section 5.

Notation: R denotes the set of real numbers, R" denotes the n-dimensional Euclidean
space, R is the set of all n x m real matrices, N is the set of integers and C is the set of
complex numbers. Given the vectors x = (x1,...,%,)7,9 = (1,...,y,)] € R". The norm of a
vectorx € R" by [lx]| = (31, xlz) 3 , AT represents the transpose of matrix A, A~ represents
the inverse of matrix A, ||A|| represents the induced norm of matrix A. A > 0 (A < 0) means
that A is positive definite (negative definite). Amax(A) and Apin(A) represent the maximum

and minimum eigenvalues of matrix A, respectively. E denotes an identity matrix.

2 Preliminaries and model description

2.1 Fractional-order integral and derivative

Definition 2.1 ([36]) The Riemann-Liouville fractional integral of order « for a function
f(¢):]0,+00) — R is defined as

1 f@)
Rrefe) = / dr,
SO Ry Jy -
where « > 0, I'(-) is the gamma function.

Definition 2.2 ([36]) Caputo’s fractional derivative of order « for a function f €
C"([0, +00], R) is defined by

A,

PO = 7o Jy o
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where ¢ > 0 and n is a positive integer such that # — 1 < « < n. Particularly, when 0 < @ < 1,

tf/(.[)
Fl-a)Jo E-1)

oDif(0) =

Lemma 2.1 ([36])
(i) §D¥ (g[fx(t)) = (C)D‘;_Bx(t), where a > B > 0. Especially, when o = ,
¢D*(RIPx(t)) = x(t).
(i) Let [0, T] be an interval on the real axis R, n = [a] +1 fora ¢ N or n =« fora € N. If
x(t) € C"[0, T, then

n-1 (k)
x(0
I (DY x(t)) = () = Y kﬁ e
k=0

In particular, if 0 < a < 1 and x(t) € C*[0, T, then glf‘f)D‘;‘x(t) = x(t) — x(0).

Definition 2.3 ([16]) The Mittag-Leffler function with two parameters has the following

form:

Ea,ﬂ (2) = kX:O: m,

where >0, 8>0,andze C.For 8 =1,

&0 k

Ei@ =E@)=Y =

especially, E1;(z) = €.

Lemma 2.2 ([16]) Let V(t) be a continuous function on [0, +00) satisfying
DYV <-0V (),

where 0 < a <1, and 0 is a constant. Then
V(e) < V(0O)E,(-0t*), t=0.

Lemma 2.3 ([35]) Suppose that x(t) € R" is a continuous and differentiable function,
P € R™" is a positive definite matrix. Then, for o € (0,1), the following inequality holds:

1
ESD‘;‘ [xT(t)Px(t)] < xT(t)Pf)D‘t’x(t).

2.2 A new inequality

In this section, we develop an inequality (see Lemma 2.5) with respect to the Caputo

derivative of the integer-order integral function.
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Lemma 2.4 Suppose thatf: R — R and g : R — R are continuous functions, and f(0) = 0,
if(t) >0,g(¢) > 0,t €R. Then, fort € R,

Sign </o f(s) ds) = Sign (/(; g(9)f (s) ds),

where Sign(-) is the sign function.

Proof Case 1. Let t > 0, then f(s) > 0, s € (0,t). Obviously, fotf(s) ds > 0. According to
g(s) > 0, it is easy to obtain that fotg(s)f(s) ds > 0. Thus, Sign(fotf(s) ds) = Sign(fotg(s) x

f(s)ds).
Case 2. Let t < 0, then f(s) < 0, s € (¢,0), and fotf(s) ds = —ftof(s) ds > 0. Noting that

fotg(s)f ds = —ft (s)f (s)ds > 0, we have Sign(fotf(s) ds) = Sign(f(fg(s)f(s) ds).
From Cases 1 and 2, it follows that

Sign(/otf(s) ds) = Sign(/otg(s)f(s) ds), teR.

The proof is completed. O

Lemma 2.5 Suppose that z : R — R is a continuous and differentiable function, and
g: R — Ris a continuous and monotone nondecreasing function. Then, for o € (0,1), the

following inequality holds:

z(t)
SD‘?[ / g(s)ds} <g(z() Diz(®), t>0. Q)
0

Proof Obviously, inequality (1) is equivalent to

z(t)
g(z(t));D‘t"z(t) -¢D¢ |:/0 g(s) ds] > 0. (2)

By Definition 2.2, we have

oPi=(0) = 7 a)/ = s)"‘ @ ®
and
eral [ B (2 g(u) duy
oDt [/0 g(S)dS:| ra- a)/ s ds
1 g(z(s))7'(s)
- /0 s 4)

Take (3) and (4) into (2), then it can be rewritten as

glz(t)) " Z(s) g(z(s))z
F(l—a)/o(t—s)"’ ra- a)/ (t—s)"‘ ds=0. ©)

Page 4 of 15
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Further, we can get

1 £ g(z(t) - g(2(9))
F(1—01)/0 (t—s) Z(s)ds > 0. ©

Equation (6) can be changed as follows:

1 bog(z(t) - glz(s))
Ml —a) Jo (t—s)*(2(t) — 2(s))

(2(2) — 2(s)) d(z(t) - 2(s)) < 0. (7)

Set t = z(t) — z(s), w(s) = % = w(1). g is a monotone nondecreasing function,

hence, w(t) > 0.
As a result, (7) can be transformed into

1 z(t)—z(0) 4 (8)
_— 7 0.
- /o w(t)tdt >

By Lemma 2.4 and (8), (2) is true if

z(t)-z(0)
/ 7dt > 0. 9)
0

It is easy to calculate that

z(t)-2z(0) 1 9
/ dt = E(Z(t) -z(0))" > 0. (10)
0
The proof is completed. d

2.3 System description
In this paper, we consider a FNNs model described by

n
oDy xi(t) = —=Cii(t) + Zﬂi;‘gj(xj(t)) +I;, i=12,...,n 11)
j=1

Equation (11) can be written equivalently as follows:
6D x(t) = —Cx(t) + Ag(x(1)) +1, (12)

where x(2) = (x1(£), x2(2), ..., x,(£))T € R" is the state vector associated with the neurons,

C = diag(ci,¢,...,¢,) is a positive diagonal matrix, A = (a;}),x. is the interconnection
weight matrix, g(x) = (g1(%1),g2(%2), ..., 8.(x,))T € R"and I = (I, I,...,1,)T denote the neu-
ron activation function and constant input vector, respectively.

The parameters C, A are assumed to be interval as C € C;, A € A;, where C; :=
{C = diag(¢;)pxn : 0 < C < C < C,ie,0 < ¢ < ¢ <c,i=12,...,n}, C = diag(c;)uxn
C = diag(C)uxn A € A, Ar = {A = (@)uxn 1 A <A < Ajie,a, < a; < a,i=12,...,n},
A= (Qij)nxn: A= (Elj)nxn'

In this paper, we make the following hypothesis for the neuron activation function g;:

(H1) g is a continuous and monotone nondecreasing function.
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Lemma 2.6 ([24]) Let x € R" and A € Ay, then, for any positive diagonal matrix Q, the
following inequality holds:

x"(QA+ATQ)x <x"(QA* + A*TQ + | QA, + Al || E)x,
where A* = %(Z +A), A, = %(2—4).

Definition 2.4 (Mittag-Leffler stability) An equilibrium point x* of the neural network
system (12) is said to be Mittag-Leffler stable if there exist constants M > 0, A > 0,
a € (0,1) and b > 0 such that, for any solutions x(¢) of (12) with initial value x,, the fol-
lowing inequality holds:

Js) | < {M]0 -2 |, (-2))", £=0.

Definition 2.5 ([32]) The neural network system (12) is said to be globally robust Mittag-
Leffler stable if the unique equilibrium point is globally Mittag-Leffler stable for C € C;
and A € A;.

3 Main results
Theorem 3.1 Let assumption (Hy) hold. If there exists a positive diagonal matrix Q =
diag(qs,...,qn) > 0 such that

®=QA* + AT Q+ | QA, + Al Q|E <0, (13)

then system (12) has a unique equilibrium point which is globally robustly Mittag-Leffler
stable.

Proof The process of proof is divided into three steps.
Step 1: In this step, we prove the existence of equilibrium point of system (12).
For C € C;and A € Ay, set

Wi(x)=Cx—Ag(x) -1
= Cx - A(g(x) - g(0)) — I - Ag(0)
=Cx—Af(x) - W,

where f(x) = g(x) — g(0), W = Ag(0) + I. It is easy to check that x* € R” is an equilibrium
point of (12), ifand only if, W(x*) = 0. Let H(A, x) = Cx—)LAf(x)—MI’/, A € [0,1]. Obviously,

H(X,x) is a continuous homotopy mapping on x.
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By Lemma 2.6 and (13), we can obtain that

FTx)QH(, %)
= fT(x)QCx — AfT (%) QAf (x) — Af T (x) QW

=TTk~ SfT((QA +ATQ)f )~ 3T WIQW
= TWQCx - 51 T0(QA" + ATQ+ Q4. + ATQE) (@) - 1T QW
> T (x)QCx - 1f T () QW

n

= Zfi(xi)%‘ci (xi - kWi)

c:
i=1 t

i
Ci

L 1'%
> Z [ﬂ(xi)|6h£i(|xi| - ‘_—
i=1
Under assumption (H;), we have

lim  fi(x;)qicix; = +00.
|xi|—+00

This implies that, for each i € {1,2,...,n},

17
lim Vi(xi)|%£i(|xi| - ‘E—l

|x;|—+00 i

) - oo, (14)

Let

n

Li=Y sup{ lﬁ(xj)|‘11‘£j(|xj| +

W, W,
gl < =
j=Lii

G J

}' (15)

By (14), there exists /; > |?| such that, for any |x;| > /;,
U

)—L[>O.

Set Q={xeR":|x]| <l;+1,i=1,2,...,n}. It is easy to find that Q is an open bounded

convex set independent of . For x € 9€2, define

W,
Rk

W
a |l

and there exists iy € {1,2,...,n} such that |x;,| = ;, + 1.

|7
;= lﬁ(xi)’%g(|xi| - ‘E—l

1

0, = {ie{l,2,...,n}:|xi| >

O_= {ie{l,Z,...,n}:|xi| <
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By the definition of L; in (15), we have

|7
[fto Xig ‘qlo_zo <|xlo ‘_D Z lf Xi ’% (lxz ‘E—l >

i€cO_ g

)

W,
= lﬁo (xi0)|qio£l'0 ('xiol - ’ z. 0
io
= \I—’io > 0.
On the other hand,

= s[5

i€®\{ip}

Thus, for x € 92 and A € [0,1], it follows that
FTx)QH(, %)
> Z Lfi(xi)lqig,»(lxil - ‘E—i >

Z V(xt)|qt (|x1| - ‘—‘) Vo(xzo)|qzo Sy <|xzo _’ z

i€®.\{io} Cio

S s [%)

i€e®_

)

> 0.

This shows that H (A, x) # 0 for any x € 92, A € [0,1]. By utilizing the property of Brouwer
degree (Lemma 2.3(1) in [15]), it follows that deg(#(1, x), 2, 0) = deg(#(0, x), 2, 0), namely,
deg(W(x), 2,0) = deg(Cx, 2,0). Noting that deg(W (x), 2, 0) = deg(Cx, 2,0) = Sign|C| #0,
where |C| is the determinant of C, and applying Lemma 2.3(2) in [15], we can obtain that
W (x) = 0 has at least a solution in Q. That is, system (12) has at least an equilibrium point
in Q.

Step 2: In this step, we verify the uniqueness of equilibrium point of system (12).

Let #’ and x” € R" be two different equilibrium points of system (12). Then

Cle =«") = A(F () -£ (+")).
Multiplying by 2(f(x') — f(x”))T Q yields
0<2(f(x) —f(x” r C(x' —«")
2(F(%) —f (")) QA(F(*) ~F ("))
(&) @) (QA+ATQ(f (<) ~f ("))
(F(@) - (") o (f (<) -/ ("))

0. (16)

) Q
)

IA

N
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Obviously, this is contradiction. Hence, &’ = x”, namely, system (12) has a unique equilib-
rium point in Q.

Step 3: In this step, we prove that the equilibrium point of system (12) is globally robustly
Mittag-Leffler stable.

Assume that x* € R” is the unique equilibrium point of system (12). Let z;(¢) = x;(¢) — %7,
then system (12) can be changed as follows:

EDYzi(t) = —cizi(t) + Zai,-(g, (z(t) +x) - gi(x))
j=1

n

=—cizi(t) + Y ayfi(5(0), (17)

j-1

where f;(z;(t)) = gi(z(t) + x;‘) —g,'(x;").
By assumption (H}), f; is monotone nondecreasing and f;(0) = 0. Hence, for any z; € R,

we have
0< /Zif,»(s) ds < zifi(z;). (18)
0

For C € C; and A € Ay, consider the following Lyapunov functional V : R” — R of Lur’e-
Postnikov type [37]:

n z(t)
V(a(t) =2"()C2(t)+ 28 "qi | fils)ds,
=1 Y0
where
p>— A >o, (19)

X = Amin(=®) > 0. Note that under condition (19), being || CA |2 = Anax ((C71A)T(C1A)),
it follows that

% = hmin(B(-®) - (CT'4) T (C14)) > 0. (20)

Calculate the fractional-order derivative of V'(z(£)) with respect to time along the solution
of system (17). By Lemmas 2.3, 2.5 and 2.6, it can be obtained that

n zi(t)
6DV (2(0)) = oD} [2" ()C'2()] + 28 ) 4i6Df [ /0 fils) dS]
i=1

<227 (O)CT DY) + 28 ) qif T (z:(8)) D zilt)

i=1
=227 (8)z(¢) + 2zT(t)C_1Af(z(t))

—2BfT (2())(QC)z(2) + 2Bf T (2(8)) (QA)f (2(2))
< -2zT()z(2) + 2ZT(t)C_1Af(Z(t))

—2BfT(2(0))(QC)z(2) + Bf T (2(8)) ©f (2(2)),
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where 28f7 (z(£))(QC)z(t) > 0 on the basis of assumption (H;). By adding and subtracting
—fT(z(£))[(CTA)T(CLA)]f (z(¢)), and accounting for (20), we get
sDEV(2(2)) < —227 ()z(8) + 227 () C ' Af (2(2))
T =0)[(CA)" (€ A) F )
~f" (=0) [B(-®) - (CA4) (C74) " Jf (=)
—2Bf" (2(£))(QC)x(t)
< -2 ()z(t) - || 2(t) - C'Af (2(t))
= if T (2(0)f (2(0) - 287 (2()) (QC)z(2)
< -z (8)z(t) - 28" (2(1)) (QC)z(r)

I

=" Z z;(6) -2 Z ciqizi(t)fi (zi(2)).

i=1 i=1

By (18), we have

6DV (2(1)) < —c [ZT(t)C'IZ(t) +2B Xn: qi /0 Zi(t) fi(s) ds:|
i=1
< —cV(z(9)),
where ¢ = min{c; : 1 <i < n}. By applying Lemma 2.2, we obtain that
V(z(t)) < V(0)E, (—gt“), t>0.

Noting that

"1 i zi(2) "1 1
V(Z(t)) = Z C_ZlZ(t) +28 Z%/O fl(S) ds > Z C_le(t) > E”Z(t) “2,
=1 i=1 [
where ¢ = max{c; : 1 < i < n}, we have
|26)|* <eV(0)Es(~ct*), t>o0.

This implies that
Jee) - 2]
_ ) n x(0)—x*
<c Hx(O)—x* || +28 Zqi/ fi(s)ds Eo,(—gt"‘)
=1 Y0

< E( ||x(0) —x* || 2y 28gfT (x(O) - x*) (x(O) - x*))Ea (—gt"‘),

where 7 = max{g,;:1 <i <n}.
Hence

N

e =" = M(0) [ (Ea (=),
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s — T (x(0)=x*)(x(0
where M = (¢ + 28qc [12(0)—x* |2

librium point of system (12) is globally robustly Mittag-Leffler stable. The proof is com-
pleted. d

)_x*))%. According to Definitions 2.4 and 2.5, the equi-

4 Numerical examples
Example 1 Consider a fractional-order neural network (12) with the following parame-
ters:

o =0.98, C =diag(1,1), C= diag(3,3),

-1 _ -

A= 8 0 , - 6 2 ’

- -1 -19 1 -17

I=(20,10)7.

Choose the activation function with respect to gi(x;) = 0.5x; + tanh(x;), i = 1,...,n. Obvi-

ously, g; is a monotone nondecreasing function.
By applying appropriate LMI solver to acquire a feasible numerical solution of (13), we

can get that Q could be as follows:

1.0624 0
Q= >0
0 0.8924

The condition of Theorem 3.1 holds. Thus, system (12) with the above parameters is glob-
ally robustly Mittag-Leffler stable.
To verify the above result, we divide a numerical simulation into three cases:
Casel: C=CeC;,A=A €A, x*=(0.8024,0.3089), see Figure 1.
Case2: C=(}3)eC,A=(7 ;) €A« =(0.8419,0.3535), see Figure 2.
Case3:C=CeC;,A=AcAx*=(0.8899,0.4037), see Figure 3.
From Figures 1, 2, 3, we can see that the state trajectories converge to a unique equilib-

rium point. This is consistent with the conclusion of Theorem 3.1.

Figure 1 The state trajectory x of neural 4
network (17) in Case 1 of Example 1.

State Vector x(t)

. . . .
0 0.2 04 0.6 0.8 1
Time t
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Figure 2 The state trajectory x of neural 4
network (17) in Case 2 of Example 1. ol
= X, ()
0
i)
s
(2}
014 0‘,6 018 1
Time t
Figure 3 The state trajectory x of neural
network (17) in Case 3 of Example 1.
= X, (t)
5
0
-
12}
04‘4 0:6 0‘,8 1
Time t

Example 2 Consider a fractional-order neural network (12) with the following parame-

ters:

=07, C =diag(1,2,3), C =diag(3,4,5),

30 -1 0 28 1 0
A=l 1 -1 o], A=l 3 -9 o],
o 0 -8 0 0 -6

I=(10,8,10)7, gi(x;) = 0.5x; + arctan(x;).

Obviously, g; is a monotone nondecreasing function. Choose the positive definite diagonal
matrix Q = diag(5, 8,11), then we have

®=QA" +AQ+ | QA, + Al Q|E

—-263.6580 16.000 0
= 16.000 -133.6580 0
0 0 -127.6580

<0.

The condition of Theorem 3.1 is satisfied. Thus, system (12) with the above parameters is
globally robustly Mittag-Leffler stable.
To verify the above result, we divide a numerical simulation into three cases:

Page 12 of 15
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Casel: C=CeC;,A=A€ A, x*=(0.2336,0.5032,0.8613), see Figure 4.

Case 2:
-29 0 0
C =diag(2,3,4), A= 2 -10 0 | €A,
0 o -7

x* =(0.2383,0.5589,0.9464),

see Figure 5.
Case3:C=CeC;,A=AcApx* =(0.2495,0.6496,1.1050), see Figure 6.

Page 13 of 15

Figure 4 The state trajectory x of neural 3
network (17) in Case 1 of Example 2. 25

State Vector x(t)

0 0.2 0.4 0.6 0.8
Time t

Figure 5 The state trajectory x of neural 3
network (17) in Case 2 of Example 2. 25

State Vector x(t)

[¢] 0.2 0.4 0.6 0.8
Time t

Figure 6 The state trajectory x of neural 3 : : : .
network (17) in Case 3 of Example 2. 25

1)

X, (t)

State Vector x(t)

%0

0 0.2 0.4 0.6 0.8
Time t
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From Figures 4, 5, 6, we can see that the state trajectories converge to a unique equilib-
rium point. This is consistent with the conclusion of Theorem 3.1.

5 Conclusion
In this paper, the global robust Mittag-Leffler stability issue has been investigated for a
class of FNNs with parameter uncertainties. A new inequality with respect to the Caputo
derivative of an integer-order integral function with the variable upper limit has been de-
veloped. The sufficient condition in terms of LMIs has been presented to ensure the exis-
tence, uniqueness and robust Mittag-Leffler stability of equilibrium point.

It would be interesting to extend the results proposed in this paper to FNNs with delays
and parameter uncertainties. This issue will be the topic of our future research.
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