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Abstract
Fuzzy fractional differential equations (FFDEs) driven by Liu’s process are a type of
fractional differential equations. In this paper, we intend to provide and prove a novel
existence and uniqueness theorem for the solutions of FFDEs under local Lipschitz
and linear growth conditions. We also investigate the stability of solutions to FFDEs by
a theorem. Finally, some examples are provided.
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1 Introduction
A large number of physical processes such as real-life phenomena appear to display
fractional-order demeanor that may vary with space or time. The fractional calculus has
authorized the operations of differentiation and integration to all fractional order [–].
The order may take on all real or imaginary values. Multitude systems modeled with the
support of fractional calculus also demonstrate fractional dynamical conduct such as vis-
coelastic systems [, ], colored noise [], boundary layer effects in ducts and electromag-
netic waves [].

In recent decades, the theory of fractional differential equations (FDEs) has enticed
many researchers, such as [–], who have applied FDEs for acoustic models, thermal
systems, signal processing, system identification, robotics and control, etc.

A FDE is a differential equation which includes fractional derivatives. The results of
various studies have clearly declared that fractional derivatives seem to arise universally
and generally from major mathematical reasons. There are different kinds of fractional
derivatives, like Riemann-Liouville and Caputo. For details, one can refer to [] and [].

Stochastic fractional differential equations were used to model dynamical systems af-
fected by random noises [–].

As already known, the concepts of fuzzy sets have been first investigated by Zadeh via
the membership function []. The literature concerning the applications of nonlinear
FDEs has grown rapidly in the recent years [–].

In this paper, we investigate the theory of fuzzy FDEs (FFDEs) in the sense of Liu’s pro-
cess. Liu introduced credibility theory for the first time and presented the concept of cred-
ibility measure to facilitate the measurement of fuzzy events []. It is worthy to note that
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this measurement is a powerful tool for dealing with fuzzy phenomena and is based on
normality, monotonicity, self-duality, and maximality axioms.

Also, Liu has proposed the concept of fuzzy process [–]. Liu’s process is a particular
fuzzy process with stationary and independent increment, which is just like a stochastic
process described by Brownian motion.

A large number of researches have been recently published on the Liu process and its
applications in other sciences such as economics and optimal control [–]. Many re-
searchers were inspired by stochastic notions and the Ito process introduced fuzzy differ-
ential equations which were driven by Liu’s process for better understanding of the fuzzy
phenomenon [, –].

Qin and Li applied fuzzy differential equations, driven by Liu’s process, to solve Euro-
pean pricing problems in a fuzzy environment [].

Regarding the importance of the existence and uniqueness of the solution to fuzzy differ-
ential equations driven by Liu’s process, You investigated the existence and uniqueness of
the solution to the fuzzy differential equations by employing Lipschitz and linear growth
conditions []. Afterwards, Fei studied the uniqueness of the solution to the fuzzy differ-
ential equations driven by Liu’s process with non-Lipschitz coefficients [], but unfortu-
nately, the existence and uniqueness of the solution to the FFDEs driven by Liu’s process
have not been adequately investigated. Moreover, stability, which is one of the most impor-
tant issues in differential equations, has not been studied with regard to such equations.

In this paper, weaker conditions are provided in order to guarantee the existence and
uniqueness of the solution to the FFDEs, which makes it possible for more functions to be
verified in such conditions. Furthermore, stability can also be investigated by considering
such conditions.

The basic concepts of credibility theory are first discussed in this paper since they are
needed in the later sections. FFDEs driven by Liu’s process are taken into consideration
in the second section. The existence and uniqueness theorem of the solution with regard
to weaker conditions such as the local Lipschitz and Linear growth conditions is proved
in the third section, and finally in the last and the most important section, the stability of
FFDEs in weaker conditions is elaborated.

2 Preliminaries
The emphasis in this section is mainly on introducing some concepts such as credibil-
ity measure, credibility space, fuzzy variables, independence of fuzzy variables, expected
value, variance, fuzzy process, Liu process, and stopping time.

Suppose that � is a non-empty set and P is the power set of �. Each element of κ in
P is called an event. For the purpose of presenting a basic definition of credibility, it is
needed to grant a number like Cr{κ} to each event κ . In order to make sure the number
Cr{κ} has certain mathematical features that are intuitively expected, these four axioms
are accepted []:

. Axiom (normality) Cr{�} = .
. Axiom (monotonicity) Cr{κ} ≤ Cr{β} whenever κ ⊂ β .
. Axiom (self-duality) Cr{κ} + Cr{κc} =  for any event κ .
. Axiom (maximality) Cr{Uiκi} = supi Cr{κi} for any events {κi} with

sup
i

Cr{κi} < ..
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Definition . ([]) The set function Cr is called a credibility measure if it satisfies the
normality, monotonicity, self-duality, and maximality axioms.

A family P with the above mentioned four properties is called a σ -algebra. The pair
(�,P) is called a measurable space, and each element of P is consequently called P-
measurable sets instead of events.

Definition . ([]) The triple (�,P , Cr) is a credibility space if � is a non-empty set,
P the power set of �, and Cr a credibility measure.

Let (�,P , Cr) be a credibility space. A filtration is a family {Pt}t≥ of increasing sub-
σ -algebras of P (i.e. Pt ⊂ Ps ⊂ P for all  ≤ t < s < ∞). The filtration is said to be right
continuous if Pt =

⋂
s>t Ps for all t ≤ . When the credibility space is complete, the fil-

tration is said to satisfy the usual conditions if it is right continuous and P contains all
Cr-null sets.

We also define P∞ = σ (Ut≥Pt) (i.e. a σ -algebra generated by Ut≥Pt). P-measurable
fuzzy variables are denoted by Lp(�, Rd), which will be defined later. A process is called
P-adapted if for all t ∈ [, t] the fuzzy variable x(t) is P-measurable.

Definition . ([]) A fuzzy variable is defined as a (measurable) function ξ : (�,P ,
Cr) −→ R.

Definition . ([]) Supposing ς is a fuzzy variable, the expected value of ς is as follows:

E[ς ] =
∫ +∞


Cr{ς ≥ s}ds –

∫ 

–∞
Cr{ς ≤ s}ds,

where two integrals are finite.

Definition . ([]) The credibility distribution η(x) of a fuzzy variable ς is defined by

η(w) = max
{

,  Cr(ς = w)
}

, w ∈ R.

Definition . ([]) A credibility distribution η(w) is regular on condition that it is a
continuous and strictly increasing function with respect to w for which  < η(w) < , and

lim
w→–∞η(w) = , lim

w→+∞η(w) = .

Moreover, the inverse function η–(α) can be called the inverse credibility distribution
of ς .

Definition . ([]) Considering T to be an index set and (�,P , Cr) to be a credibility
space, a fuzzy process can be described as a function from T × (�,P , Cr) to the set of real
numbers.

A fuzzy process is basically a sequence of fuzzy variables indexed by time or space.

Definition . ([]) A fuzzy process Ct is a Liu process if the following conditions are
met:
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. C = ,
. Ct has stationary and independent increments,
. every increment Ct+s – Cs is a normally distributed fuzzy variable with expected

value et and variance σ t whose membership function is

η(w) = 
(

 + exp

(
π |w – et|√

σ t

))–

, –∞ < w < +∞.

Based on the Liu process, a Liu integral is defined as a fuzzy counterpart of an Ito integral
as follows:

Theorem . ([]) Let Ct be a standard Liu process, and f (t, c) a continuously differen-
tiable function. Define w(t) = f (t, Ct). Then we have the following chain rule:

dw(t) =
∂f
∂t

(t, Ct) dt +
∂f
∂c

(t, Ct) dCt ,

which is called Liu formula.

Let us define a sequence of credibilistic stopping times.

Definition . ([]) A fuzzy variable τ : � → [,∞] (it may take the value ∞) is called
a {Pt}-stopping time (or simply, stopping time) if {θ : τ (θ ) ≤ t} ∈Pt for any t ≥ 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

τh = inf{t ≥  : |w(t)| ≥ k},
σ = inf{t ≥  : x(w(t)) ≥ ε},
σi = inf{t ≥ σi– : x(w(t)) ≤ ε}, i = , , . . . ,

σi+ = inf{t ≥ σi : x(w(t)) ≥ ε}, i = , , . . . ,

where throughout this paper we set infφ = ∞.

Definition . ([]) If W = {Wt}t≥ is a measurable process and τ is a stopping time,
then {Wτ∧t}t≥ is called a stopped process of W .

There are some useful inequalities for fuzzy variables such as the Hölder inequality and
the Chebyshev inequality. In this sequence, we introduce generalized inequalities for fuzzy
variables.

Theorem . (Hölder’s inequality, []) Let n and m be two positive real numbers with

n + 

m = , ξ and η be independent fuzzy variables with

E
[|ς |n] ≤ +∞ and E

[|ρ|m] ≤ +∞.

We have

E
[|ςρ|] ≤ n

√
E
[|ς |n

] m
√

E
[|ρ|m

]
.
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Theorem . (Chebychev’s inequality) Let ς : θ → Rk be a fuzzy variable such that
E[|ς |n] ≤ +∞ for some n,  ≤ n ≤ ∞. Then we have the following Chebychev inequality:

Cr
[|ς | ≥ λ

] ≤ 
λn E

[|ς |n]
for all λ ≥ .

Proof Put A = {x | |ς (x)| ≥ λ}. Then

∫

θ

∣
∣ς (x)

∣
∣p d Crx ≥

∫

A

∣
∣ς (x)

∣
∣n d Crx ≥ λn CrA . �

Before ending this section it is essential to introduce some symbols that are used in the
next sections.

Notation  Ln(θ , Rd) the family of Rd-valued fuzzy variables ς with E|ξ |p < ∞.

Notation  �p([a, b], Rd) the family of Rd-valued Pt-adapted processes {h(t)}a≤t≤b such
that

∫ b
a |h(t)|n dt < ∞ almost surely.

Notation  Mn([a, b], Rd) the family of processes {h(t)}a≤t≤b in �n([a, b], Rd) such that
∫ b

a |h(t)|n dt < ∞.

Notation  �n(R+, Rd) the family of processes {h(t)}t> such that, for every T > ,
{h(t)}a≤t≤T ∈ �n([, T], Rd).

Remark . ([]) A Liu process C is Lipschitz continuous, that is, for any given θ ∈ �,
there exists K(θ ) >  such that for all t, s ≥ 

|Ctθ – Csθ | ≤ |t – s|.

Lemma . ([]) Suppose that Ct is a standard Liu process and x(t) is a fuzzy process on
[a, b] with respect to t. If K(�) >  is the Lipschitz constant for path Ctθ with θ ∈ � fixed,
then we have

∣
∣
∣
∣

∫ b

a
x(t) dCt

∣
∣
∣
∣ ≤ K(θ )

∫ b

a

∣
∣x(t)

∣
∣dt.

3 Fuzzy fractional differential equations
In this section, some basic definitions, notations and lemmas which will be used through-
out the paper are provided in order to establish our main results.

Two common notations for the fractional differential operator also need to be intro-
duced, which are Riemann-Liouville and Caputo. See [] and [] for more details.

Definition . ([]) The Riemann-Liouville fractional derivative of f is defined as

RDαf (t) =


�( – α)
d
dt

∫ t


(t – s)–αf (s) ds, (.)

where �(·) stands for the gamma function �(x) =
∫ ∞

 tx–e–t dt, α ∈ (, ], and t > .



Mansouri et al. Advances in Difference Equations  (2017) 2017:240 Page 6 of 13

Definition . ([]) The Caputo derivative of order α for a function f can be written as

CDαf (t) =


�( – α)

∫ t


(t – s)–αf ′(s) ds, (.)

where f ′(s) is the first-order derivative of f (s).

Remark . The relationship between the Riemann-Liouville derivative and the Caputo
derivative can be written as

RDαf (t) = CDαf (t) +
t–α

�( – α)
f (). (.)

In this study, we consider the Caputo fractional derivative of order α, and the initial
value problem of fuzzy fractional-order differential equation is given as follows:

⎧
⎨

⎩

CDαw(t) = f (w(t), t) + g(w(t), t)Ċ(t),

w(t) = wt ,
(.)

where the functions f (w(t), t) and g(w(t), t) : [, T] × R → R. The term Ċ(t) = dC
dt describes

a state dependent random noise. C(t) is a standard Liu process defined on a given filtered
credibility space (�,P , {Pt}t≥, Cr) with a normal filtration {Pt}t≥, which is an increasing
and continuous family of σ -algebras of P , and contains all of �-null sets, and C(t) is P-
measurable for each t > . Here, let us recall the definitions of fractional calculus; the
fractional integral operator of order α is given as follows:

Iαg(t) =


�(α)

∫ t


(t – s)α–g(s) ds, t > . (.)

Applying the integral operator (.) to both sides of initial value problem (.), the Volterra
integral equation is obtained:

w(t) = w +


�(α)

∫ t


(t – s)α–f

(
w(s), s

)
ds +


�(α)

∫ t


(t – s)α–g

(
w(s), s

)
dC(s), (.)

in which α ∈ (, ) and t > .

Lemma . Let function K (u, t) be locally integrable in t for each fixed u ∈ [,∞] and be
continuously non-decreasing in u for each fixed t ∈ [, T], for K(, t) =  and γ > . If a
non-negative continuous function z(t) satisfies

z(t) ≤ γ

∫ t


K

(
z(s), s

)
ds, t ∈ R, z() = , (.)

then z(t) =  for all t ∈ [, T].

3.1 Existence and uniqueness of the solution for FFDEs
In this section, existence and uniqueness of the solution for FFDEs are taken into consid-
eration. It is worth noting that, if FFDE is a mathematical model of a physical problem:
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. We expect initial conditions of the mathematical model to have a solution.
. According to initial conditions, we want any mathematical model to have a unique

solution.
First, a suitable condition proposes a uniqueness solution to FFDEs.

At this point the following conditions, lemmas, and remarks for the proof of the unique-
ness and existence should be elaborated on.

(I) Local Lipschitz condition: There exists a positive constant number L such that

∣
∣p

(
w(t), t

)
– p

(
y(t), t

)∣
∣ +

∣
∣q

(
w(t), t

)
– q

(
y(t), t

)∣
∣ ≤ L

∣
∣w(t) – y(t)

∣
∣,

for those w(t), y(t) ∈ Rn.
(II) Linear growth condition: There exists a positive number L such that

∣
∣p

(
w(t), t

)∣
∣ +

∣
∣q

(
w(t), t

)∣
∣ ≤ L

(
 +

∣
∣w(t)

∣
∣
)
.

Now, we introduce the mapping A on C[, T] for W (t) ∈ C[, T] as follows:

A
(
w(t)

)
= w +


�(α)

∫ t


(t – s)p–f

(
w(s), s

)
ds +


�(α)

∫ t


(t – s)p–g

(
w(s), s

)
dC(s), (.)

where t ∈ [, T], τ ≥ .

Lemma . For any τ ∈ �, and w(t, τ ) ∈ C([–τ , R], R) we have A(w(t, τ )) ∈ C([–τ , R], R).

Proof Let s, s ∈ [, T] and s > s > . We have

∣
∣A

(
w(s, θ )

)
– A

(
w(s, θ )

)∣
∣

=


�(p)

∣
∣
∣
∣

∫ s


(s – s)p–f

(
w(s, τ ), s

)
ds +

∫ s


(s – s)p–g

(
w(s, τ ), s

)
dCs(τ )

+
∫ s

s

(s – s)p–f
(
w(s, τ ), s

)
ds +

∫ s

s

(s – s)p–g
(
w(s, τ ), s

)
dCs(τ )

–
∫ s


(s – s)p–f

(
w(s, τ ), s

)
ds +

∫ s


(s – s)p–g

(
w(s, τ ), s

)
dCs(τ )

∣
∣
∣
∣

=


�(p)

∣
∣
∣
∣

∫ s



[
(s – s)p– – (s – s)p–]f

(
w(s, τ ), s

)
ds

+
∫ s



[
(s – s)p– – (s – s)p–]g

(
w(s, τ ), s

)
dCs(τ )

+
∫ s

s

(s – s)p–f
(
w(s, τ ), s

)
ds +

∫ s

s

(s – s)p–g
(
x(s, τ ), s

)
dCs(τ )

∣
∣
∣
∣

≤ 
�(p)

∫ s



[
(s – s)p– – (s – s)p–]∣∣f

(
w(s, τ ), s

)∣
∣ds

+
∣
∣
∣
∣

∫ s



[
(s – s)p– – (s – s)p–]g

(
w(s, τ ), s

)
dCs(τ )

∣
∣
∣
∣

+
∫ s

s

(s – s)p–∣∣f
(
w(s, τ ), s

)∣
∣ds +

∣
∣
∣
∣

∫ s

s

(s – s)p–g
(
w(s, τ ), s

)
dCs(τ )

∣
∣
∣
∣.
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By Lemma .,

≤ 
�(p)

∫ s



[
(s – s)p– – (s – s)p–]∣∣f

(
w(s, τ ), s

)∣
∣ds

+ k(τ )
∫ s



[
(s – s)p– – (s – s)p–]∣∣g

(
w(s, τ ), s

)∣
∣dCs(τ )

+
∫ s

s

(s – s)p–∣∣f
(
w(s, τ ), s

)∣
∣ds + k(τ )

∫ s

s

(s – s)p–∣∣g
(
w(s, τ ), s

)∣
∣dCs(τ ).

By a linear growth condition,

≤ 
�(p + )

[
L
(
 +

∥
∥w(t, τ )

∥
∥
)(

 + K(τ )
)(

sp
 – sp


)]

.

Thus |A(w(s, τ )) – A(w(s, τ ))| →  as |s – s| → . So, A(w(s, τ )) is sample-continuous
on C([–τ , R], R). �

Theorem . (Existence and uniqueness) The FFDE (.) has a unique solution w(t) in
[, +∞) if the coefficients f (w(t), t) and g(w(t), t) satisfy (I) and (II).

Proof Let c >  be an arbitrarily given number, and let A(w(ξ )) be a mapping defined by
(.) on w(ξ ) ∈ C[t, t + c],

A
(
w(ξ )

)
= w +


�(α)

∫ ξ

t
(t – s)p–f

(
w(s), s

)
ds+


�(α)

∫ ξ

t
(t – s)p–g

(
w(s), s

)
dC(s). (.)

The proof of Lemma . implies that A(w(ξ )) ∈ C[t, t + c] for x(ξ ) ∈ C[t, t + c].
For any ξ ∈ [t, t + c], we have

∥
∥A

(
w(ξ , τ )

)
– A

(
y(ξ , τ )

)∥
∥ = max

t∈[,T]

∣
∣A

(
w(ξ , τ )

)
– A

(
y(ξ , τ )

)∣
∣

≤ max
t∈[,T]


�(p)

∣
∣
∣
∣

∫ ξ

t
(ξ – s)p–[f

(
w(s, τ ), s

)
– f

(
y(s, τ ), s

)]
ds

+
∫ ξ

t
(ξ – s)p–[g

(
w(s, τ ), s

)
– g

(
y(s, τ ), s

)]
dCs(τ )

∣
∣
∣
∣.

By Lemma .,

≤ max
t∈[,T]


�(p)

∫ ξ

t
(ξ – s)p–∣∣f

(
w(s, τ ), s

)
– f

(
y(s, τ ), s

)∣
∣ds

+
k(τ )
�(p)

∫ ξ

t
(ξ – s)p–∣∣g

(
w(s, τ ), s

)
– g

(
y(s, τ ), s

)∣
∣dCs(τ ).
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By the Lipschitz condition,

≤ ( + k(τ ))L
�(p)

max
t∈[,T]

∫ ξ

t
(ξ – s)p–∣∣

(
w(s, τ ), s

)
– y(s, τ ), s)

∣
∣ds

≤ ( + k(τ ))L
�(p)

∫ ξ

t
(ξ – s)p– sup

t≤s≤t+c

∣
∣w

(
(s, τ ), s

)
– y

(
(s, τ ), s

)∣
∣ds

≤ ( + k(τ ))Lcp

�(p + )
∥
∥w(s, τ ) – y(s, τ )

∥
∥.

If we set A(w(ξ , τ )) = w(t) for ξ ∈ [t, t + c], then

∥
∥A

(
w(ξ , τ )

)
– A

(
y(ξ , τ )

)∥
∥ ≤ β(τ )

∥
∥w

(
(s, τ ), s

)
– y

(
(s, τ ), s

)∥
∥,

where β(τ ) = (+k(τ ))Lcp

�(p+) . That is, A is a contraction mapping on C[t, t + c]. Thus by the well-
known Banach fixed point theorem we have a unique fixed point w(ξ , τ )C[t, t + c] which
satisfies (.) in [t, t + c].

Furthermore, W (ξ , τ ) = limk→ A(W ((ξ , k), τ )) where

w(ξ , k), τ ) = A
(
w(ξ , k – ), τ

)
), k = , , . . . .

Suppose that [, c], [c, c], . . . , [kc, T] are the subsets of [, T] with kc < T ≤ (k + )c. The
above process implies that the mapping A has a unique fixed point W (i+)(ξ , τ ) with
W (i+)(ic, τ ) = W (i)(ic, τ ) on the interval [(i– )c, ic] for i = , , . . . , k +  and setting (k + )c =
T . Define W (ξ , τ ) on the interval [, T] by setting

w(ξ , τ ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

w(ξ , τ ), t ∈ [, c],
...

xk(ξ , τ ), t ∈ [(k – )c, kc],

xk+(ξ , τ ), t ∈ [kc, T].

It is easy to see that W (ξ , τ ) is the unique fixed point of A defined by (.) in C[, T]. In
addition, W (ξ , τ ) = limk→∞ A(W ((ξ , k), τ )) where

W
(
(ξ , k), τ

)
= A

(
W (ξ , k – ), τ

)
), k = , , . . . ,

for any given W ((ξ , ), τ ) = w(ξ ) ∈ C[, T]. It follows from the arbitrariness of T ≥  that
W (ξ ) is the unique solution of FFDE (.). Furthermore, since W (ξ , τ ) is in C[, T], W (ξ )
is sample-continuous. The theorem is proved. �

3.2 Stability theorem for FFDEs
Regarding the fact that if a physical examination is repeated twice with the same conditions
and how much measurements are conducted carefully, the initial imposed conditions will
not be exactly the same. It is expected that the results of two physical examinations have
a little difference with each other. This means that very small changes in initial conditions
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are expected to cause only small changes in the answer. In other words, the answer to the
mathematical model is stable. In this section, the concept of stability for a FFDE in the
sense of fuzzy measure is proposed. A sufficient condition will also be derived for a FFDE
to be stable.

Corollary . Let Ct be a fuzzy process on a credibility space (�,P , Cr). Then there exists
a fuzzy variable K in a way that K(θ ) is a Lipschitz constant of the sample path Ctθ for each
θ , and

lim
x→+∞ Cr

{
θ ∈ �|K(θ ) ≤ x

}
= .

Proof Define

K(θ ) = sup
<t<s

|Ctθ – Csθ |
t – s

for each sample path Ctθ . Then K is a fuzzy variable on (�,P , Cr), and

|Ctθ – Csθ | ≤ K(θ )|t – s|

for any t, t ∈ R+. That is, K(θ ) is a Lipschitz constant of the sample path Ctθ . Given x ∈ R,
if

∣
∣
∣
∣
dCt

dt
(θ )

∣
∣
∣
∣ ≤ x ∀t > ,

then we have

|Ctθ – Csθ | ≤
∫ s

t

∣
∣
∣
∣
dCt

dt
(θ )

∣
∣
∣
∣dt ≤ x(s – t)

for any t, t ∈ R+, which means that

sup
<t<s

|Ctθ – Csθ |
s – t

≤ x.

Thus we obtain

Cr
{
θ ∈ �|K(θ ) ≤ x

}
= Cr

{

sup
Cs – Ct

s – t
≤ x

}

,

Cr
{∣
∣
∣
∣
dCt

dt

∣
∣
∣
∣ ≤ x,∀t > 

}

≤ φ(x) – ,

where φ is the credibility distribution of standard normal fuzzy variable N(, ). Since
φ(x) →  as x → +∞, we have

lim
x→+∞ Cr

{
θ ∈ �|K(θ ) ≤ x

}
= . �
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Corollary . Let Ct be a fuzzy process on a credibility space (�,P , Cr), and K(θ ) be the
least Lipschitz constant of the sample path Ctθ . Then

Cr{K < +∞} = .

Proof We will prove this by a contradiction method. Assume that Cr{K < +∞} < . Then
there exists a positive number ζ >  such that Cr{K < +∞} ≤  – ζ , so we have Cr{K ≤
x} ≤  – ζ for any x ∈ R. It means that

lim
x→+∞ Cr

{
θ ∈ �|K(θ ) ≤ x

} ≤  – ζ ,

which contradicts

lim
x→+∞ Cr

{
θ ∈ �|K(θ ) ≤ x

}
= . �

Definition . Let wt and yt be two solutions of the FFDE

⎧
⎨

⎩

CDαw(t) = f (w(t), t) + g(w(t), t)Ċ(t),

w(t) = wt .
(.)

Then the FFDE (.) is said to be stable if for any given number ξ > , there exists a real
number δ such that

Cr
{∣
∣w(t) – y(t)

∣
∣ > ε

} ≤ ε,

or

lim|w–y|→
Cr

{∣
∣w(t) – y(t)

∣
∣ > ε

}
= , ∀t > ,

holds for any t ≥  provided |w – y| ≤ δ.

Theorem . The FFDE (.) is stable if the coefficients f (w, t) and g(w, t) satisfy (I)
and (II).

Proof Assume that w(t) and y(t) are two solutions of the FFDE (.) with different initial
values w() and y(), respectively. Then

w(t) = w +


�(α)

∫ t


(t – s)α–f

(
w(s), s

)
ds +


�(α)

∫ t


(t – s)α–g

(
w(s), s

)
dC(s),

y(t) = y +


�(α)

∫ t


(t – s)α–f

(
y(s), s

)
ds +


�(α)

∫ t


(t – s)α–g

(
y(s), s

)
dC(s).
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For a Lipschitz-continuous sample path Ctθ , we have

∣
∣w(t, θ ) – y(t, θ )

∣
∣

≤ ∣
∣w() – y()

∣
∣ +


�(p)

∫ t


(t – s)p–∣∣f

(
w(s, θ )

)
– f

(
y(s, θ )

)∣
∣ds

+


�(p)

∫ t


(t – s)p–∣∣g

(
w(s, θ )

)
– g

(
y(s, θ )

)∣
∣|dCs|

≤ ∣
∣w() – y()

∣
∣ +


�(p)

∫ t


(t – s)p–L(s)

∣
∣w(s, θ ) – y(s, θ )

∣
∣ds

+


�(p)

∫ t


(t – s)p–L(s)K(θ )

∣
∣w(s, θ ) – y(s, θ )

∣
∣ds

=
∣
∣w() – y()

∣
∣ +


�(p)

∫ t


(t – s)p–L(s)

(
 + K(θ )

)∣
∣w(s, θ ) – y(s, θ )

∣
∣ds.

Thus we have

∣
∣w(t, θ ) – y(t, θ )

∣
∣ ≤ ∣

∣w() – y()
∣
∣ + exp

(
 + K(θ )

) cp

�(p + )

∫ ∞


L(s) ds,

by the Grownwall equality.
For any given ε > , there exists a real number H such that Cr{θ |K(θ ) ≤ H} ≥  – ε, by

Corollary . take

δ = exp

(

–( + H)
∫ ∞

τ

L(s) ds
)

ε.

Then |w(t, θ ) – y(t, θ )| ≤ ε for any positive real number t, provided that |x() – y()| ≤ δ

and K(θ ) ≤ H. It means Cr{|w(t) – y(t)| > ε} < ε for any t ≤  as long as |w() – y()| ≤ δ.
In other words, lim|w–y|→ Cr{|x(t) – y(t)| > ε} =  so the FFDE is stable. �

4 Conclusion
In this paper, weaker conditions are provided in order to guarantee the existence and
uniqueness of the solution to the fuzzy fractional deferential equations driven by Liu’s
process, which makes it possible for more functions to be verified in such conditions. Fur-
thermore, stability can also be investigated by considering such conditions.
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