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Abstract
In this paper, we consider a two-dimensional predator-prey model with a time delay
and square root response function. We analyze the stability of equilibria with the
delay τ increasing and the critical value of τ when Hopf bifurcation occurs. Because
the model has the term of square root, the zero point is a singularity. In order to
clearly study the stability of the zero point, we rescale the variable x(t), say x(t) = X2(t).
The conclusion is that the zero point is not stable and the instability is not affected by
the delay τ . We apply the normal form method and center manifold theorem to
obtain the direction and stability of the Hopf bifurcation. Finally, we make several
numerical simulations which is consistent with the conclusion of theoretical analysis.
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1 Introduction
Dynamics of predator-prey models are one of the important subjects in ecology and math-
ematical ecology. Many researchers have studied predator-prey models with delay and
derived some important results [–]. A few researchers have studied the model with the
term of square root [–]. Braza [] analyzed the following predator-prey model with
square root response function:

{
ẋ(t) = x(t) – x(t) –

√
x(t)y(t),

ẏ(t) = –sy(t) + c
√

x(t)y(t),
(.)

where x(t) and y(t) denote the population (or density) of the prey and predator, respec-
tively. s is the death rate of the predator, and c is the biomass conversion or consumption
rate.

In system (.), x(t) stands for the number of prey without competition and predation,
x(t) stands for the reduced number of competition of prey and prey, the term of

√
x(t)y(t)

stands for the amount of assimilation by predator via competition of prey and predator
[], and sy(t) is the dead quantity of predator. Because the c is the consumption rate, and
the term of

√
x(t)y(t) stands for the amount of assimilation by predator, the c

√
x(t)y(t)

stands for the growth of predator via competition of prey and predator. In [], Salman et
al. have investigated the nonlinear dynamics of a discrete predator-prey model with square
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root functional response, obtained by applying a forward Euler discretization method to
system (.). In [], the dynamics of the square root system (.) are compared and con-
trasted with the dynamics of predator-prey systems that use a typical Lotka-Volterra inter-
action term. The process of growth needs time to finish, so in order to accurately express
the model, we should add a time delay to the model, and system (.) becomes system (.)
as follows:{

ẋ(t) = x(t) – x(t) –
√

x(t)y(t),
ẏ(t) = –sy(t) + c

√
x(t – τ )y(t).

(.)

Here, we assume the predator takes time τ to convert the food into its growth. By choosing
τ as bifurcation parameter, we get the condition under which Hopf bifurcation occurs. At
last we will give an example showing that the stability of the positive equilibrium will be
changed with τ increasing.

This paper is organized as follows: In Section , we first focus on the stability of the
equilibria and Hopf bifurcation by analyzing the eigenvalues. In Section , we derive the
direction and stability of the Hopf bifurcation by using normal form method and central
manifold theorem. In Section , a numerical simulation is made to examine the discussion
of the previous section. A brief discussion is given in the last section.

2 Stability analysis and Hopf bifurcation
In this section, we research the stability of the equilibria and Hopf bifurcation by analyzing
the eigenvalues of the system (.).

There are at most three nonnegative equilibria for system (.):

E∗
 = (, ), E∗

 = (, ), E∗
 =

(
s/c, s

(
c – s)/c).

E∗
 is a unique positive equilibrium if and only if the following condition is true:

(H) c > s.

Let E∗ = (x∗, y∗) be the arbitrary equilibrium, then the linearized system of (.) at E∗ is

u̇(t) = Au(t) + Bu(t – τ ), (.)

where u(t) = (x(t), y(t))T ,

A =

[
 – x∗ – y∗


√

x∗ –
√

x∗

 –s + c
√

x∗

]
�

[
a a

 a

]
, (.)

B =

[
 

cy∗

√

x∗ 

]
�

[
 

b 

]
. (.)

The characteristic determinant of system (.) is

∣∣λE –
(
A + Be–λτ

)∣∣ = . (.)

The characteristic equation of system (.) is

λ – (a + a)λ + aa – abe–λτ = . (.)
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In the following, we discuss the stability of the equilibria and Hopf bifurcation:
() E∗ = E∗

 = (, ).
It is obvious that matrices (.) and (.) are indeterminate at E∗

 . We rescale the variable
x(t), say x(t) = X(t), so system (.) becomes the following form:

{
Ẋ(t) = 

 X(t) – 
 X(t) – 

 y(t),
ẏ(t) = –sy(t) + cX(t – τ )y(t).

(.)

The characteristic equation of system (.) at E∗
 is

(
λ –




)
(λ + s) = . (.)

The eigenvalues of the characteristic equation (.) are 
 and –s; it is obvious that E∗



is unstable. From equation (.), it is seen that the delay τ has no effect on the stability
of E∗

 .
() E∗ = E∗

 = (, ).
The characteristic equation of system (.) is

(λ + )(λ + s – c) = . (.)

The eigenvalues of the characteristic equation (.) are – and c – s, so E∗
 is stable when

s > c and unstable when s < c. However, if the predator death rate s is larger than its con-
sumption rate c, the predator will die out, leaving the prey to flourish. From equation (.),
it can be seen that the delay τ has also no effect on the stability of E∗

 .
() E∗ = E∗

 = (s/c, s(c – s)/c).
In the following, we study the local stability of the positive equilibrium E∗

 by analyzing
the distribution of the roots of equation (.). We consider two cases.

Case . When τ = , the characteristic equation of system (.) is

λ – (a + a)λ + aa – ab = . (.)

From equation (.), we can see that when a+a
 < , � = (a + a) – (aa –

ab) < , the two roots of equation (.) have always negative real parts; when a+a
 > ,

and � < , the two roots of equation (.) have always negative real parts; when a+a
 > ,

and � ≥ , equation (.) has at least one positive root.
Let

(H) a+a
 < , � < ;

(H) a+a
 > .

Then it is not difficult to verify that the following result holds.

Lemma . For τ = , the following statements are true:
() If the conditions (H) and (H) hold, then E∗

 is stable.
() If the conditions (H) and (H) hold, then E∗

 is unstable.
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Case . When τ > , the characteristic equation of system (.) is equation (.).
The equilibrium E∗

 is stable if all roots of (.) have negative real parts, thus we should
observe the distribution of roots of equation (.). If iω (ω > ) is a root of equation (.),
ω should satisfy

–ω – i(a + a)ω + aa – ab(cosωτ – i sinωτ ) = . (.)

Separating the real and imaginary parts, we have

{
–ω + aa – ab cosωτ = ,
–(a + a)ω + ab sinωτ = ,

(.)

which implies

ω +
(
a

 + a


)
ω + a

a
 – a

b
 = , (.)

a =  – x∗ –
y∗


√

x∗ =
c – s

c ,

a = –
√

x∗ = –
s
c

,

a = –s + c
√

x∗ = –s + c
s
c

= ,

b =
cy∗


√

x∗ =
c – s

c
.

(.)

Let z = ω and denote

p = a
 + a

, q = a
a

 – a
b

. (.)

Then equation (.) becomes

z + pz + q = . (.)

Denote

h(z) = z + pz + q

we have

h′(z) = z + p.

Assume that (H) holds, from (.) and (.), – p
 ≤  and q < , we know that equa-

tion (.) has one positive root for z ∈ (,∞). The positive root is denoted by z∗. Equa-
tion (.) has a positive root denoted by ω∗, then ω∗ = √z∗.

By (.), we have cosω∗τ∗ = –ω∗+aa
ab

.
Thus, if we denote

τ j
∗ =


ω∗

{
cos–

(
–ω∗ + aa

ab

)
+ π j

}
, (.)



Zhu et al. Advances in Difference Equations  (2017) 2017:235 Page 5 of 15

where j = , , , . . . , then ±iω∗ is a pair of purely imaginary roots of equation (.) with
τ

(j)
∗ . Define

τ = τ ()
∗ = min

{
τ (j)
∗

}
, ω = ω∗ (j = , , , . . .). (.)

In order to investigate the distribution of the roots of equation (.), we need to intro-
duce the following Lemma . from Ruan and Wei [].

Lemma . Consider the exponential polynomial

P
(
λ, e–λτ , . . . , e–λτm

)
= λn + p()

 λn– + · · · + p()
n–λ + p()

n

+
[
p()

 λn– + · · · + p()
n–λ + p()

n
]
e–λτ

+ · · · +
[
p(m)

 λn– + · · · + p(m)
n–λ + p(m)

n
]
e–λτm ,

where τi ≥  (i = , , . . . , m) and p(i)
j (i = , , . . . m; j = , , . . . , n) are constants. As

(τ, τ, . . . , τm) vary, the sum of the order of the zeros of p(λ, e–λτ , . . . , e–λτm ) on the open
right half plane can change only if a zero appears on the imaginary axis.

Let λ(τ ) = α(τ ) + iω(τ ) be the root of equation (.) near τ = τ
(j)
∗ satisfying

α
(
τ (j)
∗

)
= , ω

(
τ (j)
∗

)
= ω∗.

Then the following transversality condition holds.

Lemma . Suppose that z∗ = ω∗ , and h′(z∗) 	= , then d(Reλ(τ (j)∗ ))
dτ

	= , and the sign of
d(Reλ(τ (j)∗ ))

dτ
is consistent with that of h′(z∗).

Proof Substituting λ(τ ) into equation (.) and differentiating the resulting equation in τ ,
we obtain

[
λ – (a + a) + abe–λτ (τ )

]dλ

dτ
= –abe–λτ λ,

thus

[
dλ

dτ

]–

=
[λ – (a + a)]eλτ

–abλ
+

τ

–λ
, (.)

where τ = τ
(j)
∗ , λ = iω∗,

{[
λ – (a + a)

]
eλτ

}
τ=τ

(j)∗
=

[
iω∗ – (a + a)

](
cosω∗τ (j)

∗ + i sinω∗τ (j)
∗

)
,

{–abλ}
τ=τ

(j)∗
= –iω∗ab.

(.)
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From (.), (.) and (.), we obtain

[
Re dλ(τ )

dτ

]–

τ=τ
(j)∗

= Re

[
[λ – (a + a)]eλτ

–abλ

]
τ=τ

(j)∗
+ Re

[
–

τ

λ

]
τ=τ

(j)∗

= Re

[
[λ – (a + a)]eλτ

–abλ

]
τ=τ

(j)∗

= Re

[
[iω∗ – (a + a)](cosω∗τ

(j)
∗ + i sinω∗τ

(j)
∗ )

–abiω∗

]

= Re

[ [iω∗ – (a + a)]( –ω∗+aa
ab

+ i (a+a)ω∗
ab

)
–abiω∗

]

= Re

[
[iω∗ – (a + a)][–ω∗ + aa + i(a + a)ω∗]iω∗

a
b

ω
∗

]

=
(ω∗ – aa) + (a + a)

a
b



=
ω∗ + a

 + a


a
b



=

�

{z∗ + p}

=
h′(z∗)

�
,

where � = a
b

 > . Thus, we have

sign

[
Re dλ(τ )

dτ

]
τ=τ

(j)∗
= sign

[
Re dλ(τ )

dτ

]–

τ=τ
(j)∗

= sign

[
h′(z∗)

�

]
.

Notice that � > , we conclude that the sign of [ Re dλ(τ )
dτ

]
τ=τ

(j)∗
is determined by h′(z∗). The

proof is complete. �

Applying Lemmas .-., we get the following stability and bifurcation results for sys-
tem (.).

Theorem . Suppose that (H) and (H) hold, then all roots of equation (.) have
negative real parts for τ ∈ [, τ ()∗ ), the positive equilibrium E∗

 is asymptotically stable
for τ ∈ [, τ ()∗ ) and the system (.) undergoes a Hopf bifurcation at E∗

 when τ = τ
(j)
∗

(j = , , , . . .).

Theorem . Suppose that (H) and (H) hold, then equation (.) has at least one
root with positive real parts for τ ∈ [, τ ()∗ ), the positive equilibrium E∗

 is unstable for
τ ∈ [, τ ()∗ ) and system (.) undergoes a Hopf bifurcation at E∗

 when τ = τ
(j)
∗ (j = , , , . . .).

3 Direction and stability of the Hopf bifurcation
In the second section, we got the condition of the system (.) appear as a Hopf bifurcation
at τ = τ (j) (j = , , , . . .). We determine the Hopf bifurcation direction and the properties of
these bifurcating periodic solutions by using the normal form method and center manifold
theorem.
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Let x = x – x∗, x = y – y∗, xi(t) = xi(τ t), τ = τ
(j)
∗ + μ, where τ

(j)
∗ is defined by (.). For

convenience, drop the bar and let p(x) =
√

x, then the system (.) can be written as an
FDE in C = C([–, ], R) as

ẋ(t) = Lμ(xt) + f (μ, xt), (.)

where x(t) = (x(t), x(t))T ∈ R and Lμ : C → R, f : R × C → R are given, respectively, by

Lμ(φ) =
(
τ (j) + μ

)
Aφ() +

(
τ (j) + μ

)
Bφ(–) (.)

and

f (μ,φ) =
(
τ (j) + μ

)(
f

f

)
, (.)

where f = –φ
 () – lφ()φ() – lφ


 ()φ() – lφ


 () + · · · , f = lφ(–)φ() +

lφ

 (–)φ() + lφ


 (–) + · · · , and φ(θ ) = (φ(θ ),φ(θ ))T ∈ R, l = p′(x∗), l = p′′(x∗)

 ,
l = p′′(x∗)y∗

 , l = cp′(x∗), l = cp′′(x∗)
 , l = cp′′(x∗)y∗

 .
In the previous section, we found that, in system (.), the Hopf bifurcation appears at

τ = τ
()∗ . Next we will apply the Riesz representation theorem to analyze a function η(θ ,μ).

Lμφ =
∫ 

–
dη(θ , )φ(θ ), for φ ∈ C, θ ∈ [–, ]. (.)

In fact, we can choose

η(θ ,μ) =
(
τ (j) + μ

)
Aδ(θ ) –

(
τ (j) + μ

)
Bδ(θ + ), (.)

where δ is a Dirac-delta function. For φ ∈ C([–, ], R), define

A(μ)φ =

⎧⎨
⎩

dφ(θ )
dθ

, θ ∈ [–, ),∫ 
– dη(s,μ)φ(s), θ = ,

and

R(μ)φ =

⎧⎨
⎩, θ ∈ [–, ),

f (μ,φ), θ = .

Then, when θ = , system (.) is equivalent to

ẋt = A(μ)xt + R(μ)xt , (.)

where xt(θ ) = x(t + θ ) for θ ∈ [–, ). For ψ ∈ C([, ], (R)∗), define

A∗ψ(s) =

⎧⎨
⎩– dψ(s)

ds , s ∈ (, ],∫ 
– dηT (t, )ψ(–t), s = ,
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and a bilinear inner product

〈
ψ(s),φ(θ )

〉
= ψ()φ() –

∫ 

–

∫ θ

ξ=
ψ(ξ – θ ) dη(θ )φ(ξ ) dξ , (.)

where η(θ ) = η(θ , ). Denote A = A(), then A and A∗ are adjoint operators. By Theo-
rem ., we know that ±iωτ

(j) are eigenvalues of A.

τ (j)

(
iω – a –a

–be–iωτ (j) iω – a

)
q() =

(



)
,

which yields

q() = (,α)T =
(

,
iω – a

a

)T

.

Similarly, it can be verified that q∗(s) = D(,α∗)eisωτ (j) is the eigenvector of A∗ corre-
sponding to –iωτ

(j), where

q∗() =
(
,α∗)T =

(
, –

a

iω + a

)T

.

By (.), we get

〈
q∗(s), q(θ )

〉
= D

(
,α∗)(,α)T –

∫ 

–

∫ θ

ξ=
D

(
,α∗)e–i(ξ–θ )ωτ (j)

dη(θ )(,α)T eiξωτ (j)
dξ

= D
[

 + αα∗ –
∫ 

–

(
,α∗)θeiθωτ (j)

dη(θ )(,α)T
]

= D
[
 + αα∗ + bα∗τ (j)e–iωτ (j)]

.

Thus, we obtain

D =


 + αα∗ + bα∗τ (j)e–iωτ (j) ,

such that 〈q∗(s), q(θ )〉 = . In the following, we will compute the coordinates which describe
the center manifold C at μ =  by using the same notations as the ideas in Hassard et al.
[]. Let xt be the solution of equation (.) when μ = . Define

z(t) =
〈
q∗, xt

〉
, W (t, θ ) = xt(θ ) –  Re

[
z(t)q(θ )

]
. (.)

On the center manifold C, we have

W (t, θ ) = W
(
z(t), z(t), θ

)
= W()

z


+ W(θ )zz + W(θ )

z


+ · · · ,

where z and z are local coordinates for center manifold C in the direction of q and q. Note
that W is real if xt is real. We consider only real solutions. For the solution xt ∈ C of (.),
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since μ = , we have

ż = iωτ
(j)z +

〈
q∗(θ ), f (, W

(
z(t), z(t), θ

)
+  Re

[
z(t)q(θ )

]
)
〉

= iωτ
(j)z + q∗()f (, W

(
z(t), z(t), 

)
+  Re

[
z(t)q()

]
)

= iωτ
(j)z + q∗()f(z, z) � iωτ

(j) + g(z, z), (.)

where

g(z, z) = q∗()f(z, z) = g(θ )
z


+ g(θ )zz + g(θ )

z


+ · · · . (.)

By (.), we have xt(θ ) = (xt(θ ), xt(θ ))T = W (t, θ ) + zq(θ ) + zq(θ ), and then

xt() = z + z + W ()
 ()

z


+ W ()

 ()zz + W ()
 ()

z


+ · · · ,

xt() = zα + zα + W ()
 ()

z


+ W ()

 ()zz + W ()
 ()

z


+ · · · ,

xt(–) = ze–iωτ (j)
+ zeiωτ (j)

+ W ()
 (–)

z


+ W ()

 (–)zz + W ()
 (–)

z


+ · · · ,

xt(–) = zαe–iωτ (j)
+ zαeiωτ (j)

+ W ()
 (–)

z


+ W ()

 (–)zz + W ()
 (–)

z


+ · · · .

It follows together with (.) that

g(z, z) = q∗()f(z, z) = Dτ (j)(,α∗)(
f ()


f ()


)

= Dτ (j)[–x
t() – lxt()xt() – lx

t()xt() – lx
t() + · · ·

+ α∗(lxt(–)xt() + lx
t(–)xt() + lx

t(–) + · · · )].

Comparing the coefficients with (.), we have

g = Dτ (j)[– – lα – lα
 + α∗(lαe–iωτ (j)

+ le–iωτ (j))]
,

g = Dτ (j){– – l(α + α) – lαα + α∗[l
(
αeiωτ (j)

+ αe–iωτ (j))
+ l

]}
,

g = Dτ (j)[– – lα – lα
 + α∗(lαeiωτ (j)

+ leiωτ (j))]
,

g = Dτ (j)
{

–
(
W ()

 () + W ()
 ()

)
– l

(
W ()

 ()


α +
W ()

 ()


+ W ()
 ()α + W ()

 ()
)

– l(α + α) – l
(
W ()

 ()α + αW ()
 ()

)
+ α∗

[
l

(
W ()

 ()


eiωτ (j)
+

W ()
 (–)


α + W ()

 ()e–iωτ (j)
+ W ()

 (–)α
)

+ l
(
e–iωτ (j)

α + α
)

+ l
(
W ()

 (–)e–iωτ (j)
+ W ()

 (–)eiωτ (j))]}
.
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In order to determine g, in the sequel, we need to compute W(θ ) and W(θ ). From
(.) and (.), we have

Ẇ = ẋt – żq – żq =

⎧⎨
⎩AW –  Re{q∗()fq(θ )}, θ ∈ [–, ),

AW –  Re{q∗()fq(θ )} + f, θ = 

� AW + H(z, z, θ ), (.)

where

H(z, z, θ ) = H(θ )
z


+ H(θ )zz + H(θ )

z


+ · · · . (.)

Notice that near the origin on the center manifold C, we have

Ẇ = Wzż + Wzż, (.)

thus

(
A – iτ (j)ωI

)
W(θ ) = –H(θ ), AW(θ ) = –H(θ ). (.)

Since (.) holds, for θ ∈ [–, ), we have

H(z, z, θ ) = –q∗()fq(θ ) – q∗()fq(θ ) = –gq(θ ) – gq(θ ). (.)

Comparing the coefficients with (.) gives

H(θ ) = –gq(θ ) – gq(θ ), H(θ ) = –gq(θ ) – gq(θ ). (.)

From (.), (.) and the definition of A, we get

Ẇ(θ ) = iτ (j)ωW(θ ) + gq(θ ) + gq(θ ).

Notice that q(θ ) = q()eiτ (j)ωθ . We have

W(θ ) =
ig

ωτ (j) q()eiτ (j)ωθ +
ig

ωτ (j) q()e–iτ (j)ωθ + Eeiτ (j)ωθ , (.)

where E = (E()
 , E()

 ) ∈ R is a constant vector. In the same way, we also obtain

W(θ ) = –
ig

ωτ (j) q()eiτ (j)ωθ +
ig

ωτ (j) q()e–iτ (j)ωθ + E, (.)

where E = (E()
 , E()

 ) ∈ R is also a constant vector. In what follows, we will seek appro-
priate E and E. From the definition of A and (.), we obtain

∫ 

–
dη(θ )W(θ ) = iτ (j)ωW() – H() (.)
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and
∫ 

–
dη(θ )W(θ ) = –H(), (.)

where η(θ ) = η(, θ ). From (.) and (.), we have

H() = –gq() – gq() + τ (j)

(
– – lα – lα



lαe–iωτ (j) + le–iωτ (j)

)
(.)

and

H() = –gq() – gq() + τ (j)

(
– – l(α + α) – lαα

l(αeiωτ (j) + αe–iωτ (j) ) + l

)
. (.)

Substituting (.) and (.) into (.) and noticing that

(
iωτ

(j)I –
∫ 

–
eiωτ (j)θ dη(θ )

)
q() = 

and
(

–iωτ
(j)I –

∫ 

–
e–iωτ (j)θ dη(θ )

)
q() = ,

we obtain

(
iωτ

(j)I –
∫ 

–
eiωτ (j)θ dη(θ )

)
E = τ (j)

(
– – lα – lα



lαe–iωτ (j) + le–iωτ (j)

)
,

which leads to(
iω – a –a

–be–iωτ (j) iω – a

)
E = 

(
– – lα – lα



lαe–iωτ (j) + le–iωτ (j)

)
.

It follows that

E()
 =


D

∣∣∣∣∣ – – lα – lα
 –a

lαe–iωτ (j) + le–iωτ (j) iω – a

∣∣∣∣∣ ,

E()
 =


D

∣∣∣∣∣ iω – a – – lα – α


–be–iωτ (j) lαe–iωτ (j) + le–iωτ (j)

∣∣∣∣∣ ,

where

D =

∣∣∣∣∣ iω – a –a

–be–iωτ (j) iω – a

∣∣∣∣∣ .

Similarly, substituting (.) and (.) into (.), we get

(
–a –a

–b –a

)
E = 

(
– – l(α + α) – lαα

l(αeiωτ (j) + αe–iωτ (j) ) + l

)
.
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Thus, we have

E()
 =


D

∣∣∣∣∣ – – l(α + α) – lαα –a

l(αeiωτ (j) + αe–iωτ (j) ) + l –a

∣∣∣∣∣ ,

E()
 =


D

∣∣∣∣∣ –a – – l(α + α) – lαα

–b l(αeiωτ (j) + αe–iωτ (j) ) + l

∣∣∣∣∣ ,

where

D =

∣∣∣∣∣ –a –a

–b –a

∣∣∣∣∣ .

Firstly, we determine g, g, g, then we can determine E and E. Next, we can deter-
mine W and W. Finally, we can determine g. Thus it is easy to compute the following
values:

c() =
i

ωτ (j)

(
gg – |g| –



|g|

)
+

g


, μ = –

Re[c()]
Re[λ′(τ (j))]

,

T = –
Im[c()] + μ Im[λ′(τ (j))]

ωτ (j) , β =  Re
[
c()

]
,

which determine the quantities of bifurcating periodic solutions in the center manifold at
the critical value τ (j). Suppose Re{λ′(τ (j))} > . μ determines the directions of the Hopf
bifurcation: if μ >  (< ), then the Hopf bifurcation is supercritical (subcritical) and the
bifurcation exists for τ > τ (j) (< τ (j)). β determines the stability of the bifurcation periodic
solutions: the bifurcating periodic solutions are stable (unstable) if β <  (> ). And T de-
termines the period of the bifurcating periodic solutions: the period increases (decreases)
if T >  (< ).

4 Numerical simulation
In this section, we make numerical simulations to examine the conclusion of the previous
sections. We might as well consider the following system:

{
ẋ(t) = x(t) – x(t) –

√
x(t)y(t),

ẏ(t) = –.y(t) + .
√

x(t – τ )y(t).
(.)

System (.) has a positive equilibrium E∗
(., .), and the characteristic equation

of system (.) at E∗
 is

λ + .λ + .e–λτ = . (.)

Next, we analyze the stability of the positive equilibrium E∗
(., .) with τ increas-

ing by several figures.
() When τ = , from the Routh-Hurwitz criterion, it is obvious that E∗

(., .) is
stable. This agrees with Figure .

Since – p
 , q < , from Theorem ., it is obvious that the positive equilibrium E∗

 of equa-
tion (.) is stable for τ ∈ [, τ ()∗ ).



Zhu et al. Advances in Difference Equations  (2017) 2017:235 Page 13 of 15

Figure 1 The trajectories of system (4.1) with τ = 0. The positive equilibrium E∗
3 is asymptotically stable.

Figure 2 The trajectories of system (4.1) with τ = 0.2. The positive equilibrium E∗
3 is asymptotically stable.

Now, we will choose two appropriate values of τ to verify.
From the discussion of Section , we get

p = ., q = –.,

z∗ = ., ω∗ = ., τ ()
∗ = ..

(.)

() When τ = ., it is obvious that E∗
(., .) is asymptotically stable (see

Figure ).
() When τ = ., a periodic solution bifurcates from the equilibrium E∗

(., .)
in Figure .
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Figure 3 The trajectories of system (4.1) with τ = 0.44. A periodic solution bifurcates from the
equilibrium E∗

3 .

From the discussion of Section , we also get a series of data:

c() = –. + .i,

μ = ., T = –., β = –..

Since μ > , β < , the bifurcating periodic solution from the positive equilibrium E∗


is supercritical and asymptotically stable at τ = τ
()∗ .

5 Conclusion
In this paper, a predator-prey model with a time delay and square root response function
is considered. Taking the time delay as bifurcating parameter, the stability of the equi-
libria and the existence of Hopf bifurcation is discussed. It is shown that the stability of
E∗

 = (, ) and E∗
 = (, ) have not changed as the delay τ increases. We have also obtained

the conditions at which system (.) undergoes a Hopf bifurcation at the positive equilib-
rium E∗

 . By using the center manifold theory and normal form method, the direction and
stability of the Hopf bifurcation are determined. The results of our numerical simulations
are in agreement with the theoretical findings.
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