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Abstract
It is often difficult to obtain the bounds of the hyperchaotic systems due to very
complex algebraic structure of the hyperchaotic systems. After an exhaustive research
on a new 4D Lorenz-type hyperchaotic system and a coupled dynamo chaotic
system, we obtain the bounds of the new 4D Lorenz-type hyperchaotic system and
the globally attractive set of the coupled dynamo chaotic system. To validate the
ultimate bound estimation, numerical simulations are also investigated. The
innovation of this article lies in that the method of constructing Lyapunov-like
functions applied to the Lorenz system is not applicable to this 4D Lorenz-type
hyperchaotic system; moreover, one Lyapunov-like function cannot estimate the
bounds of this 4D Lorenz-type hyperchaos system. To sort this out, we construct three
Lyapunov-like functions step by step to estimate the bounds of this new 4D
Lorenz-type hyperchaotic system successfully.

Keywords: hyperchaotic systems; stability; invariant sets; domain of attraction;
computer simulation

1 Introduction
In , Lorenz et al. found the famous Lorenz chaotic system, which can be described by
the following autonomous differential equations []:

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = σ (y – x),
dy
dt = ρx – y – xz,
dz
dt = xy – rz.

Since then, chaotic systems have been extensively studied, such as the Rössler system [],
Chua’s circuit [], the Chen system [], the Lü system [–], the hyperchaos Lorenz sys-
tem [], the Shimizu-Morioka system [], the Liu system []. Various complex dynamical
behaviors of chaotic systems are studied due to its various applications in the field of pop-
ulation dynamics, electric circuits, cryptology, fluid dynamics, lasers, engineering, stock
exchanges, chemical reactions, etc. [–].

In the recent years, motivated by different applications, much work has been reported in
constructing the new chaotic and hyperchaotic models [, , , ]. On the one hand, the
hyperchaos theory is still a new field of research. On the other hand, there is no general
method to obtain hyperchaotic systems. Compared with chaotic systems, hyperchaotic
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systems have at least two positive Lyapunov exponents and, therefore, their lowest di-
mension is four. To generate a hyperchaotic system, it is essential to increase the system
dimension []. Hyperchaotic systems can be obtained by adding one more state variable
to a three-dimensional chaotic system []. In , Li et al. constructed a new chaotic
system based on the Lorenz chaotic system []:

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = a(y – x),
dy
dt = xz – y,
dz
dt = b – xy – cz.

()

According to the chaotic system (), by introducing a linear feedback controller w in the
first equation, and adding a first-order nonlinear differential state equation with respect
to w, one gets a new D Lorenz-type chaotic system as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx
dt = a(y – x) – ew,
dy
dt = xz – hy,
dz
dt = b – xy – cz,
dw
dt = ky – dw,

()

where x, y, z and w are state variables and a, b, c, d, e, h are positive parameters of sys-
tem ().

The Lyapunov exponents of the dynamical system () are calculated numerically for
the parameter values a = , b = , c = , d = ., k = ., e = ., h =  with the initial
state (x, y, z, w) = (., ., ., .). System () has Lyapunov exponents as λLE = .,
λLE = ., λLE = , λLE = –. and the Lyapunov dimension is . for the parame-
ters listed above (see Refs. [] and [] for a detailed discussion of Lyapunov exponents
of strange attractors in dynamical systems). This means system () is really a dissipative
system, and the Lyapunov dimension of system () is fractional. Thus, system () has two
positive Lyapunov exponents and the strange attractor, which means the new system ()
can exhibit a variety of interesting and complex chaotic behavior. System () has a hyper-
chaotic attractor, as shown in Figure  and Figure .

In this paper, all the simulations are carried out by using the fourth-order Runge-Kutta
method with time-step h = ..

A coupled dynamo system can be described by the following differential equations with
appropriate normalization of variables [, ]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx
dt = –ux + xw,

dx
dt = –ux + xw,

dw
dt = q – εw – xx,

dw
dt = q – εw – xx,

()

where w and w represent the angular velocities of the rotors of two dynamos, x and x

represent the currents of two dynamos, q and q are the torques applied to the rotors, u,
u, ε and ε are positive parameters representing dissipative effects of the disk dynamo
system ().
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Figure 1 Chaotic attractors of system (2) in 3D spaces with a = 5, b = 20, c = 1, d = 0.1, k = 0.1, e = 20.6,
h = 1 and the initial state (x0, y0, z0, w0) = (3.2, 8.5, 3.5, 2.0).

Figure 2 Chaotic attractor of system (2) in yOz plane with a = 5, b = 20, c = 1, d = 0.1, k = 0.1, e = 20.6,
h = 1 and the initial state (x0, y0, z0, w0) = (3.2, 8.5, 3.5, 2.0).

When u = ., u = ., q = ., q = ., ε = ., ε = . with the initial
state (x(), x(), w(), w()) = (., ., ., .), system () has a chaotic attractor, as
shown in Figure  (also see []).

When u = ., u = ., q = ., q = ., ε = ., ε = . with the initial state
(x(), x(), w(), w()) = (., ., ., ), system () has a chaotic attractor, as shown
in Figure  (also see [])

The rest of this paper is organized as follows. The invariant sets of chaotic systems ()
and () are analyzed in Section . In Section , ultimate bound sets for the chaotic attrac-
tors in () and () are studied using Lyapunov stability theory. To validate the ultimate
bound estimation, numerical simulations are also provided. Finally, the conclusions are
drawn in Section .

2 Invariance analysis for the chaotic attractors in (2) and (3)
The positive z-axis is invariant under the flow generated by system (), that is to say, z-
axis is positively invariant under the flow generated by system (). However, this is not the
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Figure 3 Chaotic attractors of system (3) in 3D spaces with u1 = 0.001, u2 = 0.0002, q1 = 0.19,
q2 = 0.21, ε1 = 0.15, ε2 = 0.15 and the initial state (x1(0), x2(0), w1(0), w2(0)) = (3.2, 8.5, 3.5, 2.0).

Figure 4 Chaotic attractors of system (3) in 3D spaces with u1 = 0.2, u2 = 0.5, q1 = 5.9, q2 = 9.15,
ε1 = 0.5, ε2 = 0.1 and the initial state (x1(0), x2(0), w1(0), w2(0)) = (2.2, 2.0, 10.5, 20).

case on the positive x-axis, y-axis and w-axis for system (). x-axis, x-axis, w-axis and
w-axis are all not positively invariant under the flow generated by system ().

3 Ultimate bound sets for the chaotic attractors in (2) and (3)
Recently, ultimate bound estimation of chaotic systems and hyperchaotic systems has
been discussed in many research studies [, , , ]. It is well known that there is a
bounded ellipsoid in R for the Lorenz system which all orbits of the Lorenz system will
eventually enter for all positive parameters [, ]. The ultimate bound sets can be used
in chaos control and synchronization []. Also, the ultimate bound sets can be employed
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for estimation of the fractal dimension of chaotic and hyperchaotic attractors, such as the
Hausdorff dimension and the Lyapunov dimension [, ].

Motivated by the above discussion, we will investigate the bounds of the new D Lorenz-
type hyperchaotic system () and the disk dynamo system () in this section. The main
results are described by Theorem  and Theorem .

3.1 Ultimate bound sets for the chaotic attractors in system (2)
Theorem  Suppose that ∀a > , h > , c > , d > . Let (x(t), y(t), z(t), w(t)) be an arbitrary
solution of system (). Then the set

� =
{

(x, y, z, w)
∣
∣
∣x ≤ (ad + ke)R

ad , y + z ≤ R, w ≤ kR

d

}

is the ultimate bound set of chaotic system (), where

R =
b

θc
, θ = min(h, c) > .

Proof Define the function

f (z) = –cz + bz, ∀c > .

Then we can get

max
z∈R

f (z) =
b

c
.

Construct the Lyapunov function

V (X) = V (y, z) = y + z. ()

Computing the derivative of V (y, z) along the trajectory of system (), we have

dV (y, z)
dt

∣
∣
∣
∣
()

= y
dy
dt

+ z
dz
dt

= y(xz – hy) + z(b – xy – cz)

= –hy – cz + bz

≤ –hy – cz – hy – cz + bz

≤ –hy – cz – cz + bz

≤ –θV (y, z) + f (z)

≤ –θV (y, z) +
b

c

≤ –θ

(

V (y, z) –
b

θc

)

= –θ
(
V (y, z) – R).
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Integrating both sides of the above inequality yields

V
(
X(t)

) ≤ V
(
X(t)

)
e–θ (t–t) +

∫ t

t

θRe–θ (t–τ ) dτ = V
(
X(t)

)
e–θ (t–t) + R( – e–θ (t–t)).

Thus, we can get the following inequality:

[
V

(
X(t)

)
– R] ≤ [

V (X) – R]e–θ (t–t).

By the definition, taking the upper limit on both sides of the above inequality as t → +∞
results in

lim
t→+∞ V (y, z) ≤ R. ()

From inequality (), we can get

|y| ≤ R, |z| ≤ R. ()

Let us define another function

g(w) = –dw + kR|w|, ∀d > .

Then we can get

max
w∈R

g(w) =
kR

d
.

Construct another Lyapunov function

V(w) = w, ()

Computing the derivative of Lyapunov function () along the trajectory of system (), we
have

dV(w)
dt

∣
∣
∣
∣
()

= w
dw
dt

= w(ky – dw)

= –dw + kyw

≤ –dw – dw + k|y||w|
≤ –dw – dw + kR|w|
≤ –dw + g(w)

≤ –dw +
kR

d

≤ –d
(

V(w) –
kR

d

)

.
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Similarly, taking the upper limit on both sides of the above inequality as t → +∞, we can
get

lim
t→+∞ V

(
w(t)

) ≤ kR

d . ()

From inequality (), we can get

|w| ≤ kR
d

. ()

Define another function

h(x) = –a|x| + R
(

a +
ek
d

)

|x|, ∀a > .

Then we can get

max
x∈R

h(x) =
(ad + ke)R

ad .

Construct another Lyapunov function

V(x) = x, ()

Computing the derivative of Lyapunov function () along the trajectory of system (),
we have

dV(x)
dt

∣
∣
∣
∣
()

= x
dx
dt

= x(ay – ax – ew)

= –ax + axy – exw

= –ax – ax + (ay – ew)x

≤ –ax – a|x| + 
(
a|y| + e|w|)|x|

≤ –ax – a|x| + R
[

a +
ek
d

]

|x|

≤ –ax + h(x)

≤ –ax +
(ad + ke)R

ad

≤ –a
(

V(x) –
(ad + ke)R

ad

)

.

Similarly, taking the upper limit on both sides of the above inequality as t → +∞, we can
obtain the following inequality:

lim
t→+∞ V

(
x(t)

) ≤ (ad + ke)R

ad . ()

This completes the proof. �
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Figure 5 Localization of chaotic attractor of system (2) by � with a = 5, b = 20, c = 1, d = 0.1, k = 0.1,
e = 20.6, h = 1 and the initial state (x0, y0, z0, w0) = (3.2, 8.5, 3.5, 2.0).

Remark  (i) According to Theorem  in this paper, we can get

	 =
{

(y, z)|y + z ≤ R}

is the ultimate bound set of y(t), z(t) of chaotic system (), where

R =
b

θc
, θ = min(h, c) > .

When a = , b = , c = , d = ., k = ., e = ., h = , we can see that

	 =
{

(y, z)|y + z ≤ }

is the ultimate bound set of y(t), z(t) of chaotic system ().
In Figure , we give the localization of the chaotic attractor of system () formed by 	.
(ii) From Figure , we can see that the bounds estimate for the chaotic attractors of

system () is conservative, we can get a smaller bound of chaotic attractors of system ()
with the help of the iteration theorem in [] (see [] for a detailed discussion of the
bounds of chaotic systems).

3.2 Bounds for the chaotic attractors in system (3)
El-Gohary and Yassen studied the equilibrium points, chaotic attractors, limits cycles,
chaos behaviors, and optimal control of system () in [, ]. We will investigate the
globally attractive set of the chaotic system () here. We use the following generalized
Lyapunov-like function:

Vλ,m(X) = mx
 + λx

 + m(w + λη) + λ(w – mη), ()

which is obviously positive definite and radially unbounded. Here, λ > , m >  and η ∈
R are arbitrary constants. Let X(t) = (x(t), x(t), w(t), w(t)) be an arbitrary solution of
system (). We have the following results for system ().
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Theorem  Suppose that u > , u > , ε > , ε > , and let

L
λ,m =


θ

[
m(q + ληε)

ε
+

λ(q – mηε)

ε

]

, θ = min(u, u, ε, ε) > .

Then the estimation

[
Vλ,m

(
X(t)

)
– L

λ,m
] ≤ [

Vλ,m
(
X(t)

)
– L

λ,m
]
e–θ (t–t). ()

holds for system (), and thus �λ,m = {X|Vλ,m(X) ≤ L
λ,m} is the globally exponential attrac-

tive set and positive invariant set of system (), i.e., limt→+∞Vλ,m(X(t)) ≤ L
λ,m.

Proof Define the following functions:

f (w) = –mεw
 + mqw, g(w) = –λεw

 + λqw, ()

then we can get

max
w∈R

f (w) =
mq


ε

, max
w∈R

g(w) =
λq


ε

.

Differentiating the Lyapunov-like function Vλ,m(X) in () with respect to time t along the
trajectory of system () yields

dVλ,m(X(t))
dt

∣
∣
∣
∣
()

= mx
dx

dt
+ λx

dx

dt
+ m(w + λη)

dw

dt
+ λ(w – mη)

dw

dt

= –mux
 – λux

 – mεw
 + m(q – ληε)w – λεw



+ (λq + λmηε)w + λmη(q – q)

≤ –mux
 – λux

 – mε(w + λη) – λε(w – mη) + f (w)

+ g(w) + mελ
η + λεmη + mλη(q – q)

≤ –θVλ,m(X) + f (w) + g(w) +
(
mελ

 + λεm)η + mλη(q – q)

≤ –θVλ,m(X) + max
w∈R

f (w) + max
w∈R

g(w) +
(
mελ

 + λεm)η + mλη(q – q)

= –θVλ,m(X) +
mq


ε

+
λq


ε

+ mελ
η + λεmη + mλη(q – q)

= –θVλ,m(X) +
m(q + ληε)

ε
+

λ(q – mηε)

ε

= –θ
[
Vλ,m(X) – L

λ,m
]
.

Thus, we have

[
Vλ,m

(
X(t)

)
– L

λ,m
] ≤ [

Vλ,m
(
X(t)

)
– L

λ,m
]
e–θ (t–t)
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and

lim
t→+∞ Vλ,m

(
X(t)

) ≤ L
λ,m

which clearly shows that �λ,m = {X|Vλ,m(X) ≤ L
λ,m} is the globally exponential attractive

set and positive invariant set of system ().
The proof is complete. �

Remark  (i) In particular, let us take m =  in Theorem , we can get the results that
obtained in []. The results presented in Theorem  contain the existing results in []
as special cases.

(ii) Let us take u = ., u = ., q = ., q = ., ε = ., ε = ., λ = , m = , and
η = , then we can see that

�, =
{

(x, x, w, w)|x
 + x

 + (w) + (w) ≤ .} ()

is the globally exponential attractive set and positive invariant set of system () according
to Theorem . Figure  shows chaotic attractors of system () in the (x, x, w) space de-
fined by �,. Figure  shows chaotic attractors of system () in the (x, x, w) space defined

Figure 6 Chaotic attractors of (3) in the (x1, x2,
w2) space defined by �1,1 with u1 = 0.2, u2 = 0.5,
q1 = 5.9, q2 = 9.15, ε1 = 0.5, ε2 = 0.1 and the
initial state (x1(0), x2(0), w1(0), w2(0)) = (2.2, 2.0,
10.5, 20).

Figure 7 Chaotic attractors of (3) in the (x1, x2,
w1) space defined by �1,1 with u1 = 0.2, u2 = 0.5,
q1 = 5.9, q2 = 9.15, ε1 = 0.5, ε2 = 0.1 and the
initial state (x1(0), x2(0), w1(0), w2(0)) = (2.2, 2.0,
10.5, 20).
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Figure 8 Chaotic attractors of (3) in the (x1, w1,
w2) space defined by �1,1 with u1 = 0.2, u2 = 0.5,
q1 = 5.9, q2 = 9.15, ε1 = 0.5, ε2 = 0.1 and the
initial state (x1(0), x2(0), w1(0), w2(0)) = (2.2, 2.0,
10.5, 20).

Figure 9 Chaotic attractors of (3) in the (x2, w1,
w2) space defined by �1,1 with u1 = 0.2, u2 = 0.5,
q1 = 5.9, q2 = 9.15, ε1 = 0.5, ε2 = 0.1 and the
initial state (x1(0), x2(0), w1(0), w2(0)) = (2.2, 2.0,
10.5, 20).

by �,. Figure  shows chaotic attractors of system () in the (x, w, w) space defined by
�,. Figure  shows chaotic attractors of system () in the (x, w, w) space defined by
�,.

(iii) From Figures -, we can see that the bounds estimate for the chaotic attractors
of system () is conservative, we can get a smaller bound of chaotic attractors of system
() with the help of the iteration theorem in [] (see [] for a detailed discussion of the
bounds of chaotic systems).

4 Conclusions
This paper presents a new D autonomous hyperchaotic system based on Lorenz chaotic
system and another coupled dynamo chaotic system. By means of Lyapunov stability the-
ory as well as optimization theory, the bounds of the new D autonomous hyperchaotic
system and the coupled dynamo chaotic system are estimated. To show the ultimate bound
region, numerical simulations are provided.
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