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1 Introduction
We consider the one-space dimensional quasi-linear parabolic partial differential equation
(PDE) of the form

Uxx :f(xr t; U, Uy, ut); 0 <X < 1, t> 0 (1.1)
The initial and boundary conditions are given by

u(x,0) =up(x), 0<x<1, (1.2)

M(O,t) ng(t)’ u(L t) =g1(t)» t>0, (13)
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where we assume that the functions f, ug(x), go(f) and g(¢) are sufficiently smooth and
their required higher-order derivatives exist.

The quasi-linear parabolic equation describes a wide class of physical phenomenon
such as the interaction between reaction mechanism, convection, effects and diffusion
transports. It is used in many fields such as chemistry, biology, metallurgy and engineer-
ing. The one-dimensional viscous generalized Burgers-Fisher equation (GBFE) and gen-
eralized Burgers-Huxley equation (GBHE) are famous examples of quasi-linear parabolic
equations.

The GBEFE is given by

Sy = Uy + AU Uy + ,Bu(u‘S - 1), t>0, (1.4)

where o, B are real parameters, § is a positive integer and 0 < ¢ <1.
The GBHE is given by

ety =ty + v + Pu(u’ 1)’ —y), ¢>0, (1.5)

where o, 8 >0,y €(0,1), 5 >0 and 0 < ¢ <1 are the parameters.

In both cases, equations describe the interaction between diffusion, convection and re-
action.

The GBFE has wide applications in the fields such as gas dynamics, fluid mechanics,
elasticity, heat conduction and plasma physics. The well-known equation (1.4) was first
used by Fisher [1] to describe the propagation of gene in a habitat. In his memory, it is
generally referred as Fisher’s equation. When « = 0 and § = 1, equation (1.4) reduces to
the classical Fisher equation. Kolmogorov et al. [2] independently wrote down the same
equation to describe the dynamic spread of a combustion front. This equation has been
found in various contexts in which a perturbation spreads in an excitable medium.

The GBHE was investigated by Satsuma et al. [3] in 1987. When e =1, « =0, =1,
equation (1.5) reduces to the Huxley equation and describes nerve pulse propagation in
nerve fibers and wall motion in liquid crystals. For ¢ = 1, 8 = 0, equation (1.5) reduces
to the generalized Burgers equation, which describes the far field of wave propagation in
nonlinear dissipative systems. When ¢ =1, « =0, 8 =1 and § = 1, equation (1.5) becomes
the Fitz-Hugh-Nagumo (FHN) equation which is the reaction diffusion equation used in
circuit theory and biology. When « # 0, B # 0 and 8§ = 1, equation (1.5) turns into the
Burgers-Huxley equation (BHE) and shows a prototype model for describing the interac-
tion between diffusion transports, convection and reaction mechanisms.

There has been vast variety of numerical methods, such as finite element methods, fi-
nite difference methods, spectral techniques and finite volume methods for quasi-linear
parabolic initial-boundary value problems. In recent years, various numerical methods
were used by the researchers to solve GBHE and GBFE. A fourth-order scheme for GBHE
was proposed by Bratsos [4]. Mohammadi [5] has discussed a spline method for GBFE.
Zhang et al. [6] solved GBFE using the local discontinuous Galerkin method. Diaz [7] anal-
ysed the solitary wave solution of the BHE through Cardano’s method. Mittal and Tripathi
[8] discussed the schemes using collocation of cubic B-splines for numerical solutions of
GBFE and GBHE. A two-level implicit compact operator method of order two in time
and four in space was discussed for the approximate solution of time dependent BHE by
Mohanty et al. [9].
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Higher-order finite difference methods on a uniform mesh for the solution of nonlinear
parabolic equations were proposed by Jain et al. [10]. Mittal and Jiwari [11] developed dif-
ferential quadrature method for numerical solution of coupled viscous Burgers’ equations.
Mohanty et al. [12] used compact operator technique to solve coupled Burgers’ equations.
In recent past, Talwar et al. [13] proposed spline in compression method based on three
full-step grid points for the solution of 1D quasi-linear parabolic equations and in those
methods the consistency equation is only second-order accurate and the method is not
directly applicable to singular problems, which is a main drawback of those methods. To
the best of the authors’ knowledge, no numerical method of order two in time and three
in space, directly obtained from the consistency condition, for the solution of parabolic
equation (1.1) on a quasi-variable mesh has been discussed in the literature so far.

In this paper, using a central point and two off-step points in x-direction, we propose
a new two-level implicit method of accuracy two in time and three in space, based on
spline in compression approximations for the solution of differential equation (1.1). The
proposed method is obtained directly from the consistency condition and is of order three
in space. Difficulties were experienced in the past for the higher-order spline solution of
parabolic equation in polar coordinates. The solution usually deteriorates in the vicinity of
the singularity. A special technique is required to handle such problems, whereas the pro-
posed method is directly applicable to solve singular problems without any modification,
which is the main attraction of our work. Our paper is arranged as follows: In Section 2, we
discuss the non-polynomial spline in compression function and its properties on a quasi-
variable mesh. In Section 3, we give derivation of the method. In Section 4, we generalize
the proposed method for the system of quasi-linear parabolic PDEs. Stability analysis for
model problem is discussed and it is shown that the linear scheme is unconditionally sta-
ble in Section 5. In this section, we also discuss the stability analysis for a fourth-order
parabolic equation which is consistent with system of 1D quasi-linear parabolic PDEs.
In Section 6, numerical results are presented for some benchmark problems with tabu-
lar and graphical illustrations and compare the results with the results obtained by other
researchers. Final remarks are given in Section 7.

2 Spline in compression approximations and its properties
For the approximate solution of the initial-boundary value problems (1.1)-(1.3), we dis-
cretize the space interval [0,1] as 0 = xg < %) < -+ <Xy < xn41 = 1, where N is a positive
integer. The spline approximation consists of two off-step points x;11/» and a central point
x5, 1=0,1,2,...,N with two end points xy and xn,;, where iy =x; —x;1,[=1,2,...,N +1,
be the mesh size in x-direction and k = ¢,; — £ >0, j = 0,1,2,... be the mesh spacing
in t-direction. Spatial grid points are defined by x; = x + Zle hi, I =1(1)N + 1, and the
time steps are given by ¢; = jk, j = 0(1)J, where J is a positive integer. The mesh ratio is
denoted by o7 = (h,1/h;) > 0, I = 1(1)N. The neighboring off-step points are defined as
Xi_1/2 = X] — % and xp,10 = x; + ”’Th’, I =1(1)N. For o; = 1, it reduces to the uniform mesh
case. Let L[; = u(xy, t;) be the exact solution value of u(x, ) and is approximated by u; For
simplicity, we consider o; = o (a constant # 1), / = 1(1)N. For o > 1 or ¢ < 1, the mesh sizes
are either increasing or decreasing in order. Such a mesh is called a quasi-variable mesh.
A non-polynomial spline function of degree 3 which interpolate u’l at jth level is given

by

Pi(x) = a’, + bé(x —x) + c’l sin w(x — x;) + df cosw(x —xy), x1 <x<xy, (2.1)
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which satisfy the following conditions at jth time level:
(i) P;(x) € C?[0,1], and
(ii) Pj(xr) = U, p; i (%1-1) = L[l 1» Where w is an arbltrary parameter and P”(xl) M =1
P (xi) = My, = Uxxlil’ B (xiz12) = Ml;i:l/z = Uxxlj:l/Z’l O(N +1,j>0.
The derivatives of non- polynomlal spline function P;(x) for x € [x;_1, %] are given by
P}’-(x) = b’l + wo/é cos w(x —x;) — wd; sinw(x — xy), (2.2)
P]’-’(x) = —w? [c’l sinw(x —x;) + dé cos w(x — xl)]. (2.3)

Using the conditions described above with algebraic calculations, we obtain the coeffi-
cients

U J j U J
ozjzuj Aﬁ bll‘_ul_ul—1+M M11/2
2’ -

——= COs Ju,
hy W Wiy
- M. —Mcos i M,
J=Mn 1COS 1 4=
L w? sin u; ! w?

Here p; = Whl

Substltutmg the coefficients a’é, b’é, 4, df, in equation (2.1), we obtain the non-polynomial
spline in compression function

J U U J J
P, (x) — U/ jizl (u ul l M Ml—1/2

cos Mz) (o — %)
hy W/M Wy

M., —Mcos ! M
+ 1—1/2—1“ sinw(x —x;) — — cosw(x —x;), x€ [xp,x].  (2.4)
w2 sin w2

Similarly, we get

(x) — u/ — 1+1/2
w

hia wum Wik

M, (u,-u M, M’
Y Y

M cos i1 -M
+ < ! 5 - L2 ) sin w(x — x7)
w2 sin 11,1
Mj
- coswlx—x), %€ [xxal. (2.5)

On differentiating equations (2.4) and (2.5), we get

o ;
u-u., M, M

P]’.(x) =t T — B2 cos
hy wi wiy
M, — M. cos !
+ (ll/Z—l“> cos w(x — x7)
wsin u;

Mj
+ W_zl sinw(x —x;),  x € [x-1,%] (2.6)
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and
uj _ Ui Mj Mi
P;(x) _ Tl L ! + 1+1/2 COS [is1
hl+l Wl Wl

M cos M1 — M

+ L - B2 ) cos wix — xy)
wsin i,

J

+ W_zl sinw(x —x;), x € [x,x1]. (2.7)

Using the continuity of the first derivative, that is, P]{ (x—) = P]’ (x;+),we obtain the con-

sistency condition

U, —(1+o)+oll. : » 4 -
s L EL = [auM), o + (Bu+ Ba)My+viM),_, , |+ T, 1=1()N, (2.8)

oh?
where
o = i Mea COS [y | = 7. 03M12 + O(u4) (2.92)
22, Lsin pia 173 90 b '
Bu = 7 a- i1 COL A1) = 24 Gl +O0(y), (2.9b)
21}, 6 90
1 1y 4
= — (@ —-pcotpy) =—+—+0(u;), 2.9¢
B 2:“12( M Ot (17) 5% 90 (1) (2.9¢)
1 Hi 1 N’? 4
= — —cospy|==——+0(u;), 2.9d
"= [SM m} L o) (2.94)

and T{ = O(h?).

On equating the coefficients of Mg in (2.8), we obtain the condition

1+o0)
2

ar+ Bu+ Bu+vi= +0(uyp). (2.10)

Using (2.9a)-(2.9d) in equation (2.8), we get the consistency condition in the following

form:

U, -Q+o)l)+ol),

3,2 3y,,2 2
S (o ocu i 1+o) ; A+0)uy 1w i
=ohj |:(§ ~ 790 )Mfu/z + 6 M, + 90 M + 3790 M]l—l/z

+0()

oh? i Q+o0) ; i
=3 [UMjm/z + 5 MI[ + M]H/z

_ohiug
90

[63M],,, + M), — (1 +0%)M]] + O(K}). (2.11)
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. oh? 2 1 i v . . .
Since the term 9’—:1[63M]l+1/2 + M1, — (1+0®)Mj] is of O(h3), simplifying (2.11), we
obtain the consistency condition

2
ohy

' o C (+0)
u,-Q+o)l)+ol) = —+ |:‘7M11+1/2 +

3 — M, +M’,'_m} +O(h?). (2.12)
Further, substituting the values of (2.9a)-(2.9d) in (2.10) and neglecting O(uf) terms, we
get

tan(u;/2) = /2. (2.13)

The above equation has an infinite number of roots, the smallest positive non-zero root
being given by u; = i = 8.986818916. When w — 0, then (ay, Bu, B2, i) — (3, T %, %), and
equation (2.8) reduces to a cubic spline relation.

Further, from equations (2.6)-(2.7), we get

u - L[j_ (Mj —Mj_ CoSs /L))
Pj/'(xl—l/Z) _ / -1 + l 1-1/2

hy wuy
M., — M. cos M
+ (M5 ! ) cos ju; — — sin wy, (2.14)
wsin ju; w
and
) U~ (M —-M,. . cosu)
Pf(xl+1/2) = Halh Lo L .
l Wl
M cos -M, M
+ M ,u.1+1 112) COS 41 + — SIN fAg1. (2.15)
wsin iz w
Simplifying (2.14) and (2.15), we obtain
/ LI{ - U{—l hy j U
Pi(xi1p) = T Z(Qﬁzle —ViM)_1))s (2.16)
u.,-u ; ‘
Pi(x11112) = H;Tll + Z(zﬂuM]z — oMy, ) (2.17)

Equations (2.16) and (2.17) are two important properties of non-polynomial spline in
compression function P;j(x).

3 Derivation of the numerical method
For the derivation of the method, we simply follow the approaches given by Mohanty [14].
At the grid point (x;, ;), let us denote

o i of

j
= 5 o, = -, =
P4 G 314 L™ u A

o gl Y

: ==L -7 31
o, T ow Ay 31)

Differentiating the differential equation (1.1) partially with respect to ‘¢’ at the grid point
(%1, tj), we obtain a relation

—)/lonz = (S? + U()lol; + L[uﬂf - u21. (32)
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At the grid point (x;, £j), we can write the differential equation as

My = f (1, U, UL, L) (3.3)
Similarly,

My, =f (12,8 u1+1/2’ Uy Uppiaga)» (3.4)

M)y =f (x5, Ul 12 le v Uyapa)- (3.5)

Since M]l and M; 11pcontain the first derivative terms, from the consistency condition
(2.12), the non-polynomial spline in compression method for the parabolic equation (1.1)
can be written as

(1+0) ~

oh?
[ I+1 (1+0)L[’+0Llf 1] 3 |: M11+1/2 TM M]l 1/2:| + 1], (3.6)

where T] O(kh? + h7), provided o # 1 and we use the following approximations:

Zj =t+ 0k, (3.7)
) =ou" + (1-0)U, = U] + 0kUo, + O(K?), (3.8)
a,, =6u, + -0, = U, +0k(Uo +ohly) + O(K?), (3.9)
[y =oU)s + (1= 0)U)_ = U, +0k(Uoy — hylly) + O(K?), (3.10)
i [ R ohj 3.2
U = 5 (U + ) = U,y + 0KUG1 + TUZO + O(Kkhy + hj + &), (3.11)
— hZ
u .= E(Ul I+ u’) Uy o +0kUo + Euzo + O(khy + I} + k%), (3.12)
Lo k 2
u, = /—(u - Uj) = Uy + 5 Uz + O(k*), (3.13)
1 i k
uim y (Ufﬁ U;+1) Uy + 5”02 + O(khy + k), (3.14)
i . . k
Uy = UL~ UL = Uy + 5 U + O(K +42), (3.15)
1 j+1 i
Uy = 57 (et - u, - )
. 21,2

=U 0+ 5 Uoo + ’ Upi + O(khy + 1 + K2), (3.16)
7 ) j+1 j+1
Uy iy = (il + U}~ - u)

; k n s

=Uy 1p+ EU()Q + gun + O(khl +hy+k ), (3.17)

. -0-o)il -2l 1
i, = d EL = Uy + —oh2Usg + Okl + O(khy + 1), 318

+ ho(o +1) o+ oM Hso + w + O(khy + hy) (3.18)

a,, -u
Uim/z 7[*;]41 Ulm/z + 2402h,2L130 + 0kl + O(khl + K2+ h?), (3.19)
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7 _I:[;_I:[Ll_ j iz 2 3
U,y = — U+ 24hl Uso + OkUy + O(khy + k> + 1)), (3.20)
1
oo 2[1:[{+1 -1+ a)I:[{ + GL_[;_I]
wxl oo +1)h7
i -1k
— U+ Okl + %Ugo +O(R2 +12), (3.21)

where ‘0’ is a parameter to be determined.
With the help of the approximations (3.7)-(3.21), we can simplify the following approx-
imations:

Mi =f (x5, [1{, I:[fcl’ I:Iil)
= M)+ 0k(8) + Una, + Un B)) + T’ugoﬂ;

k ,
+ Euozy; + O(khy + I} + k%), (3.22)

J _ 7 77 7 7
M ‘f(xl+1/2' G Uy Ui Utl+1/2)
272

= M1y + OK (8 + Unneq + Unfy) + = (3Unoe; + Usof + 3Un)

k i
+ iumy,’ + O(khy + 1 + k%), (3.23)
M]1-1/2 =f (xl—1/2’ 5, U;—I/Z’ chl—l/2’ uil—l/z)
, ) ) B2 ) ) )
= Ml[—l/Z + 9/((5; + U()l(X; + UH,B;) + ﬁ(SUZO(x; + UgolB; + 3[,[21)/[1)

k )
+ Euozy,’ + O(khl + h,3 + kz). (3.24)

From the properties of spline function given by (2.16) and (2.17), we define the approxi-

mations:
A -, n _ _
12 = —L—H —<2,321M]1 - J/JM];,I/Z), (3.25)
hy 4
7 I:[{ 1= I:I; hy YU v
Uy = ;T + 2(2,3111\/111 — oMy, ). (3.26)

With the help of the approximations (3.8)-(3.10), (3.22)-(3.24), and simplifying (3.25)
and (3.26), we obtain

U, 1= Wy + OKU + O(K* + ki + 1), (3.27)
Uy = Uy + OKUL + O(K? + iy + 183). (3.28)

Now, we need O(kh; + 3 + k*)-approximations for L1}, L[il and O(k* + h})-approximation
for I:l;l. Let
I:[; = I:[{ + ah,ZI:[j

xxl?

(3.29)
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u, =U,+ bhl(MLl/z _Mll—I/Z)’ (3.30)
i[iz = Uy +c(Uyy,, - A+ o)y +olly, ), (3.31)

where ‘a; ‘b’ and ‘¢’ are parameters to be determined.
With the help of the approximation (3.18), (3.23), (3.24), from (3.30) we obtain

o .
U,=U,+0kUn + El [0 +3b(1+0)|Uso + O(K* + kly + 1}), o #1. (3.32)

Equating the coefficient of 4 to zero in equation (3.32), we obtain b = vo and equation
(3.32) reduces to

I:[il = Uil + 0kl + O(k2 + khy + h?), o1 #1. (3.33)

Similarly, simplifying (3.29) and (3.31), we obtain

) = U + OkU, + ah Uy + O(K? + ki + 1), (3.34)
¥ U k ]’ll2 2 3
uw=u,+ EU‘” +co(l+ 0)3u21 +O(K* +h}), o#L (3.35)

Further, we define

My = f (x5, 0, U1, Uy), (3.36)
My =f (172G Ul gy Uy oy Uy ) (3.37)

With the help of the approximations (3.7), (3.11)-(3.12), (3.16)-(3.17), (3.33)-(3.35), from
(3.36)-(3.37), we obtain

. , , . ok ,
M]l ZMII + 91((5; + U()lot; + UH,B;) + 5”02)/11
2 . ,
+ 71 (2alloo) + co(1+ o) Uny]) + O(K* + khy + }), (3.38)
. . ‘ , ok ,
Méu/z = M]1+1/2 + Qk(éj + UOI“? + UH:B;) + 5”027/11

02h12

+

(Ugotxf + UZI‘}//) + O(k2 + khy + h?), (3.39)

~ i . . . . k .
M;—I/Z = 11—1/2 + 9k(8§ + Unoy + Ullﬂ;) + 5”027’1]

2 . .
+ %(UZ()O/Z + Ugly;) + O(k2 + khy + h,s) (3.40)

Using the approximation (3.8)-(3.10), (3.38)-(3.40), from (3.6), we obtain

(U, - (L + o)L + o ULL) + O(KK + )

1+0)

_oh A+9)ind
! 1-1/2

i 3(1+
=3 |:‘7M]1+1/2 + S

9/((55 + L[motf + uu,B{ - U21)
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3k(1+o0) ;
+ TUOzyl}
2

+ %l{(l +0°) +4a(l + a)}leaf

h

* 3 {1+0°) +2co(1+0)? }L[zlyl] + 7. (3.41)

Now with the help of the consistency condition (2.12) and equation (3.2), and from

(3.41), we obtain the local truncation error

59 _ —oh? [3(1 +0) <

h2 j
1= 2 (5 -0 o+ {(1+0%) a1+ )t

2

2
%{(1 +0°) +2co (L + 0)2}U21V,] +O(ki} +h7), o #1. (3.42)

The proposed non-polynomial spline in compression method (3.6) to be of O(kh; + ),
the coefficients of ki} and h} in (3.42) must be zero.

_(1_g+0‘2) )
Thus we obtain 0 = 2, a= 7z %% 250110

(3.42) reduces to T; = (khl3 + hls).

and the local truncation error given by

4 Method extended to a system of quasi-linear parabolic equations
We now extend our method to the system of quasi-linear parabolic PDEs of the form

3%u

2U_F 41

e (4.1)
where u = [u®, u?,. T E=[fW,f@,... f?]T, T denotes the transpose of the ma-

trix.
Throughout this section, we consider

FO=fO (e t,u®, 4@, 0, ud, U, P, u?, ,uﬁn)), i=1)n.

X

The initial and boundary conditions are given by

u(x,0) = ul (x), 0<x<l, (4.2)
w0, =g, w10 =g"0), t>0, (4.3)
where we assume that the functions ”o ( ), go (t) g1 ( ) are sufficiently smooth.

Let U ll and u ll)’ be the exact and approximate solution of the ith PDE of the system (4.1)
at each grid point (x;, ;). At the grid point (x;, ¢;), we define the following approximations:

_ k

ti=ti+—, 4.4
] ] 2 ( )
i Lo )

U, =5 (w7 +u?”), (4.5)
S D N

i) = Z(Ufi)f UL, (4.6)
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~ (i)j 1 (i)j+1 i)j
Ot 7
T R Ay
Uz(?{/z - ( Uz(i){ . U/)])r (4.8)
w1 =
0y = 5 @), 7
(D)j+1 ()
v - - (4.10)
6 k ’ '
N U 1+1 _ U(i)/
i - St "
k
(i) ]+1 0]
o _ U 1
L[ﬂ”l T’ (4.12)
o % (4.13)
— (i Uz L+ Ut(,i)j
Uy i = f’ .
y " _ o
770 uy - a-odu” - o*u, (4.15)
xl hio(o +1) ’
(D)
o) uz -4
o a_hl (4.16)
@) )
- () Ul - Ul—l
Q- e (4.17)
j
0 _ 20 - 1+ ) + ol 1] (4.18)
el oo +1)h?

Further, we define

(9) i ! (2 i L) ) )i L)) ) ~r(n)j
Vo O w, a™,a,. L, i, uil”,u;,)’,...,u;?”, aV,al,...,as"), (419)

tl

v i 2 Wi ) (m)j ()i
Ml:i:l/Z f(l) (xlil/% by uli1/2’ Uzﬂ/z’ U/ﬂ/z’ U &1/2’ leﬂ/z’ s

rr(m)j (V) r(2)j rr(n)j

Uit Ugpsh oo Uiih -+ U o) (4.20)
i —wi L=0 + a2~y
i a4 Mg, aa
MO S ol — —)
uxl = uxl - 3(1 + O’) (Ml+1/2 _Ml—l/Z)’ (422)
N —(0)j
Usjrpp = “om T (2/311M1 —aMy,1p)s (4.23)

I
@ @)
o W UGl —(0)
uxl111/2 = I, S _(2:321M1 ylMl,l/z), (4.24)
2

i _ o 120407 ()
Utl = L[d - m( Hal (1+O') +UU ) (4.25)

where the values of «;, f1;, B2; and y; are already defined in Section 2.
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Finally, let

f(l (xl)_ 1)1, u 2)1’ . ul , u (1)j I:IJ(;)/’ e I:IQ(C};)]’ ﬂ(l)l, I:[(Z2)/: s l’r[(ln)})’ (4‘26)

7 7 t

o () z 7 @)y (2)j
Ml:tl/Z =f! (xlil/bt}" ulil/Z’ ulil/Z’ ul:tl/Z’ uxl:tl/Z’ uxlil/Z""’
rrmj 0 () ()
Uyt Ui Uh s o Uyih o) (4.27)

Then at each grid point (x;, j), each differential equation of the system (4.1) is discretized
by

[ -0+ o) + o 1]

ah 140) A~ s
3 |:M§l+1/2 ( 5 )M;l>’+Ml(l_){/2:|+Tl(l)’, i=1(D)n, (4.28)

where %l(i)j = O(kh? + h3), provided o #1.

5 Application and stability analysis
Now let us consider the one-dimensional Burgers equation in polar coordinates

i (u,, + I—gu, - £u> =u +uu,+g(rt), 0<r<l,t>0, (5.1)
R, r r2

where R, > 0 denotes the Reynolds number. For p = 1 and 2, the above equation represents
Burgers’ equation in cylindrical and spherical coordinates, respectively. It is the simplest
model for the differential equations of fluid flow. It is used in fluid dynamics as a simplified
model for turbulence, boundary layer behavior and shock wave formation. The viscous
Burgers equation in polar coordinates is a useful test equation for investigating various
numerical schemes, which are then applied to more complicated systems of partial differ-
ential equations. It shows a structure roughly similar to that of Navier-Stokes equations
due to the form of the nonlinear convection term and the occurrence of the viscosity term.
So it can be considered as a simplified form of the one-space dimensional Navier-Stokes
equation. If we suppress the variables 6, z and 6, ¢ from the Navier-Stokes equations of
motion in cylindrical polar coordinates (7,6, z, t) and spherical polar coordinates (r, 6, ¢, £),
respectively (see [15]), we obtain Burgers’ equation (5.1) in polar coordinates. The high-
accuracy numerical solution of Burgers’ equation in polar coordinates plays an important
role for viscous fluid flow. It has been experienced in the past that the high-accuracy nu-
merical solution usually deteriorates in the vicinity of the singular point say r = 0, whereas
the proposed spline method is applicable to 1D nonlinear parabolic equations irrespective
of coordinates, that is, the proposed spline method is directly applicable to solve equa-
tion (5.1). We do not require any modification in the spline scheme unlike other methods
discussed in [16, 17]. Thus the numerical schemes for problems in polar coordinates are
of importance in this discussion.

Re-write equation (5.1) as
ety =ty + Qr)uy + un, + S(r)u + g(r, 1), (5.2)

where R, = ¢! > 0 represents a Reynolds number and Q(r) = _’7 ¢, S(r) =2 9.
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Replacing the variable ‘4’ by ‘7’ and applying the method (3.6) to the differential equation
(5.2), we obtain

1+0) A

S oh? N
e[}, - 0+ o)l + o1 ] = [GM;H,ZJ i+ A1 1,2] 7, 53)

where

M = u;l + Qlu’l + U uﬁ, + slu +@,
v
My = tl:t1/2 + Quapll] 12 T ul:l:l/Z url:l:l/Z +Spx172 ul:tl/Z +gjl:t1/2’

where L_Ifﬂ/z, I:[izﬂ/z’ f[[, Url’ U a1y and Utl are defined in Section 3 and Q; = Q(ry),
Qui12 = Q(riz1p2), St = S(r)), Sizap = S(rizan) & = ity + %), @re = glrsan t; + 5).

Note that the scheme (5.3) is of O(kh; + 1) for the solution of differential equation (5.1)
and is free from the terms 1/(r41), thus, it is very easily solved for [ = 1(1)N;j=0,1,2,...,
in the solution region without any modification. We do not require any fictitious point to
solve the singular problem.

For stability, we consider the 1-D linear parabolic equation with variable coefficients

Vidyy = Uy + D(®)uy + f(x,8), 0<x<1,t>0, (5.4)

where v > 0 and D and f are sufficiently smooth functions. Applying the method (3.6) to
the differential equation (5.4) on a uniform mesh (that is, when %;,; = h; = k), we obtain
the following scheme for the solution of the above differential equation:

o W . . "
(U;A 2U; + U;—l) = ?[M}HI/Z +]\/1}1-1/2 + Mé] +17, (5.5)
where
Mlz = LA[iz +D1U]l+ﬁ’ (5.6)
M1+1/2 = utl+1/2 * Dl+1/2 x+1/2 +fz]+1/2’ (5.7)
M; 12~ tl—1/2 +DH/ZUI 1/2 +fl 12 (5.8)
where
. -, h,._; __
xl-1/2 = A - Z(:BMZ — oy 1/2)’
ir _L_[;ﬂ—l:[; h BM. — al
xl+1/2 — A + E('BMI -« l+1/2)’

and f] = fant;+ %), ...
The approximations associated with (5.6)-(5.8) are already defined in Section 3. In order
to discuss the stability, we require the following approximations:

h h?
Dl:l:l/Z = Dl + EDxl + EDxxl + O(h3)1 (59)
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. e B ;

Jwp=f=% Eﬁc + gfxx +0(1°), (5.10)
a= % +0(1?), (5.11)
B = % +O(1?). (5.12)

With the help of the approximations (5.6)-(5.8) and (5.9)-(5.12), neglecting higher-order

terms, from (5.5), we obtain

-k _ i hDy .y
V82U = 5 [(12 +8)U), - g(zuxax)u;,}
W D}l ,-i h
T [2Dx, - Tl]aﬁ u + o [1213, + 1 <Dm -

DDy,

):| (2/'Lx6x)l:[§
h2 . . D r N
T [uf/ - hz( = T”)] + 717, (5.13)

where ‘qufl = (u{u/z - u{—1/2) and qu{ = %(u{n/z + u§—1/2)'
Multiplying (5.13) throughout by A = (k/k?) and neglecting the local truncation error

term, we have

1 1 ji+1
[1 + E(l —6AV + AP))82 — E(th - )\Pz)(2ux8x)]u;

1 1 i
= |:1 + E(l +6Av — )LPl)(Si - ﬁ(hQ2 + APZ)(ZuxSx)}u; + FF, (5.14)
where
h? D; h ) DD, D,
P =—|2Dy—-—| Py = —12D; + h*| Dyxt — ) Q==
2 v 4 1% 2v

kI - . Dy
FF = E[lZfl’ +h2(,§x,— — ;,)].

To study the stability of scheme (5.14), we apply the von Neumann linear stability anal-
ysis. Let 811 = £/ be the error at the grid point (x, t;), where € is a complex number and n
is a real number. Substituting sf = £/¢ into the homogeneous part of the error equation
of (5.14), we obtain the amplification factor & as

(1- (1 +6av —APy)sin® I -

5 — £(hQy + APy)sinn)

&= (1- L= 620 + APy sin® & — i (hQ, — AP,) siny)
1+ (X +iY) (5.15)
T1-(X+iY) '
where
5o ~A[(3(6v — Py)sin* 2)(1 - L sin” 1) — 2 P,Q, sin” n]

12 12 02
(1-3sin® 2)? + £2Q3sin’
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For stability, it is required that |£|?> < 1. Imposing this condition on (5.15), we get

‘1—(X+iY)
= 1+X)P?+Y?P<(1-X)?+Y?

= X=<0.

Above inequality is satisfied for all values of n and, D(x) = =*, « =1 and 2. Hence the
scheme (5.14) is unconditionally stable.

Next, we consider the fourth-order parabolic equations

32 9\2 , 0% Bu  u
8x2 ot

U=¢e w—?«?m"'w:f‘x,t), O0<x<1,t>0, (5.16)

where ¢ > 0 and f is sufficiently smooth function.

The initial values of u, u, are prescribed at ¢ = 0 and boundary values of u, u,, are pre-
scribed at x = 0 and x = 1. Since the grid lines are parallel to the coordinate axes and the
values of u,u,, are exactly known on the boundary, the values of successive tangential
partial derivatives of u, iy, i.e., the values of u,uyy, ..., are also known on the boundary
x =0 and x = 1. Similarly, the values of u,, u,y, 4y, ... are also known at ¢ = 0. Hence the
values of 1, (x,0) — u(x,0), (0, £) — u,(0, ) and u,(1, ) — u,(1, £) are known exactly on
the boundary.

Now, equation (5.16) can be re-written as

Elyy = Us + V, (5.17a)
EVyx = Ve + f (%, 1). (5.17b)
Applying the numerical method (4.28) to the above system of equations and neglecting

local truncation errors, we obtain the following non-polynomial spline in compression

schemes in coupled form:

2 . . . .
o(H~20+ By) = [ il T ) (5.182)
P P * S
eV =20+ 7,) = E[l/t”% + ‘/ﬂ,% + ] + g[fz]u/z +flap +f] (5.18b)

Using the approximations defined in Section 4, and multiplying (5.18a) and (5.18b)
throughout by A = (k/h?), we get

62e82(u) + 1) = [(u)) + 10, +47)) = (ud),, + 1060, + 1) )]
A0 ) s K 1040, (5199
63652V 4 1)) = [(7) + 10V +/7Y) = (W, + 107+ v )]

+ 4k[-l?ljn/z "']?11—1/2 +jz]]' (5.19b)
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Neglecting the homogeneous part, the above system in matrix form may be written as
Ay Ap||v?| |By Bp||w
0 Au Vj+1 - 0 Bu Vj ’

AY*! = BY/, (5.20)

or

where A;; and By, i,j = 1,2 are N x N tri-diagonal matrices are given by

k
Ajp =[1,10,1] - 6Ae[1,-2,1], Ap = 2 [1,10,1],

k
BH = [1, 10, 1] + 6)\.8[1, —2, 1], B12 = —5[1, 10,1],
and

A~ An Ap ’ B Bi B ’ Y - u’; , Y+l = u’j*l )
0 AH 0 Bn A VH'1

Assume that the matrix A is non-singular. Pre-multiplying both sides of (5.20) by A™,
we get

Y+ = AT'BY. (5.21)

The eigenvalues of N x N tri-diagonal matrix [4, b, c] are defined by

hs = b +2+/accos S =b+2ac(1-2sin” ),
N+1
(5.22)
2y = 8 s=1(1)N
N+1 ’

Using equation (5.22), the eigenvalues of the tri-diagonal matrices Aj;, Aj2, By and By,
are given by

k
12 — 4sin® ¢ + 24Ae sin® ¥, 3 [12 - 4sin® y/],
.. 2 .2 -k .2
12 —4sin”“  — 24Aesin“ ¢  and 7[12—4sm lp],

respectively.
The characteristic equations of the matrices A and B are given by

12 — 4sin® ¢ + 24xesin® ¢ — & K12 - 4sin®y] o (5.23)
0 12 —4sin®y +24xesin® Y —&| ’
and
12 — 4sin® ¢ — 24aesin® ¢ — 1 5212 — 4sin? Iﬁ.] 2 o, (5.24)
0 12 — 4sin“ i — 24Aesin“ y —
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respectively. Hence the eigenvalues of A are given by & = 12 — 4sin® ¢ + 24Ae sin® ¢, and
the eigenvalues of B are given by = 12 — 4sin® 1 — 24A& sin® .
Since A~! and B commute with each other, the eigenvalues of A™'B are given by

12— 4sin’y — 242 sin® ¢
12— 4sin® ¢ + 24Aesin® ¢

P (5.25)

For stability, it is required that |p| <1 for all values of ¥. Imposing this condition on
(5.25) yields

AinZal s 2
<12 4.sin” Y — 24A€ sin w<

-1< — —— <L
12 — 4sin” ¥ + 24A¢e sin”

(5.26)

Both inequalities of (5.26) are true for all values of ¥. Hence the scheme (5.19a)-(5.19b)
is unconditionally stable.

6 Numerical illustrations
In this section, we have solved several benchmark problems using the proposed method
based on spline in compression and compared the results with the results obtained by
other researchers. The exact solutions are provided in each case. The right hand side ho-
mogeneous functions, initial and boundary conditions are obtained using the exact so-
lution as a test procedure. The linear equations are solved using a tri-diagonal solver,
whereas nonlinear equations are solved using the Newton-Raphson method. While us-
ing the Newton-Raphson method, we choose 0 as the initial guess. All the computations
are carried out using MATLAB codes.

From equation (2.13), we have obtained the value p; = 1 = 8.986818916. In order to
compute the proposed method (3.6), we have evaluated the values of

o

o Miv1
Xr=5"3 [ : - COSMM]’ Bu = —5[1— s cot ],
214 LSIN i 2145
1 1
Bu=—[1-pcotp] and y =-—|—-—-cosp
214 2y | sin py

using the values of u; and ;.

The given interval [0,1] is divided into (N + 1) partswith 0 =x¢ <y < -+ <any <xn41 =1,
where iy =x;—x1,1=1,2,...,N+1land o = ly1/h;>0,1=1,2,...,N.

We can write

1=xn41 — %0 = (BN —N) + (v —no1) + - + (%1 — o)

=hya+hy+-+h= (0N +oN v 10?4 o)hy (6.1)
Thus,
h1:1/(0+02+---+aN). (6.2)
Alternatively, (6.2) can be re-written as

h=0-0)/(1-0™"). (6.3)
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By prescribing the total number of mesh points (N + 2), we can compute the value of
hy from (6.2) or (6.3). This is the first mesh spacing on the left and remaining mesh is
determined by /iy, =0k, [=1,2,...,N.

Example 1 The one-dimensional GBFE is given by the following form:
suxx:ut+au8ux+ﬁu(u8—1), a<x<b,t>0, (6.4)

where the real valued function u = u(x, £) is a sufficiently smooth function of the space and
time variables; [, b] = [0,1], and «, § are real parameters and § is a positive integer.

The initial condition associated with differential equation (6.4) is given by

1
5

u(x, 0) = [g + gtanh(alx):| . a<x<b, (6.5)

and the boundary conditions associated with (6.4) are given by

1
8

ula, t) = [g + gtanh(al(a —azt))] , t>0, (6.6)
u(b,t) = [g + gtanh(al(b - azt))] 3, t>0. (6.7)

The exact solution [6] of (6.4) is given by

1

5
u(x, ) = [% ¥ %tanh(al(x—azt))] , >0, (6.8)
where
el 4 ) @ B +3)
=1, = B ay) = .
721 +9) 27 (1+9) a

This problem is solved with N= 10, 16, k = 0.0001 and mesh ratio o = 0.9 by present
method. The following cases have been discussed for different values of the parameters
o, B,y and 8, which are involved in equation (6.4).

Case 1.1: We choose « = 0.001, 8 = 0.001.

Case 1.1(a): In this case, results are computed for different time levels and § = 1,4. The
maximum absolute errors are tabulated for x = 0.1,0.5,0.9 in Tables 1-2.

Case 1.1(b): In this case, results are computed for different time levels and § = 1,4, 8. The
maximum absolute errors are tabulated for ¢t = 1,2, 3,4,5 in Table 3.

Case 1.2: We consider « =1, 8 =1, N = 10. In this case, results are computed for differ-
ent time levels £ = 0.2,0.4,0.6,0.8,1.0 and § = 1,2,4. The maximum absolute errors are
tabulated in Tables 4-6.

Case1.3: We consider @ = 1, 8 = 0, N = 10. In this case, results are computed for different
time levels and § = 1,2, 8. The maximum absolute errors are tabulated for x = 0.1,0.5,0.9
in Tables 7-9.
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Table 1 Example 1: Case 1.1(a)(i): Maximum absolute errors at § = 1

X t

Method given in [23]

Method givenin[5] Proposed method (3.6)

0.1 0.001
0.005
0.010
0.5  0.001
0.005
0.010
09  0.001
0.005
0.010

5.55(-
1.77(-
2.55(-
3.88(-
2.60(-
4.99(-
1.05(-
344(-

(-

16)
15)
15)
16)
15)
15)
15)
15)
5.16(-15)

5.55(=17)

Table 2 Example 1

: Case 1.1 (a)(ii): Maximum absolute errors at § =4

X t

Method given in [23]

Method givenin[5] Proposed method (3.6)

0.1 0.001
0.005
0.010
0.5 0001
0.005
0.010
09  0.001
0.005
0.010

1
222(~
6.66(—
1120
333
333
11
5.55(-
1

3.76(-14)
143(-13)
2.39(-13)
3.20(-14)
1.61(-13)
3.22(-13)
3.84(-14)
1.45(-13)
241(-13)

1.11(=16)
9.99(-16)
1.75(=16)
1.11(-16)
333(-16)
2.88(-15)
1.11(=16)
1.11(-16)
222(-16)

Table 3 Example 1: Case 1.1(b): Maximum absolute errors

t §=1 i=4 =8

1.0 344(-15) 9.95(-14)  9.55(-13)
20 1.66(-15  961(-14)  9.54(-13)
30 1.33(-15)  973(-14) 9.61(-13)
40  1.31(-15 976(-14) 9.88(-13)
50  1.22(-15) 978(-14)  9.89(-13)

Table 4 Example 1: Case 1.2(a): Maximum absolute errors at § = 1

t Method givenin [24]  Method given in [5]

Proposed method (3.6)

0.2  55574(-07
04  9.0550(-07
06  2.1880(-0

08  29331(-0
1.0 3.0145(-06

Table 5 Example 1: Case 1.2(b): Maximum absolute errors at § = 2

t Method givenin [24] Method givenin[5]  Proposed method (3.6)
02  2.5610(-06) 7.9688(-07) 2.9321(-07)
04  4.2430(-06) 1.4540(-06) 3.9463(-07)
06  3.5684(-06) 1.8274(-06) 3.7075(-07)
08  1.4651(-06) 1.8775(-06) 2.7398(-07)
1.0  5.5423(-06) 1.6771(-06) 1.7040(-07)

Table 6 Example 1: Case 1.2(c): Maximum absolute errors at § = 4

t Method givenin [24]  Method given in [5]

Proposed method (3.6)

02  1.7616(-06)
04  4.1735(=07)
06  2.4240(-06)
08  2.3575(-06)
1.0 1.4435(-06)

3.2650
3.5607

(-06
(-0
2.5228(-0
(-0
(-0

)

6)

6)
1.4074(-06)
6.9013(-07)

6
7

Page 19 of 30
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Table 7 Example 1: Case 1.3(a): Maximum absolute errors at § = 1

X t Method givenin [25] Method givenin[5] Proposed method (3.6)

01 05 1.68(-11) 2.59(-12) 5.66(-13)
1.0 1.79(-11) 2.74(-12) 342(-13)
20 146(-11) 2.74(-12) 6.27(-13)
05 05 340(-12) 7.36(-13) 7.52(-14)
1.0 3.72(-12) 7.99(-13) 481(-14)
20 3.13(-12) 8.39(-13) 3.06(-14)
09 05 131(-11) 267(-12) 5.55(-17)
1.0 1.37(=11) 2.96(-12) 5.55(=17)
20 1.07(-11) 3.24(-12) 8.88(-16)

Table 8 Example 1: Case 1.3(b): Maximum absolute errors at § = 2

X t Method givenin [25] Method givenin[5] Proposed method (3.6)

01 05 449(-11) 2.83(-11) 6.14(-12)
1.0 4.19(=11) 2.78(-11) 7.28(-12)
20 2.70(-11) 241(-11) 9.17(-12)
05 05 813(-12) 842(-12) 2.24(-13)
10 7.72(-12) 8.50(-12) 2.71(=13)
20 477(-12) 7.85(-12) 3.55(-13)
09 05 355(-11) 3.13(=11) 3.33(-16)
1.0 323(-11) 3.23(-11) 3.33(-16)
20 1.98(-11) 3.14(-11) 4.44(-16)

Table 9 Example 4: Case 1.3(c): Maximum absolute errors at § = 8.

X t Method givenin[25] Method givenin[5] Proposed method (3.6)

0.1 05 460(-11) 9.37(-12) 1.20(-11)
1.0 439(-11) 8.93(-12) 1.25(-11)
20 3.78(-11) 7.72(-12) 1.31(=11)
05 05 7.03(-12) 3.06(-12) 4.36(-13)
1.0 6.75(-12) 2.99(-12) 4.57(-13)
20 567(-12) 2.74(-12) 4.88(-13)
09 05 369(-11) 1.19(-11) 5.55(-16)
1.0 345(-11) 1.18(-11) 6.66(-16)
20 284(-11) 1.13(=11) 6.66(-16)

Example 2 Consider equation (6.4) with @ =1, 8 = 0, § = 1 initial and boundary condi-

tions as given in Mittal and Jiwari [18], namely

u(x,0)=x(1-2%), O<x<l, (6.92)
u(0,t) =u(l,£)=0, ¢>0. (6.9b)

In this example, we have computed solutions for ¢ = 273 and 27 at £ = 0.1,0.3,0.6,0.9
with step size k = 0.001 and mesh ratio o = 0.9. The computed numerical solutions as pre-

sented in Figure 1(a)-(b) are consistent with the dynamics of the corresponding differential
equations. Similar patterns have been presented in [8, 18, 19] also.

Example 3 Consider equation (6.4) with « = 0, § =1 initial and boundary conditions as
given in Zhao et al. [20], namely

u(x, 0) = x(1 —xz)e", “-1<x<1, (6.10a)
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0.35 T ‘:O_L_‘; T T \ﬂ/ 4\* T T T 0.4 Y o
03 : ,:ig'g - \4, 1 035} —* t=06 /;/ *//( SR
—+ 101 . \ : ::g? // 7 S\K R
ST N 7 O
§ / > \ *\ §_ 0.25 // +/
2 oz / / X 3 / / X\K \f
e AT B R R \
£ 015 /S N j\ € o5 // i
Z’ o1t /:/ e -~ \\X‘\ 1 z . /:// \%
v /// \k\r Voot ///¢ \Xi
0.05 /// \&— 0.05 // ‘%
00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0‘9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
(a) (b)
Figure 1 Example 2: Computed solutions for different time levels. (a) € = 273, (b)e=27"°.

u(-1,t) =u(l,£) =0, ¢>0. (6.10b)

The computed numerical solutions for this example are presented in Figure 2(a)-(f)
for different value of the parameters. In our first computation, we compute the results
for a fixed value of 8 and different value of ¢ at different time levels. We take 8 =1,
t=0.0,0.5,1.0,1.5 and ¢ = 0.005,0.05,0.5, respectively. The corresponding graphical so-
lutions are presented in Figure 2(a)-(c). In our second computation, we compute the results
for a fixed value of ¢ and different valued of 8 at different time levels. We choose ¢ = 0.2,
t=0.0,0.5,1.0,1.5 and B8 =1.5,2.5,5.0, respectively. The corresponding graphical results
are presented in Figure 2(d)-(f). The numerical solutions, as presented in Figure 2(a)-(f),
are consistent with those illustrated in [8, 20]. In Figure 2(a)-(c), the results exhibit that the
numerical diffusion is dominated with the increasing diffusion coefficient ¢, whereas the
reaction is gradually dominant with the increasing coefficient g as shown in Figure 2(d)-
(f). Thus, the computed and numerical solutions are in good agreement with the solution
in the literature and the physical behavior of the differential equation.

Example 4 The one-dimensional GBHE is given by the following form:
Slyy = Uy + U Uy + ,Bu(u‘s - 1) (u’S - y), a<x<bt>0, (6.11)

where u = u(x, t) is sufficiently differentiable function, [a,b] = [0,1], & > 0 is a small posi-
tive parameter, «is real parameter, 8 > 0,8 >0, y € (0,1) and yp = —(1 + y). When « =1,
B=0,8§=1and 0 < e K1, (6.11) is the well-known Burgers equation [21], where ¢ is the
coefficient of viscosity and R, = ¢! > 0 is the Reynolds Number.

The initial cond