
Wen et al. Advances in Difference Equations  (2017) 2017:230 
DOI 10.1186/s13662-017-1271-6

R E S E A R C H Open Access

Stability and boundedness of solutions of
the initial value problem for a class of
time-fractional diffusion equations
Yanhua Wen*, Xian-Feng Zhou and Jun Wang

*Correspondence:
wenyanhua0405@163.com
School of Mathematical Sciences,
Anhui University, Hefei, 230601,
China

Abstract
The aim of this paper is to study the stability and boundedness of solutions of the
initial value problem for a class of time-fractional diffusion equations. We first
establish a fractional Duhamel principle for the nonhomogeneous time-fractional
diffusion equation. Then based on it and the superposition principle, the solution of
the above initial value problem is represented. Finally, we obtain the stability and
boundedness of the solution and present an illustrative example.
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1 Introduction
Fractional differential equations have received considerable attentions during the past few
decades because they are useful for modeling many practical phenomena. And a large
amount of results such as existence, uniqueness, stability, etc. of the solution have been
obtained for the fractional differential equations (see [–] and the references therein).

In recent years, fractional partial differential equations have been applicated in the study
of viscoelasticity, biology, anomalous diffusion, such as [–]. Based on the existing in-
equalities, Jleli [] presented the Lyapunov inequalities for fractional partial differential
equations. The authors in [] obtained the approximate analytical solutions for two differ-
ent types of nonlinear time-fractional systems of partial differential equations using the
fractional natural decomposition method. And a maximum principle for the generalized
time-fractional diffusion equation with the Caputo fractional derivative is established by
Luchko [].

Furthermore, initial-boundary value problems for both ordinary fractional differential
equations and fractional partial differential equations are studied in the literatures (see
[–] and the references therein). The authors in [] established an existence result
for a class of nonlinear fractional partial differential equations with the standard Caputo
fractional derivative of order  < α ≤ . In [], Wang discussed the nonlocal initial value
problem for fractional differential equations with the Hilfer fractional derivative.

Zhu [] and Ouyang [] investigated the existence and uniqueness of the solution of
the following nonlinear fractional reaction-diffusion equation with initial-boundary val-
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ues and delays:

CDα
t u(x, t) – a(t)uxx(x, t)

= g
(
t, u

(
x, τ(t)

)
, u

(
x, τ(t)

)
, . . . , u

(
x, τl(t)

))
, (x, t) ∈ � × R+, ()

u(x, t) = , (x, t) ∈ ∂� × R+, u(x, ) = ϕ(x), x ∈ �, ()

where  ≤ τi(t) ≤ t, t ∈ R+ (i = , , . . . , l), l is a positive integer number, a(t) : R+ → R is
continuous and ϕ(x) ∈ L(�). CDα

t is the standard Caputo fractional derivative of order α

( < α ≤ ).
In [], Umarov generalized the classical Duhamel principle for the Cauchy problem to

general inhomogeneous fractional distributed differential-operator equations of the form

L�[u] ≡
∫ μ


f (α, A)Dα

∗u(t) d�(α) = h(t), t > , ()

u(k)() = ϕk , k = , . . . , m – , ()

where μ ∈ (m – , m], h(t) and ϕk , k = , , . . . , m are given X-valued vector-functions. Dα∗
denotes the operator of fractional differentiation of order  < α <  in the sense of Caputo.

The stability of the solution of a definite solution problem is of great importance in the
theory of partial differential equations. However, we have not found any related references
which investigate the stability of solutions of initial value problems for time-fractional
diffusion equations. Motivated by this fact, in this paper we establish a fractional Duhamel
principle, then apply it to study the stability and boundedness of the solution of the time-
fractional diffusion equation

C
 Dα

t u(x, t) – auxx(x, t) = h(x, t),  < α < , x ∈ R, t > , ()

with the initial condition

u(x, ) = ϕ(x), x ∈ R, ()

where a �= , ϕ(x) ∈ Lp(R), p ≥ . h(x, t) is a continuously differentiable function and
h(x, ) = . C

 Dα
t represents the following Caputo fractional derivative of order α > :

C
 Dα

t u(x, t) =

⎧
⎨

⎩


�(n–α)

∫ t
 (t – τ )n–α+ ∂nu(x,τ )

∂τn dτ , n –  < α < n,
∂nu(x,t)

∂tn , α = n,
()

where � is the Gamma function and n = [α] denotes the integer part of α. Moreover, the
Caputo fractional derivative of α is also defined as ∂αu(x,t)

∂tα = In–α
t

∂n

∂tn u(x, t).
The rest of this article is organized as follows. Section  is devoted to some preliminaries.

In Section , we present our main results of this paper. An illustrative example is provided
in Section .

2 Preliminaries
In this section, we introduce some definitions and lemmas which will be used later.
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Definition . ([]) The two-parameter Mittag-Leffler function is defined as

Eα,β (z) =
∞∑

k=

zk

�(αk + β)
, α,β > , ()

where � is the Gamma function.
The Laplace transform of the Mittag-Leffler function in two parameters is

L
[
tαk+β–E(k)

α,β
(±atα

)
; s

]
=

k!sα–β

(sα ∓ a)k+ , Re(s) > |a| 
α . ()

Definition . ([]) The Laplace transform of the Caputo fractional derivative C
 Dα

t f (t) is

L
[C

 Dα
t f (t); s

]
=

∫ +∞


e–st(C

 Dα
t f (t)

)
dt

= sα f̃ (s) –
n–∑

k=

sα–k–f (k)(), n –  < α ≤ n, ()

where f̃ (s) is the Laplace transform of f (t).
Particularly, for  < α ≤ ,

L
[C

 Dα
t f (t); s

]
= sα f̃ (s) – sα–f (). ()

Definition . ([]) The Fourier transform of a continuous function h(x) absolutely inte-
grable in R is defined by

ĥ(ξ ) = F
{

h(x); ξ
}

=
∫

R
eiξxh(x) dx, ξ ∈ R, ()

and the inverse Fourier transform is defined by

h(x) = F–{ĥ(ξ ); x
}

=


π

∫

R
e–iξxĥ(ξ ) dξ , x ∈ R. ()

Lemma . ([]) Suppose v(t, τ ) is an X-valued function defined for all t ≥ τ ≥ , the
derivatives ∂ jv(t,τ )

∂tj ,  ≤ j ≤ k – , are jointly continuous in the X-norm, and ∂k v(t,τ )
∂tk ∈

L(, t; X) for all t > . Let u(t) =
∫ t

 v(t, τ ) dτ . Then

dk

dtk u(t) =
k–∑

j=

dj

dtj

[
∂k––j

∂tk––j v(t, τ )
∣∣
∣∣
τ=t

]
+

∫ t



∂k

∂tk v(t, τ ) dτ . ()

Lemma . ([]) For every α ∈ (, ), the uniform estimate


 + �( – α)x

≤ Eα(–x) ≤ 
 + [�( + α)]–x

()

holds over R+, where Eα(–x) denotes Eα,(–x).

Remark . Obviously,  < Eα,(–x) < , for any x >  by Lemma ..
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Lemma . ([]) Let  < α < . Then

Iα
t
(C

 Dα
t f (t)

)
= f (t) – f (). ()

Lemma . ([]) The Fourier transform of the Dirac delta function δ(x) is

F
{
δ(x); ξ

}
=

∫

R
eiξxδ(x) dx =  ()

and the inverse Fourier transform of the Dirac delta function δ(x) is

δ(x) = F–{} =


π

∫

R
e–iξx dx. ()

Lemma . ([]) The Dirac delta function δ(x) has the following property:

∫

R
δ(x) dx = . ()

Lemma . ([], Hausdorff-Young inequality) If f ∈ L, g ∈ Lp (p ≥ ), then h = f ∗ g ∈ Lp

and

‖h‖Lp ≤ ‖f ‖L · ‖g‖Lp , ()

where f ∗ g =
∫

R f (x – y)g(y) dy denotes the convolution between f and g .

3 Main results
In this section, we first consider the situation of h(x, t) =  in the IVP ()-(). That is, we
discuss the homogeneous IVP

C
 Dα

t u(x, t) – auxx(x, t) = ,  < α < , x ∈ R, t > , ()

u(x, ) = ϕ(x), x ∈ R. ()

Lemma . The solution of the homogeneous the IVP ()-() has the form

u(x, t) =
∫

R
G(x – y, t)ϕ(y) dy, ()

where G(x, t) = 
π

∫
R e–iξxEα,(–aξ tα) dξ is the Green function.

Proof Applying the Laplace transform to equation () with respect to the variable t yields

sαũ(x, s) – sα–ϕ(x) – aũxx(x, s) = , ()

then applying the Fourier transform with respect to variable x, we obtain

sα ˆ̃u(ξ , s) – sα–ϕ̂(ξ ) – a(–iξ ) ˆ̃u(ξ , s) = , ()
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where i = –. So we have

ˆ̃u(ξ , s) =
sα–

sα + aξ  ϕ̂(ξ ) =
sα–

sα – (–aξ )
ϕ̂(ξ ). ()

Applying the inverse Laplace transform yields

û(ξ , t) = Eα,
(
–aξ tα

)
ϕ̂(ξ ). ()

Furthermore, by using the inverse Fourier transform and Fubini’s theorem, we get

u(x, t) =


π

∫

R
e–iξxEα,

(
–aξ tα

)
ϕ̂(ξ ) dξ

=


π

∫

R
e–iξxEα,

(
–aξ tα

)∫

R
eiξyϕ(y) dy dξ

=
∫

R


π

∫

R
e–iξ (x–y)Eα,

(
–aξ tα

)
dξϕ(y) dy

=
∫

R
G(x – y, t)ϕ(y) dy, ()

where

G(x, t) =


π

∫

R
e–iξxEα,

(
–aξ tα

)
dξ ()

is the Green function. This completes the proof. �

Property . The Green function G(x, t) has the following property:

∫

R
G(x, t) dx < , t > . ()

Proof By Lemma ., it follows

G(x, t) =


π

∫

R
e–iξxEα,

(
–aξ tα

)
dξ

≤ 
π

∣
∣∣
∣

∫

R
e–iξxEα,

(
–aξ tα

)
dξ

∣
∣∣
∣

≤ 
π

∫

R
e–iξx∣∣Eα,

(
–aξ tα

)∣∣dξ

<


π

∫

R
e–iξx ·  dξ

= δ(x). ()

Lemma . implies that

∫

R
G(x, t) dx <

∫

R
δ(x) dx = , t > , ()

which completes the proof. �
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3.1 Fractional Duhamel principle
We now consider equation () with the initial data u(x, ) = ϕ(x) = . That is, we study the
nonhomogeneous IVP

C
 Dα

t u(x, t) – auxx(x, t) = h(x, t),  < α < , x ∈ R, t > , ()

u(x, ) = , x ∈ R. ()

A fractional Duhamel principle is firstly given, which can reduce the nonhomogeneous
the IVP ()-() to the corresponding homogeneous IVP.

Theorem . (Fractional Duhamel principle) The solution of the nonhomogeneous the
IVP ()-() is given by

u(x, t) =
∫ t


w(x, t; τ ) dτ , ()

where w(x, t; τ ) is the solution of the homogeneous equation

C
 Dα

t w(x, t) – awxx(x, t) = ,  < α < , x ∈ R, t > τ , ()

satisfying

t = τ : w(x, τ ) = C
 D–α

τ h(x, τ ), ()

where h(x, t) is a continuously differentiable function.

Proof Assume that w(x, t; τ ) is the solution of the IVP ()-(). We next prove that
u(x, t) =

∫ t
 w(x, t; τ ) dτ is the solution of the IVP ()-(). Let k =  in Lemma ., then

∂

∂t
u(x, t) = w(x, t; τ )|τ=t +

∫ t



∂

∂t
w(x, t; τ ) dτ . ()

Thus it follows that

C
 Dα

t u(x, t) – auxx(x, t)

= I–α
t

∂

∂t
u(x, t) – auxx(x, t)

= I–α
t

∂

∂t

∫ t


w(x, t; τ ) dτ –

∫ t


awxx(x, t; τ ) dτ

= I–α
t

[
w(x, t; τ )|τ=t +

∫ t



∂

∂t
w(x, t; τ ) dτ

]
–

∫ t


awxx(x, t; τ ) dτ

= I–α
t

(C
 D–α

t h(x, t)
)

+
∫ t



[

I–α
t

∂

∂t
w(x, t; τ ) – awxx(x, t; τ )

]
dτ

= h(x, t) – h(x, ) +
∫ t



[C
 Dα

t w(x, t; τ ) – awxx(x, t; τ )
]

dτ

= h(x, t). ()
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In addition, u(x, ) = . Therefore, u(x, t) =
∫ t

 w(x, t; τ ) dτ is the solution of the IVP ()-
(). The proof is completed. �

Corollary . (i) The the IVP ()-() has the solution. In fact, let t′ = t – τ in ()-(),
then the IVP ()-() can be turned into the form

C
 Dα

t w
(
x, t′; τ

)
– awxx

(
x, t′; τ

)
= ,  < α < , x ∈ R, t′ > , ()

t′ =  : w(x, ; τ ) = C
 D–α

τ h(x, τ ), x ∈ R. ()

Lemma . implies that the solution of the problem ()-() can be obtained by

w
(
x, t′; τ

)
=

∫

R
G

(
x – y, t′)C

 D–α
τ h(y, τ ) dy. ()

Hence, the solution of the IVP ()-() can be represented as

w(x, t – τ ; τ ) =
∫

R
G(x – y, t – τ )C

 D–α
τ h(y, τ ) dy. ()

(ii) Furthermore, by Theorem ., the solution of the IVP ()-() has the form

u(x, t) =
∫ t


w(x, t – τ ; τ ) dτ =

∫ t



∫

R
G(x – y, t – τ )C

 D–α
τ h(y, τ ) dy dτ . ()

Combining Lemma . with Corollary ., we can get the following theorem.

Theorem . The solution of the nonhomogeneous the IVP ()-() has the form

u(x, t) = u(x, t) + u(x, t), ()

where u(x, t), u(x, t) are solutions of the IVPs ()-(), ()-(), respectively. That is,

u(x, t) =
∫

R
G(x – y, t)ϕ(y) dy +

∫ t



∫

R
G(x – y, t – τ )C

 D–α
τ h(y, τ ) dy dτ , ()

where G(x, t) = 
π

∫
R e–iξxEα,(–aξ tα) dξ is the Green function.

Theorem . When t → , the solution () of the Cauchy problem ()-() is bounded by
the initial data

∥
∥u(x, t)

∥
∥

Lp(R) ≤ ∥
∥u(x, )

∥
∥

Lp(R), x ∈ R, p ≥ . ()

Proof From () and Lemma ., we have

lim
t→

∥∥u(x, t)
∥∥

Lp(R) =
∥∥∥
∥

∫

R
G(x – y, )u(y, ) dy

∥∥∥
∥

Lp(R)

=
∥
∥∥
∥

∫

R
δ(x – y)u(y, ) dy

∥
∥∥
∥

Lp(R)

=
∥∥δ(x) ∗ u(x, )

∥∥
Lp(R), p ≥ . ()
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Then the inequality (), Lemma . and the property of the Dirac delta function δ(x)
imply

lim
t→

∥∥u(x, t)
∥∥

Lp(R) =
∥∥δ(x) ∗ u(x, )

∥∥
Lp(R)

≤ ∥∥δ(x)
∥∥

L(R) · ∥∥u(x, )
∥∥

Lp(R)

≤ ∥
∥u(x, )

∥
∥

Lp(R), ()

for p ≥ , which completes the proof. �

3.2 Stability of solution
This section presents the stability of the solution of the nonhomogeneous the IVP ()-().

Definition . Suppose that H is a linear normed space with the norm ‖ · ‖H , u(x, t),
u(x, t) are solutions of the IVP ()-() corresponding to initial datum ϕ(x), ϕ(x), re-
spectively. For any ε > , if there exists a constant δ >  such that ‖ϕ(x) – ϕ(x)‖ <
δ implies ‖u(x, t) – u(x, t)‖ < ε, then we say that the solution of the IVP ()-() is
stable.

Theorem . (Stability) Assume ϕ(x) ∈ Lp(R), p ≥ . Then the solution u(x, t) of the non-
homogeneous IVP ()-() is stable.

Proof Suppose that u(x, t) is the solution of the nonhomogeneous IVP

C
 Dα

t u(x, t) – auxx(x, t) = h(x, t),  < α < , x ∈ R, t > , ()

u(x, ) = ϕ(x), x ∈ R ()

and that u(x, t) is the solution of the nonhomogeneous IVP

C
 Dα

t u(x, t) – auxx(x, t) = h(x, t),  < α < , x ∈ R, t > , ()

u(x, ) = ϕ(x), x ∈ R. ()

Then the superposition principle implies that u(x, t) – u(x, t) is the solution of the fol-
lowing homogeneous IVP:

C
 Dα

t u(x, t) – auxx(x, t) = ,  < α < , x ∈ R, t > , ()

u(x, ) = ϕ(x) – ϕ(x), x ∈ R. ()

By Lemma ., we get

u(x, t) – u(x, t) =
∫

R
G(x – y, t)

[
ϕ(y) – ϕ(y)

]
dy, ()
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where G(x, t) = 
π

∫
R e–iξxEα,(–aξ tα) dξ is the Green function. Taking the Lp-norm (p ≥

) on both sides of equation (), then Lemma . yields

∥
∥u(x, t) – u(x, t)

∥
∥

Lp(R) =
∥∥
∥∥

∫

R
G(x – y, t)

[
ϕ(y) – ϕ(y)

]
dy

∥∥
∥∥

Lp(R)

=
∥∥G(x, t) ∗ [

ϕ(x) – ϕ(x)
]∥∥

Lp(R)

≤ ∥∥G(x, t)
∥∥

L(R) · ∥∥ϕ(x) – ϕ(x)
∥∥

Lp(R) ()

for t > . Then from Lemma . and the property of the Green function G(x, t) it follows
that

∥∥u(x, t) – u(x, t)
∥∥

Lp(R) ≤ ∥∥G(x, t)
∥∥

L(R) · ∥∥ϕ(x) – ϕ(x)
∥∥

Lp(R)

<
∥
∥ϕ(x) – ϕ(x)

∥
∥

Lp(R), t > . ()

For any ε > , choose δ < ε. Then ‖ϕ(x) – ϕ(x)‖Lp(R) < δ implies ‖u(x, t) – u(x, t)‖Lp(R) <
ε, t > . By Definition ., the solution u(x, t) of the nonhomogeneous the IVP ()-() is
stable. The proof is completed. �

4 Illustrative example
In this section, we provide an example to show the application of our stability result.

Example . Consider the following nonhomogeneous equation:

C
 Dα

t u(x, t) – a ∂u(x, t)
∂x = t–α

(
x + x + 

)
,  < α < , x ∈ R, t > , ()

with the initial condition

u(x, ) = x, x ∈ R. ()

The well-known formula ( < α < )

CDα
t tβ =

�(β + )
�(β – α + )

tβ–α , β > , ()

and Theorem . imply that the solution of the IVP ()-() is

u(x, t) =
∫

R
G(x – y, t)y dy + �( – α)

∫ t



∫

R
G(x – y, t – τ )

(
y + y + 

)
dy dτ . ()

Suppose that u(x, t), u(x, t) are solutions of the IVP ()-() corresponding to initial
datum x

 , x
, respectively. Then, for p ≥ , we have

∥∥u(x, t) – u(x, t)
∥∥

Lp(R) ≤ ∥∥G(x, t)
∥∥

L(R) · ∥∥x
 – x


∥∥

Lp(R)

<
∥
∥x

 – x

∥
∥

Lp(R), t > . ()

For any ε > , choose δ < ε. Then ‖x
 – x

‖Lp(R) < δ implies ‖u(x, t) – u(x, t)‖Lp(R) < ε, t > .
According to Definition ., the solution () of the IVP ()-() is stable.
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