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Abstract
In this paper, we investigate the problem of exponential stabilization criteria for a
nonlinear system with mixed time-varying delays, including discrete interval and
distributed time-varying delays. The time-varying delays are not necessarily
differentiable. The exponential stabilization criteria of the nonlinear system are
proposed via hybrid intermittent feedback control. Based on the improved
Lyapunov-Krasovskii functionals with Leibniz-Newton’s formula, Jensen’s inequality
and the reciprocal convex combination technique, the novel delay-dependent
sufficient condition is derived in terms of linear matrix inequalities (LMIs). The
obtained LMIs can be efficiently solved by standard convex optimization algorithms.
A numerical example is given to demonstrate the effectiveness of the obtained result.
Moreover, the results in this article generalize and improve the corresponding results
of the recent works.

Keywords: exponential stabilization; nonlinear system; mixed time-varying delays;
hybrid intermittent feedback control

1 Introduction
Nonlinear systems, as an appealing topic, have been thoroughly studied during the past
decades. Due to the fact that most systems are inherently nonlinear in nature, these sys-
tems are one of the most interesting areas for researchers, including engineers, physicists,
mathematicians and other scientists. The exponential stability of nonlinear systems has
been widely received and deeply investigated [–], and the asymptotical stability of non-
linear systems has been investigated [–] as well. Time delay naturally appears in most
of the real world systems. It is well known that the existence of time delay in a system may
cause instability, poor performances and oscillations in, for instance, chemical engineer-
ing systems, biological modeling, electrical networks, physical networks and many natural
sciences. Due to these results, the nonlinear system with time-varying delay has become
an interesting topic in recent years; the authors have investigated interval time-varying de-
lay [, , –, –], discrete time-varying delay [, , , ], mixed time-varying delays
[–] and so on.
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In practical control designs, due to failure modes, system uncertainty, or systems with
various modes of operation, the simultaneous stabilization problem often has to be taken
into account. The problem is concerned with designing control which can simultaneously
stabilize a set of systems. Among the usual approaches, there are many studies on the sta-
bilization problem of a nonlinear system being reported in the literature [–, , , ,
]. In [], the sufficient conditions for global asymptotic stabilization of nonlinear sys-
tems were given, and the corresponding feedback control laws were designed. Different
controller design schemes have been proposed to construct feedback controllers, which
make the closed-loop system dynamics converge to a fixed point or a periodic orbit. Re-
cently, non-continuous control techniques, such as impulsive control [–] and inter-
mittent control [, , , , , –], have attracted much attention. Some engineering
researchers have widely focused their attention on intermittent control. Intermittent con-
trol is a feedback control method which not only shows some human control systems but
also has applications in control engineering. In a periodically intermittent control, ev-
ery control period consists of two parts: ‘work time’ for operative control and ‘rest time’
for inoperative control, which provides a spectrum of possibilities between the extremes
of continuous-time and discrete-time control. Hence, intermittent control strategies are
more economic and can simulate the real world situations better. Several nonlinear sys-
tems with intermittent control have been presented [, , , , , , ]. In [], the
synchronization of chaotic systems was studied by the intermittent feedback method. By
using periodically intermittent control and free-matrix-based integral inequality, the ex-
ponential stabilization of neural network switch time-varying delay was investigated in
[]. In [], the exponential stabilization problem for a class of uncertain nonlinear systems
with state delay was solved by periodically intermittent control. The problem of delay-
independently periodically intermittent stabilization for a class of time delay systems was
introduced in []. In [], the problem of exponential stabilization of systems with time-
varying delay via periodically intermittent memory state-feedback control was studied by
constructing a new Lyapunov-Krasovskii functional and employing the free-matrix-based
integral inequality. In [], the problems of stabilization and synchronization for a class of
chaotic systems were discussed via intermittent control with non-fixed both control pe-
riod and control width. Unfortunately, there have been few papers so far related to the
topic of the exponential stabilization criteria of a nonlinear system with hybrid intermit-
tent feedback control. This exponential stabilization of a nonlinear system remains an
open problem and it has to be investigated more.

In order to solve the problem of exponential stabilization criteria for a nonlinear system
with time-varying delay, most of researchers utilize the improved Lyapunov-Krasovskii
functional combined with Newton-Leibniz formula [–, , –, , –, , ,
–]; Jensen’s inequality [, –, , , , ], the inequality technique[, , ,
, ], Wirtinger’s integral inequality [, ], Razumikhin’s technique [, ], Gronwall-
Bellman’s lemma [], and reciprocally convex combination [, –, , , , ]. In
[], H∞ control for a nonlinear system with interval time-varying delay was studied. The
delay function is not necessary to be differentiable. Based on constructing new Lyapunov-
Krasovskii functionals and using a new tighter bounding technique, the delay-dependent
condition for this system has been established in terms of LMIs by using standard com-
putational algorithms []. Thus, in this study, we focus on the reciprocally convex com-
bination in order to solve the problem of exponential stabilization criteria for a nonlin-
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ear system with mixed time-varying delays, composed of discrete interval and distributed
time-varying delay.

Inspired by the aforementioned discussion, this is the first time that the exponential sta-
bilization criteria for a nonlinear system with mixed time-varying delay via hybrid inter-
mittent feedback control have been studied. The main contributions of this paper lie in the
following aspects. Firstly, the time-varying delays are mixture of discrete and distributed
time-varying delays in a nonlinear system and hybrid intermittent feedback control. The
constraint on the derivative of the time-varying delays is not required. So, this allows the
time delay to be a fast time-varying function, which is different from the time delays in
[, , , , ]. Secondly, for the control method, the exponential stabilization crite-
ria for nonlinear system are studied via hybrid intermittent feedback control, containing
state term, interval time-varying delay term and distributed time-varying delay term. It is
different from the control method in [, , , , , , ]. From the above discussions,
this work is one of the first reports of such investigation to further develop the exponen-
tial stabilization criteria for a nonlinear system with mixed time-varying delays via hybrid
intermittent feedback control. By constructing the set of improved Lyapunov-Krasovskii
functionals with Leibniz-Newton’s formula, Jensen’s inequality, and the reciprocal convex
combination technique, a new delay-dependent sufficient condition of exponential stabi-
lization criteria is established in terms of linear matrix inequalities (LMIs). The obtained
LMIs are efficiently solved by standard convex optimization algorithms. A numerical ex-
ample is included to show the effectiveness of the proposed hybrid intermittent feedback
control scheme.

The rest of the paper is organized as follows. Section  provides some nonlinear system
and mathematical preliminaries. Section  presents exponential stabilization criteria for a
nonlinear system with mixed time-varying delays via hybrid intermittent feedback control.
A numerical example is given in Section . Finally, the conclusion is provided in Section .

2 Problem formulation and mathematic preliminaries
Let us consider the nonlinear system with mixed time-varying delays as follows:

ẋ(t) = Ax(t) + Bx
(
t – h(t)

)
+ C

∫ t

t–k(t)
x(s) ds

+ f
(

t, x(t), x
(
t – h(t)

)
,
∫ t

t–k(t)
x(s) ds, u(t)

)
+ U(t), t ≥ , ()

x(t) = φ(t), t ∈ [–τmax], τmax = max{h, d, k, k},

where x(t) = (x(t), x(t), x(t), . . . , xn(t))T ∈ R
n is the state vector; A, B and C are known

real constant matrices; U(t) ∈ R
m is the control input. Let xh := x(t – h(t)) and Intx :=

∫ t
t–k(t) x(s) ds, the nonlinear function f (t, x, xh, Intx, u) : R+ × R

n × R
n × R

n × R
m → R

n

satisfies the following condition: ∃a, b, c, d >  such that

∥∥f (t, x, xh, Intx, u)
∥∥ ≤ a‖x‖ + b‖xh‖ + c‖ Intx ‖ + d‖u‖. ()

The time-varying delay functions h(t), d(t), k(t) and k(t) satisfy the conditions

 ≤ h ≤ h(t) ≤ h,  ≤ d(t) ≤ d,  ≤ k(t) ≤ k,  ≤ k(t) ≤ k. ()
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The initial condition function φ(t) denotes a continuous vector-valued initial function of
t ∈ [–τmax, ].

In order to stabilize the origin of nonlinear system (), we use the state feedback con-
troller U(t) satisfying

U(t) =

⎧
⎨

⎩
Du(t) + Du(t – d(t)) + D

∫ t
t–k(t) u(s) ds, nω ≤ t ≤ nω + δ,

, nω + δ < t ≤ (n + )ω,
()

where Di, i = , ,  are given matrices of appropriate dimensions, u(t) = Kx(t) and K is a
constant matrix control gain, ω >  is the control period and δ >  is the control width
(control duration) and n is a non-negative integer. Then, substituting it into nonlinear
system (), it is easy to get the following:

ẋ(t) = Ax(t) + Bx
(
t – h(t)

)
+ C

∫ t

t–k(t)
x(s) ds

+ f
(

t, x(t), x
(
t – h(t)

)
,
∫ t

t–k(t)
x(s) ds, u(t)

)

+ Du(t) + Du
(
t – d(t)

)
+ D

∫ t

t–k(t)
u(s) ds, nω ≤ t ≤ nω + δ, ()

ẋ(t) = Ax(t) + Bx
(
t – h(t)

)
+ C

∫ t

t–k(t)
x(s) ds

+ f
(

t, x(t), x
(
t – h(t)

)
,
∫ t

t–k(t)
x(s) ds, u(t)

)
, nω + δ < t ≤ (n + )ω.

It is clear that if the zero solution of nonlinear system () is globally exponentially stable,
the exponential stabilization of the controlled nonlinear system () is achieved.

The following lemmas and theorem are used in the proof of the main result.

Lemma  ([]) For any constant symmetric matrix M ∈ Rn×n, M = MT > ,  ≤ h ≤
h(t) ≤ h, t ≥ , and any differentiable vector function x(t) ∈ Rn, we have

(a)
[∫ t

t–h

ẋ(s) ds
]T

M
[∫ t

t–h

ẋ(s) ds
]

≤ h

∫ t

t–h

ẋT (s)Mẋ(s) ds,

(b)
[∫ t–h

t–h(t)
ẋ(s) ds

]T

M
[∫ t–h

t–h(t)
ẋ(s) ds

]
≤ (

h(t) – h
)∫ t–h

t–h(t)
ẋT (s)Mẋ(s) ds

≤ (h – h)
∫ t–h

t–h(t)
ẋT (s)Mẋ(s) ds.

Lemma  (Cauchy inequality, []) For any symmetric positive definite matrix N ∈ Mn×n

and x, y ∈R
n, we have

±xT y ≤ xT Nx + yT N–y.
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Lemma  (Schur complement, []) Given constant symmetric matrices X, Y , Z where
X = XT and  < Y = Y T , then X + ZT Y –Z <  if and only if

[
X ZT

Z –Y

]

< , or

[
–Y Z
ZT X

]

< .

Theorem  (Lower bounds theorem, []) Let f, f, . . . , fN : Rm → R have positive values
in an open subset D of Rm. Then the reciprocally convex combination of fi over D satisfies

min
ρi|ρi>,

∑
i ρi=

∑

i


ρi

fi(t) =
∑

i

fi(t) + max
gi,j(t)

∑

i	=j

gi,j(t)

subject to

{

gi,j(t) : Rm → R, gj,i(t) = gi,j(t),

[
fi(t) gi,j(t)

gi,j(t) fj(t)

]}

.

3 Exponential stabilization of a delayed nonlinear system via hybrid
intermittent feedback control

In this section, we present delay-dependent exponential stabilization analysis conditions
for the nonlinear system with interval discrete and distributed time-varying delays via
hybrid intermittent feedback control. Let us denote

∥∥φ(t)
∥∥ =

∥∥x()
∥∥,

∥∥ϕ(t)
∥∥ = sup

–τmax≤s≤

∥∥x(s)
∥∥, K = –LP–, yh = y

(
t – h(t)

)
,

M = λmax
(
P–) +

[
hλmax

(
P–RP–) + hλmax

(
P–UP–)]

(
 – e–αh

α

)

+ dλmax
(
P–LT T–LP–)

(
 – e–αd

α

)

+ λmax
(
P–ZP–)

[


α

(
h –

(
 – e–αh

α

))]
,

M =
[
λmax

(
P–QP–) + hλmax

(
P–RP–) + hλmax

(
P–UP–)]

(
 – e–αh

α

)

+ kλmax
(
P–SP–)

(
 – e–αk

α

)

+ dλmax
(
P–LT T–LP–)

(
 – e–αd

α

)
+ kλmax

(
P–LT W –LP–)

(
 – e–αk

α

)

+ λmax
(
P–ZP–)

[


α

(
h –

(
 – e–αh

α

))]
,

M = M
∥∥φ(t)

∥∥ + M
∥∥ϕ(t)

∥∥.

Theorem  For some given scalar  < α < ε, nonlinear system () with time-varying delay
satisfying () and under the intermittent controller () is exponentially stabilizable if there
exist positive constant ε and symmetric positive definite matrices P > , Q > , R > , S > ,
U > , T > , W >  and matrices L, S appropriately dimensioned so that the following
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symmetric linear matrix inequalities hold:

� =

⎡

⎢⎢
⎢⎢
⎢⎢⎢
⎢
⎣

� � � � � �

∗ �  �  
∗ ∗ � � � 
∗ ∗ ∗ � � 
∗ ∗ ∗ ∗ � 
∗ ∗ ∗ ∗ ∗ �

⎤

⎥⎥
⎥⎥
⎥⎥⎥
⎥
⎦

< , ()

�̃ =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

�̃ �̃ � � � �

∗ �̃  �  
∗ ∗ � � � 
∗ ∗ ∗ � � 
∗ ∗ ∗ ∗ � 
∗ ∗ ∗ ∗ ∗ �

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

< , ()

� =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢
⎣

� kCP kLT LT dL εP kc
 P

∗ –ke–αk S     
∗ ∗ –kW    
∗ ∗ ∗ –eαdT   
∗ ∗ ∗ ∗ –d  
∗ ∗ ∗ ∗ ∗ –εI 
∗ ∗ ∗ ∗ ∗ ∗ –kc

 e–αk S

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥
⎦

< , ()

� =

⎡

⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎣

–.P kCP dLT dL εP kc
 P

∗ –ke–αk S    
∗ ∗ –dT   
∗ ∗ ∗ –d  
∗ ∗ ∗ ∗ –εI 
∗ ∗ ∗ ∗ ∗ –kc

 e–αk S

⎤

⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎦

< , ()

� =

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

� kCP dL εP kc
 P

∗ –ke–αk S   
∗ ∗ –d  
∗ ∗ ∗ –εI 
∗ ∗ ∗ ∗ –kc

 e–αk S

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

< , ()

� =

⎡

⎢
⎢⎢⎢
⎢⎢
⎣

–.P kCP dL εP kc
 P

∗ –ke–αk S   
∗ ∗ –d  
∗ ∗ ∗ –εI 
∗ ∗ ∗ ∗ –kc

 e–αk S

⎤

⎥
⎥⎥⎥
⎥⎥
⎦

< , ()

[
U S

ST
 U

]

≥ , ()
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and

–αδ + (ε – α)(ω – δ) < , ()

where

� = –.
(
e–αh + e–αh

)
R,

� = PT (A + αI) + (A + αI)T P + (a + d)I – DL – LT DT
 + eαdDTDT



+ keαk DWDT
 + Q + kS – .

(
e–αh + e–αh

)
R – 

(h – h)

h
 – h


e–αh Z,

�̃ = PT (A + αI) + (A + αI)T P + (a + d)I + Q + kS

– .
(
e–αh + e–αh

)
R – 

(h – h)

h
 – h


e–αh Z – εP,

� = AP – DL,

�̃ = AP,

� = e–αh R,

� = BP,

� = e–αh R,

� =
e–αh

h + h
Z,

� =
(
h

 + h

)
R + (h – h)U + (h – h)Z – .P + eαdDTDT



+ keαk DWDT
 ,

�̃ =
(
h

 + h

)
R + (h – h)U + (h – h)Z – .P,

� = BP,

� = –e–αh Q – e–αh R – e–αh U ,

� = e–αh U – e–αh ST
 ,

� = e–αh ST
 ,

� = bI – e–αh U + e–αh S + e–αh ST
 ,

� = e–αh U – e–αh ST
 ,

� = –e–αh Q – e–αh R – e–αh U ,

� = –
e–αh

h
 + h


Z.

Moreover, the intermittent feedback control is

u(t) =

⎧
⎨

⎩
–LP–x(t), nω ≤ t ≤ nω + δ,

, nω + δ < t ≤ (n + )ω,
()
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and the solution x(t,φ) satisfies

∥∥(
x(t,φ)

)∥∥ ≤
√

M

λmin(P–)
e

(–αδ+(ε–α)(ω–δ))t
ω , ∀t ≥ .

Proof Case I: For nω ≤ t ≤ nω + δ, let Y = P– and y(t) = Yx(t). Using the feedback control
(), let us consider the following Lyapunov-Krasovskii functional:

V
(
x(t)

)
=

∑

i=

Vi(t), ()

where

V(t) = xT (t)Yx(t),

V(t) =
∫ t

t–h

eα(s–t)xT (s)YQYx(s) ds,

V(t) =
∫ t

t–h

eα(s–t)xT (s)YQYx(s) ds,

V(t) = h

∫ 

–h

∫ t

t+s
eα(τ–t)ẋT (τ )YRY ẋ(τ ) dτ ds,

V(t) = h

∫ 

–h

∫ t

t+s
eα(τ–t)ẋT (τ )YRY ẋ(τ ) dτ ds,

V(t) = (h – h)
∫ –h

–h

∫ t

t+s
eα(τ–t)ẋT (τ )YUY ẋ(τ ) dτ ds,

V(t) =
∫ 

–k

∫ t

t+s
eα(τ–t)xT (τ )YSYx(τ ) dτ ds,

V(t) = d
∫ 

–d

∫ t

t+s
eα(τ–t)ẋT (τ )KT T–Kẋ(τ ) dτ ds,

V(t) =
∫ 

–k

∫ t

t+s
eα(τ–t)xT (τ )KT W –Kx(τ ) dτ ds,

V(t) =
∫ –h

–h

∫ 

θ

∫ t

t+s
eα(τ+s–t)ẋT (τ )YZY ẋ(τ ) dτ ds dθ .

It is easy to check that

λmin
(
P–)∥∥x(t)

∥∥ ≤ V
(
x(t)

)
. ()

By taking the derivatives of V(t) along the trajectories of system (), we have

V̇(t) = yT (t)
[
PA + AT P

]
y(t) + yT (t)BPy

(
t – h(t)

)
+ yT (t)CP

∫ t

t–k(t)
y(s) ds

+ yT (t)f
(

t, x(t), x
(
t – h(t)

)
,
∫ t

t–k(t)
x(s) ds, u(t)

)

– yT (t)DLy(t) + yT (t)Du
(
t – d(t)

)
+ yT (t)D

∫ t

t–k(t)
u(s) ds.
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By applying Lemma  and Lemma , we get

yT (t)Du
(
t – d(t)

) ≤ eαdyT (t)DTDT
 y(t)

+



e–αduT(
t – d(t)

)
T–u

(
t – d(t)

)
,

yT (t)D

∫ t

t–k(t)
u(s) ds ≤ keαk yT (t)DWDT

 y(t)

+



e–αk

∫ t

t–k(t)
uT (s)W –u(s) ds,

yT (t)CP
∫ t

t–k(t)
y(s) ds ≤ keαk yT (t)CPS–PCT y(t)

+



e–αk

∫ t

t–k(t)
yT (s)Sy(s) ds.

Let ε = a + b. By utilizing condition () and Lemma , we obtain

yT (t)f (t, x, xh, Intx, u) ≤ 
∥∥y(t)

∥∥(
a‖x‖ + b‖xh‖ + c‖ Intx ‖ + d‖u‖)

≤ a
∥∥Py(t)

∥∥ + a
∥∥y(t)

∥∥ + b
∥∥Py(t)

∥∥ + b‖yh‖

+ kc
 eαk yT (t)PS–Py(t)

+



e–αk

∫ t

t–k(t)
yT (s)Sy(s) ds

+ dyT (t)LLT y(t) + dyT (t)y(t)

= ayT (t)y(t) + byT
h yh + kc

 eαk yT (t)PS–Py(t)

+



e–αk

∫ t

t–k(t)
yT (s)Sy(s) ds + dyT (t)LLT y(t)

+ dyT (t)y(t) + εPyT (t)y(t),

therefore,

V̇(t) + αV(t) ≤ yT (t)
[
PA + AT P

]
y(t) + yT (t)αPy(t) + ayT (t)y(t)

– yT (t)DLy(t) + dyT (t)LLT y(t) + dyT (t)y(t)

+ εPyT (t)y(t) + keαk yT (t)CPS–PCT y(t)

+



e–αk

∫ t

t–k(t)
yT (s)Sy(s) ds + yT (t)BPyh + byT

h yh

+ eαdyT (t)DTDT
 y(t) +




e–αduT(
t – d(t)

)
T–u

(
t – d(t)

)

+ keαk yT (t)DWDT
 y(t) + kc

 eαk yT (t)PS–Py(t)

+



e–αk

∫ t

t–k(t)
uT (s)W –u(s) ds. ()
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Next, by taking the derivative of Vi, i = , , . . . , , , along the trajectories of system (),
we have the following:

V̇(t) = –αV(t) + yT (t)Qy(t) – e–αh yT (t – h)Qy(t – h),

V̇(t) = –αV(t) + yT (t)Qy(t) – e–αh yT (t – h)Qy(t – h),

V̇(t) ≤ –αV(t) + h
 ẏT (t)Rẏ(t) – he–αh

∫ t

t–h

ẏT (s)Rẏ(s) ds,

V̇(t) ≤ –αV(t) + h
ẏT (t)Rẏ(t) – he–αh

∫ t

t–h

ẏT (s)Rẏ(s) ds,

V̇(t) ≤ –αV(t) + (h – h)ẏT (t)Uẏ(t) – (h – h)e–αh

∫ t–h

t–h

ẏT (s)Uẏ(s) ds,

V̇(t) ≤ –αV(t) + kyT (t)Sy(t) – e–αk

∫ t

t–k(t)
yT (s)Sy(s) ds,

V̇(t) ≤ –αV(t) + dẏT (t)LT T–Lẏ(t) – de–αd
∫ t

t–d(t)
u̇T (s)T–u̇(s) ds,

V̇(t) ≤ –αV(t) + kyT (t)LT W –Ly(t) – e–αk

∫ t

t–k(t)
uT (s)W –u(s) ds,

V̇(t) ≤ –αV(t) + (h – h)ẏT (t)Zẏ(t) – e–αh

∫ –h

–h

∫ t

t+θ

ẏT (s)Zẏ(s) ds dθ .

()

Applying Lemma  and the Leibniz-Newton formula, we get

–he–αh

∫ t

t–h

ẏT (s)Rẏ(s) ds ≤ –e–αh yT (t)Ry(t) + e–αh yT (t)Ry(t – h)

– e–αh yT (t – h)Ry(t – h), ()

and

–he–αh

∫ t

t–h

ẏT (s)Rẏ(s) ds ≤ –e–αh yT (t)Ry(t) + e–αh yT (t)Ry(t – h)

– e–αh yT (t – h)Ry(t – h). ()

Similarly,

–(h – h)e–αh

∫ t–h

t–h

ẏT (s)Uẏ(s) ds

= –(h – h)e–αh

(∫ t–h(t)

t–h

ẏT (s)Uẏ(s) ds +
∫ t–h

t–h(t)
ẏT (s)Uẏ(s) ds

)

≤ –
h – h

h – h(t)
e–αh

[
yh – y(t – h)

]T U
[
yh – y(t – h)

]

–
h – h

h(t) – h
e–αh

[
y(t – h) – yh

]T U
[
y(t – h) – yh

]
.



Prasertsang and Botmart Advances in Difference Equations  (2017) 2017:199 Page 11 of 21

Let ρ = h–h(t)
h–h

and ρ = h(t)–h
h–h

, apply Theorem , which is

[
U S

ST
 U

]

≥ ,

we have the following inequality:

⎡

⎣

√
ρ
ρ

[yh – y(t – h)]

–
√

ρ
ρ

[y(t – h) – yh]

⎤

⎦

T [
U S

ST
 U

]⎡

⎣

√
ρ
ρ

[yh – y(t – h)]

–
√

ρ
ρ

[y(t – h) – yh]

⎤

⎦ ≥ .

It follows that

–
ρ

ρ

[
yh – y(t – h)

]T U
[
yh – y(t – h)

]
–

ρ

ρ

[
y(t – h) – yh

]T U
[
y(t – h) – yh

]

≤ –
[
yh – y(t – h)

]T S
[
y(t – h) – yh

]
–

[
y(t – h) – yh

]T ST

[
yh – y(t – h)

]
,

as a result, we have

– (h – h)e–αh

∫ t–h

t–h

ẏT (s)Uẏ(s) ds

≤ –

ρ

e–αh
[
yh – y(t – h)

]T U
[
yh – y(t – h)

]

–

ρ

e–αh
[
y(t – h) – yh

]T U
[
y(t – h) – yh

]

≤ –e–αh
[
yh – y(t – h)

]T U
[
yh – y(t – h)

]

– e–αh
[
y(t – h) – yh

]T U
[
y(t – h) – yh

]

– e–αh
[
yh – y(t – h)

]T S
[
y(t – h) – yh

]

– e–αh
[
y(t – h) – yh

]T ST

[
yh – y(t – h)

]
. ()

From V̇(t) and V̇(t), applying Lemma  and the Leibniz-Newton formula, we get

– de–αd
∫ t

t–d(t)
u̇T (s)T–u̇(s) ds

≤ –e–αduT (t)T–u(t) + e–αduT (t)T–u
(
t – d(t)

)

– e–αduT(
t – d(t)

)
T–u

(
t – d(t)

)

= e–αdyT (t)LT T–Ly(t) –
e–αd


uT(

t – d(t)
)
T–u

(
t – d(t)

)
()

and

– e–αh

∫ –h

–h

∫ t

t+θ

ẏT (s)Zẏ(s) ds dθ

≤ –


h
 – h


e–αh

[∫ –h

–h

∫ t

t+θ

ẏ(s) ds dθ

]T

Z
[∫ –h

–h

∫ t

t+θ

ẏ(s) ds dθ

]
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= –


h
 – h


e–αh (h – h)yT (t)Zy(t)

+


h + h
e–αh yT (t)Z

(∫ t–h

t–h

y(θ ) dθ

)

–


h
 – h


e–αh

(∫ t–h

t–h

y(θ ) dθ

)T

Z
(∫ t–h

t–h

y(θ ) dθ

)
. ()

By using the following identity relation:

–ẋ(t) + Ax(t) + Bx
(
t – h(t)

)
+ C

∫ t

t–k(t)
x(s) ds + Du(t) + Du

(
t – d(t)

)

+ f
(

t, x(t), x
(
t – h(t)

)
,
∫ t

t–k(t)
x(s) ds, u(t)

)
+ D

∫ t

t–k(t)
u(s) ds = ,

multiplying by ẏT (t), we get

–ẏT (t)Pẏ(t) + ẏT (t)APy(t) + ẏT (t)BPy
(
t – h(t)

)
– ẏT (t)DLy(t)

+ ẏT (t)CP
∫ t

t–k(t)
y(s) ds + ẏT (t)Du

(
t – d(t)

)
+ ẏT (t)D

∫ t

t–k(t)
u(s) ds

+ ẏT (t)f
(

t, x(t), x
(
t – h(t)

)
,
∫ t

t–k(t)
x(s) ds, u(t)

)
= . ()

Applying Lemma  and Lemma , we obtain

ẏT (t)CP
∫ t

t–k(t)
y(s) ds ≤ keαk ẏT (t)CPS–PCT ẏ(t) +




e–αk

∫ t

t–k(t)
yT (s)Sy(s) ds,

ẏT (t)Du
(
t – d(t)

) ≤ eαdẏT (t)DTDT
 ẏ(t)

+



e–αduT(
t – d(t)

)
T–u

(
t – d(t)

)
, ()

ẏT (t)D

∫ t

t–k(t)
u(s) ds ≤ keαk ẏT (t)DWDT

 ẏ(t)

+



e–αk

∫ t

t–k(t)
uT (s)W –u(s) ds.

By utilizing condition () and Lemma , we have

ẏT (t)f (t, x, xh, Intx, u) ≤ 
∥
∥ẏ(t)

∥
∥(

a‖x‖ + b‖xh‖ + c‖ Intx ‖ + d‖u‖)

= a
∥
∥ẏ(t)

∥
∥
∥
∥Py(t)

∥
∥ + b

∥
∥ẏ(t)

∥
∥‖Pyh‖

+ c
∥∥ẏ(t)

∥∥‖P Inty ‖ + d
∥∥ẏ(t)

∥∥‖u‖
≤ ayT (t)y(t) + byT

h yh + kc
 eαk ẏT (t)PS–Pẏ(t)

+



e–αk

∫ t

t–k(t)
yT (s)Sy(s) ds + dẏT (t)LLT ẏ(t)

+ dyT (t)y(t) + εPẏT (t)ẏ(t). ()
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Hence, according to ()-() and adding the zero items of ()-(), it follows that

V̇
(
x(t)

)
+ αV

(
x(t)

) ≤ ξT (t)�ξ (t) + yT (t)Ny(t) + ẏT (t)Nẏ(t), ()

where � is defined as in () and

ξT (t) =
[

yT (t)ẏT (t)yT (t – h)yT
h yT (t – h)

∫ t–h

t–h

y(θ ) dθ

]
,

N = –.
(
e–αh + e–αh

)
R + keαk CPS–PCT + kLT W –L

+ e–αdLT T–L + dLLT + εP + kc
 eαk PS–P,

N = –.P + keαk CPS–PCT + dLT T–L + dLLT + εP + kc
 eαk PS–P.

Applying Lemma , the inequalities N <  and N <  are equivalent to � <  and � < ,
respectively. Therefore, it follows from (), ()-() and () that

V̇
(
x(t)

)
+ αV

(
x(t)

) ≤ , nω ≤ t ≤ nω + δ. ()

Thus, equation () can be reduced to the following form:

V
(
x(t)

) ≤ V
(
x(nω)

)
e–α(t–nω), nω ≤ t ≤ nω + δ. ()

Case II: For nω + δ < t ≤ (n + )ω, we choose the Lyapunov-Krasovskii functional having
the following form:

V
(
x(t)

)
= V(t) + V(t) + V(t) + V(t) + V(t) + V(t) + V(t) + V(t),

where Vi(t), i = , , . . . ,  and  are defined similarly as in (). Using a method similar to
that of Case I, we get

V̇
(
x(t)

)
+ αV

(
x(t)

)

≤ ξT (t)�̃ξ (t) + yT (t)Ny(t) + ẏT (t)Nẏ(t)

≤ ξT (t)�̃ξ (t) + yT (t)Ny(t)

+ ẏT (t)Nẏ(t) + εV
(
x(t)

)
– εV

(
x(t)

)

= ξT (t)�̃ξ (t) + yT (t)Ny(t)

+ ẏT (t)Nẏ(t) + εV
(
x(t)

)
– εyT (t)Py(t),

V̇
(
x(t)

)
– (ε – α)V

(
x(t)

)

≤ ξT (t)�̃ξ (t) + yT (t)(N – εP)y(t) + ẏT (t)Nẏ(t),

()

where �̃ is defined as in () and

N = –.
(
e–αh + e–αh

)
R + keαk CPS–PCT + dLLT + εP + kc

 eαk PS–P,

N = –.P + keαk CPS–PCT + dLLT + εP + kc
 eαk PS–P.
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Applying Lemma , the inequalities (N – εP) <  and N <  are equivalent to � < 
and � < , respectively. Therefore, it follows from (), ()-() and () that

V̇
(
x(t)

)
– (ε – α)V

(
x(t)

) ≤ , nω + δ < t ≤ (n + )ω. ()

From the above differential inequality (), we have

V
(
x(t)

) ≤ V
(
x(nω + δ)

)
e(ε–α)(t–nω–δ), nω + δ < t ≤ (n + )ω. ()

From () and (), it follows that

V
(
x(n + )ω

) ≤ V
(
x(nω + δ)

)
e(ε–α)(ω–δ)

≤ V
(
x(nω)

)
e–αδe(ε–α)(ω–δ)

= V
(
x(nω)

)
e–αδ+(ε–α)(ω–δ)

≤ V
(
x
(
(n – )ω

))
e(–αδ+(ε–α)(ω–δ))

...

≤ V
(
x
(
()ω

))
e(–αδ+(ε–α)(ω–δ))(n+).

For any t > , there is n ≥  such that nω + δ < t ≤ (n + )ω.
Case . For nω ≤ t ≤ nω + δ, using condition (), we have

V
(
x(t)

) ≤ V
(
x(nω)

)
e–α(t–(nω+δ))

≤ V
(
x
(
()ω

))
e(–αδ+(ε–α)(ω–δ))n e–α(t–(nω+δ))

≤ V
(
x
(
()ω

))
e(–αδ+(ε–α)(ω–δ))n

= V
(
x
(
()ω

))
e–(–αδ+(ε–α)(ω–δ))n e(–αδ+(ε–α)(ω–δ))(n+)

= V
(
x
(
()ω

))
e–(–αδ+(ε–α)(ω–δ))e(–αδ+(ε–α)(ω–δ))(n+)

= V
(
x
(
()ω

))
e–(–αδ+(ε–α)(ω–δ))e

(–αδ+(ε–α)(ω–δ))(n+)ω
ω

≤ V
(
x
(
()ω

))
e–(–αδ+(ε–α)(ω–δ))e

(–αδ+(ε–α)(ω–δ))t
ω . ()

Case . For nω + δ < t ≤ (n + )ω, using condition (), we get

V
(
x(t)

) ≤ V
(
x(nω + δ)

)
e(ε–α)(t–(nω+δ))

≤ V
(
x(nω)

)
e–αδe(ε–α)(t–(nω+δ))

≤ V
(
x()

)
e(–αδ+(ε–α)(ω–δ))n e–αδ+(ε–α)(t–(nω+δ))

≤ V
(
x()

)
e(–αδ+(ε–α)(ω–δ))n e–αδ+(ε–α)((n+)ω–(nω+δ))

= V
(
x()

)
e(–αδ+(ε–α)(ω–δ))(n+)

= V
(
x()

)
e

(–αδ+(ε–α)(ω–δ))(n+)ω
ω

≤ V
(
x()

)
e

(–αδ+(ε–α)(ω–δ))t
ω . ()
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Let ξ = e–(–αδ+(ε–α)(ω–δ)), from () and () it follows that

V
(
x(t)

) ≤ ξV
(
x()

)
e

(–αδ+(ε–α)(ω–δ))t
ω .

Estimating V (x()), we get

V
(
x()

) ≤ λmax
(
P–)∥∥φ(t)

∥∥,

V
(
x()

) ≤ λmax
(
P–QP–)

(
 – e–αh

α

)∥∥ϕ(t)
∥∥,

V
(
x()

) ≤ λmax
(
P–QP–)

(
 – e–αh

α

)∥∥ϕ(t)
∥∥,

V
(
x()

)
= h

∫ 

–h

∫ 

s
eατ ẋT (τ )YRY ẋ(τ ) dτ ds

≤ hλmax
(
P–RP–)

(
 – e–αh

α

)∥
∥φ(t)

∥
∥

+ hλmax
(
P–RP–)

(
 – e–αh

α

)∥∥ϕ(t)
∥∥,

V
(
x()

) ≤ hλmax
(
P–RP–)

(
 – e–αh

α

)∥
∥φ(t)

∥
∥

+ hλmax
(
P–RP–)

(
 – e–αh

α

)∥
∥ϕ(t)

∥
∥,

V
(
x()

) ≤ hλmax
(
P–UP–)

(
 – e–αh

α

)∥∥φ(t)
∥∥

+ hλmax
(
P–UP–)

(
 – e–αh

α

)∥
∥ϕ(t)

∥
∥,

V
(
x()

) ≤ kλmax
(
P–SP–)

(
 – e–αk

α

)∥∥ϕ(t)
∥∥,

V
(
x()

) ≤ dλmax
(
P–LT T–LP–)

(
 – e–αd

α

)∥∥φ(t)
∥∥

+ dλmax
(
P–LT T–LP–)

(
 – e–αd

α

)∥
∥ϕ(t)

∥
∥,

V
(
x()

) ≤ kλmax
(
P–LT W –LP–)

(
 – eαk

α

)∥∥ϕ(t)
∥∥,

V
(
x()

) ≤ λmax
(
P–ZP–) 

α

(
h –

(
 – e–αh

α

))∥∥φ(t)
∥∥

+ λmax
(
P–ZP–) 

α

(
h –

(
 – e–αh

α

))∥
∥ϕ(t)

∥
∥.

We have obtained the following:

∥∥(
x(t,φ)

)∥∥ ≤
√

M

λmin(P–)
e

(–αδ+(ε–α)(ω–δ))t
ω , ∀t ≥ ,
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which implies that nonlinear system () is exponentially stable under controller (). This
completes the proof. �

Remark  In our main results, the exponential stabilization problems are considered for
a class of nonlinear systems with non-differentiable time-varying delays, including inter-
val time-varying delay and distributed time-varying delay. We construct the improved
Lyapunov-Krasovskii functionals V (x(t)) as shown in (). The exponential stabilizabil-
ity conditions are independent of the derivatives of the time-varying delays and then the
methods used in [, , , , ] are not applicable to this system.

4 A numerical example
In this section, we present an example to show the effectiveness of the result in Theorem .

Example . In this example, the nonlinear systems with mixed time-varying delays pro-
posed by [] can be described by

ẋ(t) = Ax(t) + Bf
(
x(t)

)
+ Cf

(
x
(
t – h(t)

))
+ D

∫ t

t–k(t)
f
(
x(s)

)
ds + U(t), ()

where

A =

[
–. –.
. –

]

, B =

[
 –.
 

]

,

C =

[
–. .
. –

]

, D =

[
–. –.
–. –.

]

,

f
(
x(t)

)
=

[
tanh

(
x(t)

)
, tanh

(
x(t)

)]T .

Model () turns into the following model () with parameters:

A =

[
–. –.
. –

]

, B =

[
 
 

]

, C =

[
 
 

]

,

f (·) =

⎡

⎢
⎢⎢⎢
⎢
⎣

–. tanh(x(t)) – . tanh(x(t – h(t))) + . tanh(x(t – h(t)))
–.

∫ t
t–k(t) tanh(x(s)) ds – .

∫ t
t–k(t) tanh(x(s)) ds

tanh(x(t)) +  tanh(x(t)) + . tanh(x(t – h(t))) –  tanh(x(t – h(t)))
–.

∫ t
t–k(t) tanh(x(s)) ds – .

∫ t
t–k(t) tanh(x(s)) ds,

⎤

⎥
⎥⎥⎥
⎥
⎦

and we give

D =

[
 
 

]

, D =

[
 
 

]

, D =

[
 
 

]

.

Solution: From conditions ()-() of Theorem  with parameters a = ., b =
., c = ., d =  h = , h = ., d = ., k = ., k = ., α = ., ε = ., ω = ,
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δ = .. By using the LMI Toolbox in MATLAB, we obtain

P =

[
. –.

–. .

]

, T =

[
. .
. .

]

,

W =

[
. .
. .

]

, U =

[
. –.

–. .

]

,

Q =

[
. .
. .

]

, R =

[
. .
. .

]

,

S =

[
. .
. .

]

, Z =

[
. .
. .

]

,

L =

[
. –.
. .

]

, S =

[
–. .
. –.

]

,

K =

[
–. .
–. –.

]

, ε = .,

with a stabilizing controller

U(t) =

[
–..

–. – .

][
x(t)
x(t)

]

+

[
–..

–. – .

][
x(t – d(t))
x(t – d(t))

]

×
[

–..
–. – .

][∫ t
t–k(t) x(s) ds

∫ t
t–k(t) x(s) ds

]

, n ≤ t ≤ n + .,

U(t) = , n + . < t ≤ (n + ), n = , , , . . . .

()

For the purpose of comparison, we also tested the method proposed in []. Table 
compares the feedback controller gains obtained from those two methods. The numer-
ical simulation of nonlinear system () with time-varying delays h(t) = . + .| cos t|,
k(t) = .| sin t|, the initial condition φ(t) = [ cos(s), – cos(s)], ∀s ∈ [–., ] and with-
out hybrid intermittent feedback control is represented in Figure , which shows that sys-
tem () is stable. Figure  shows the trajectories of x(t) and x(t) of nonlinear system
() with time-varying delays d(t) = . + .| cos t|, k(t) = .| sin t| and hybrid intermit-
tent feedback control (). Furthermore, because of the lower bounds h 	=  of the delay
function, the method proposed in [] is not applicable in this case.

Remark  In Example ., we see that every state variable of nonlinear system () is
stable without control. After applying controller (), all the state variables of nonlinear
system () converge to . That shows the effectiveness of the controller.

5 Conclusion
In this paper, the exponential stabilization criterion of a nonlinear system with mixed
time-varying delays via hybrid intermittent feedback control was investigated. The time-
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Table 1 Comparison of the feedback controller gain matrix

Delay Method Controller gain matrix

K1 K2 K3

h1 = 0, h2 = 0.9 Method of [10]
[
–1.9212 1.7480
–2.0908 –49.3170

] [
–0.0034 0.0023
0.0055 –0.00640

] [
–0.0927 0.0493
0.1343 –1.4377

]

Proposed method
[
–0.0468 0.0016
–0.0020 –0.0362

] [
–0.0468 0.0016
–0.0020 –0.0362

] [
–0.0468 0.0016
–0.0020 –0.0362

]

h1 = 0.3, h2 = 1 Method of [10] Infeasible Infeasible Infeasible

Proposed method
[
–0.0411 –0.0004
0.0003 –0.0515

] [
–0.0411 –0.0004
0.0003 –0.0515

] [
–0.0411 –0.0004
0.0003 –0.0515

]

Figure 1 The trajectories of x1(t) and x2(t) of nonlinear system (35) with mixed time-varying delay
and hybrid intermittent feedback control deactivated.

varying delay functions are not necessary to be differentiable, which allows time delay
functions to be fast time-varying functions. Moreover, hybrid intermittent feedback con-
trol, including state term, interval time-varying delay term and distributed time-varying
delay term, was considered for the exponential stabilization of the nonlinear system. Based
on constructing an improved Lyapunov-Krasovskii functional, Leibniz-Newton’s formula,
Jensen’s inequality, reciprocal convex and novel delay-dependent sufficient condition for
the exponential stabilization of the system are first achieved in terms of LMIs. Finally,
a numerical example is included to show the effectiveness of the proposed hybrid inter-
mittent feedback control scheme. The results in this paper generalize and improve the
corresponding results of the recent works.
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Figure 2 The trajectories of x1(t) and x2(t) of nonlinear system (35) with mixed time-varying delay
and intermittent hybrid feedback control (36) activated.
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