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Abstract
In this paper, we devote ourselves to establishing the unconditionally stable and
absolutely convergent optimized finite difference Crank-Nicolson iterative (OFDCNI)
scheme containing very few degrees of freedom but holding sufficiently high
accuracy for the two-dimensional (2D) Sobolev equation by means of the proper
orthogonal decomposition (POD) technique, analyzing the stability and convergence
of the OFDCNI solutions and using the numerical simulations to verify the feasibility
and effectiveness of the OFDCNI scheme.

MSC: 65M60; 65N30; 65N15

Keywords: optimized finite difference Crank-Nicolson iterative scheme; Sobolev
equation; proper orthogonal decomposition; stability and convergence; numerical
simulation

1 Introduction
For convenience and without loss of universality, we think about the following two-
dimensional (D) Sobolev equation:

⎧
⎪⎨

⎪⎩

∂u
∂t – ε ∂�u

∂t – γ�u = f (x, y, t), (x, y, t) ∈ � × (, T),
u(x, y, t) = Q(x, y, t), (x, y, t) ∈ ∂� × (, T],
u(x, y, ) = G(x, y), (x, y) ∈ �,

()

where � = (a, b) × (c, d) ⊂R
 is a bounded open set with the boundary ∂�, u(x, y, t) is the

unknown function, ε and γ are two known positive parameters, and f (x, y, t) and Q(x, y, t)
as well as G(x, y) are three given functions. The existence and uniqueness of the analytic
solution for the Sobolev equation () were given in [, ].

The Sobolev equation plays an extremely important role in many numerical simulations
of mathematical physics problems such as the fluid seepage through fractured rock or soil
[], the heat exchange in different media [], and the moisture migration in soil []. How-
ever, because the Sobolev equation generally has complex known data or computational
domains in the actual engineering applications, even if theoretically there exists the ana-
lytical solution, it can not be usually sought out so that one has to rely on the numerical
methods. In nearly forty years, the Sobolev equation has been closely watched, there have
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been many numerical research reports (see, e.g., [–]). Among all numerical methods,
the finite difference Crank-Nicolson (FDCN) scheme (see []) is regarded as one of the
simplest and most convenient as well as the most easily programmed for calculating high
accuracy numerical methods for solving the D Sobolev equation. However, the classical
FDCN scheme for the D Sobolev equation is a macroscale system of equations contain-
ing lots of unknowns, i.e., degrees of freedom so as to undertake very large computational
load in the real-world engineering applications. Thus, an important issue is how to de-
crease the unknowns of the classical FDCN scheme so as to alleviate the truncated error
amassing in the actual calculating procedure and retrench the calculating time but keep
sufficiently high accuracy of numerical solutions.

A lot of numerical simulations (see, e.g., [–]) have verified that the proper orthogo-
nal decomposition (POD) technique is a very effective approach to decrease the degrees of
freedom for numerical models and alleviate the truncated error amassing in the numerical
calculation. But the most existing reduced-order models as mentioned above were built via
the POD basis formulated with the classical numerical solutions at all time nodes, before
computing the reduced-order numerical solutions at the same time nodes, which were
some nugatory repeated calculations. Since , some reduced-order extrapolating fi-
nite difference (FD) schemes based on the POD technique for PDEs have been established
successively by Luo’s team (see, e.g., [–]) in order to avert the valueless repeated com-
putations.

However, as far as we know, there has been not any paper that the POD technique is
used to decrease the degrees of freedom in the classical FDCN scheme for the D Sobolev
equation. Therefore, in this article, we use the POD technique to establish an optimized
finite difference iterative (OFDCNI) scheme containing very few unknowns but holding
sufficiently high accuracy for the D Sobolev equation, analyze the stability and conver-
gence of the OFDCNI solutions, and verify the feasibility and effectiveness of the OFDCNI
scheme by means of numerical simulations.

The major difference between the OFDCNI scheme and the existing POD-based
reduced-order extrapolating FDCN schemes (see, e.g., [–]) consists in that the
Sobolev equation not only includes the time first-order derivative term and the spacial
variables second-order derivative terms, but it also contains a mixed derivative term about
time first-order and spacial variables second-order so that either the establishment of the
OFDCNI scheme or the analysis of the stability and convergence of the OFDCNI solutions
faces more difficulties and needs more skills than the existing reduced-order extrapolat-
ing FD schemes as mentioned, but the Sobolev equation has some specific applications.
Fortunately, we adopt the vector and matrix analysis approaches to analyze the stability
and convergence of the classical FDCN and OFDCNI solutions such that the theoretical
analysis not only becomes much simpler and more convenient but the numerical simu-
lations in computer can also be easily implemented. Especially, the OFDCNI scheme has
fully second-order accuracy, is unconditionally stable and absolutely convergent, and is
only built by the POD basis constituted with the classical FDCN solutions over the initial
very short time span so that it also has not repeated calculation like in [–]. Hence, it
is development and improvement over the existing ones mentioned above.

The rest of the article is arranged as follows. The classical FDCN scheme for the D
Sobolev equation is posed in Section . The OFDCNI scheme based on the POD technique
for the D Sobolev equation is built in Section . The stability and convergence of the
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OFDCNI solutions is deduced in Section . In Section , some numerical simulations are
used to verify the feasibility and effectiveness of the OFDCNI scheme. Finally, some main
conclusions are generalized in Section .

2 The classical FDCN scheme for the 2D Sobolev equation
Let �t be the time step and �x and �y be, separately, the spacial steps in x and y directions,
un

i,j denote the classical FDCN approximations of u at points (xi, yj, tn) (xi = a + i�x, yj = c +
j�y, tn = n�t,  ≤ i ≤ I ≡ [(b – a)/�x],  ≤ j ≤ J ≡ [(d – c)/�y], and  ≤ n ≤ N ≡ [T/�t],
where [R] represents the integer part of the real number R).

By approximating to the derivatives of () by means of the following difference quotient:

∂u
∂t

=
un+

i,j – un
i,j

�t
+ O(�t) ≈ un+

i,j – un
i,j

�t
,

∂u
∂x =

un
k+,j – un

i,j + un
i–.j

�x + O
(
�x) ≈ un

k+,j – un
i,j + un

i–.j

�x ,

∂u
∂y =

un
i,j+ – un

i,j + un
i,j–

�y + O
(
�y) ≈ un

i,j+ – un
i,j + un

i,j–

�y ,

we obtain the following classical FDCN scheme:

un+
i,j –

ε + .γ�t
�x

(
un+

i+,j – un+
i,j + un+

i–,j
)

–
ε + .γ�t

�y

(
un+

i,j+ – un+
i,j + un+

i,j–
)

= (.γ�t – ε)
[


�x

(
un

i+,j – un
i,j + un

i–,j
)

+


�y

(
un

i,j+ – un
i,j + un

i,j–
)
]

+ un
i,j

+ �tf n
i,j , i = , , . . . , I – , j = , , . . . , J – , n = , , , . . . , N –  ()

with boundary conditions

un
,j = Q(, j�y, n�t), un

I,j = Q(I�x, j�y, n�t), j = , , . . . , J ,

un
i, = Q(i�x, , n�t), un

i,J = Q(i�x, J�y, n�t), i = , , . . . , I

and initial conditions

u
i,j = G(i�x, j�y), i = , , . . . , I – , j = , , . . . , J – ,

where f n
i,j = f (xi, yj, tn). Then the matrix forms of () are written as follows:

AUn+ = AUn + �tFn, n = , , . . . , N – , ()

where Un = (un
,, un

,, . . . , un
I,, un

,, un
,, . . . , un

I,, . . . , un
I,J )T , Fn = (f n

,, f n
,, . . . , f n

I,, f n
,, f n

,, . . . ,
f n
I,, . . . , f n

I,J )T , U = (G(x, y), G(x, y), . . . , G(xI , y), G(x, y), G(x, y), . . . , G(xI , y), . . . ,
G(xI , yJ ))T , A = I + (ε + .γ�t)�x–B + (ε + .γ�t)�y–C, A = I + (ε – .γ�t)�x–B +
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(ε – .γ�t)�y–C, I is the unit matrix, and

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

 –  · · ·  
–  – · · ·  
 –  · · ·  
...

...
...

. . . · · · ...
   · · ·  –
   · · · – 

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣


I zeros
︷︸︸︷· · · –  · · · 

...  · · · . . . . . . 

–
...

. . . · · · . . . 


. . .

...
. . .

... –


. . . . . . · · · 

...
   – · · ·︸︷︷︸

I zeros



⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Define the norm of matrix Â by ‖Â‖, = supx �= ‖Âx‖/‖x‖, where ‖x‖ = [
∑M

i= x
i ]/

denotes the l norm of vector x = (x, x, . . . , xM) and M = (I + )(J + ). For the classical
FDCN scheme, we have the following results.

Theorem  The classical FDCN scheme () has a unique set of solutions {Un}N
n= and the

classical FDCN solutions Un (n = , , . . . , N ) are unconditionally stable and absolutely con-
vergent. When u ∈ C((, T]; H(�)) ∩ C((, T]) is the exact solution for the D Sobolev
equation, the following error estimates hold:

∥
∥Ũ

n – Un∥∥
 = O

(
�x,�y,�t), ()

where n = , , . . . , N and Ũ
n = (u(x, y, tn), u(x, y, tn), . . . , u(xI , y, tn), u(x, y, tn), u(x, y,

tn), . . . , u(xI , y, tn), . . . , u(xI , yJ , tn))T (n = , , . . . , N ) are formed with the analytic solution of
the Sobolev equation ().

Proof Because B and C are two positive definite matrices, it is easily known that the matrix
A is positive definite. Therefore, () has a unique set of solutions {Un}N

n= satisfying

Un = A–AUn– + �tA–Fn–, n = , , . . . , N . ()

By the computing formulas of eigenvalues (see, e.g., [], Theorem ..), we obtain the
eigenvectors of A–A as follows:

λ̃j =
 + (ε – .γ�t)(�x– + �y–) sin θj

 + (ε + .γ�t)(�x– + �y–) sin θj
, ()

where θj = (j – )π/(M), j = , , . . . , M. Thus, the spectral radius ρ(A–A) of A–A sat-
isfies

ρ
(

A–A
)

= max
≤j≤M

|λ̃j|

= max
≤j≤M

∣
∣
∣
∣
 + (ε – .γ�t)(�x– + �y–) sin θj

 + (ε + .γ�t)(�x– + �y–) sin θj

∣
∣
∣
∣ ≤ . ()

Therefore, the classical FDCN solutions {Un}N
n= are unconditionally stable. Furthermore,

by Lax’s stability theorem (see, e.g., [, ]), we easily deduce that the FDCN solutions
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{Un}N
n= are absolutely convergent. By Taylor’s formulas or the above discrete process, we

easily deduce the error estimates (), which completes the proof of Theorem . �

Remark  In this study, we adopt a simpler explicit FDCN scheme to discrete the D
Sobolev equation, but the ideas and approaches here can be easily extended to other FDCN
schemes, for example, a staggered direction FDCN scheme or an implicit FDCN scheme.

If f , G, Q, �t, �x, �y, and parameters ε and γ are given, then we can gain the set of
FDCN solutions {U, U, . . . , UN } by solving (). A subset {Ui}L

i= (usually L 
 N ), called
the snapshots, is extracted from the initial L solution vectors of {U, U, . . . , UN }.

3 The OFDCNI scheme for the 2D Sobolev equation
3.1 The constitution of the POD basis
For M = (I +)(J +), let Au = (U, U, . . . , UL) ∈R

M×L,λj >  (j = , , . . . , r = rank(Au)) be the
positive eigenvalues of AuAT

u arrayed non-increasingly and Uu = (φ,φ, . . . ,φr) ∈R
M×r be

the orthonormal eigenvectors of AuAT
u corresponding to the positive eigenvalues. Then

the POD basis � = (φ,φ, . . . ,φd) (d ≤ r) consists of the initial d vectors in Uu and has the
following property (see, e.g., []):

∥
∥Au – ��T Au

∥
∥

, =
√

λd+. ()

Further, we have

∥
∥Un – ��T Un∥∥

 =
∥
∥
(

Au – ��T Au
)
εn

∥
∥



≤ ∥
∥Au – ��T Au

∥
∥

,‖εn‖ ≤ √
λd+, ()

where n = , , . . . , L, and εn (n = , , . . . , L) are the unit vectors with nth component be-
ing . Therefore, �u = (φ,φ, . . . ,φd) is a series of optimal basis.

Remark  Because the degree L of the matrix AT
u Au is far smaller than the degree M of

the matrix AuAT
u , i.e., the number of extracted snapshots L is much smaller than that of

the spacial mesh points M, but their positive eigenvalues λi (i = , , . . . , r) are the same.
Thus, we may first compute the eigenvalues λi (i = , , . . . , r) for the matrix AT

u Au and
the corresponding eigenvectors ψ i (i = , , . . . , r), and then, by means of the formula ϕi =
Auψ i/

√
λi (i = , , . . . , r), we can acquire the eigenvectors ϕi (i = , , . . . , r) corresponding

to the positive eigenvalues λi (i = , , . . . , r) for the matrix AuAT
u . Thus, we can conveniently

find out the POD basis.

3.2 The formulation of the OFDCNI scheme for 2D Sobolev equation
In Section ., we have acquired the initial L OFDCNI solutions Un

d = �u�
T
u Un =:

�uβ
n
d (n = , , . . . , L), where Un

d = (un
d,,, . . . , un

d,I,, un
d,,, . . . , un

d,I,, . . . , un
d,I,J )T and βn

d =
(βn

 ,βn
 , . . . ,βn

d )T . If the solution vectors Un (n = L + , L + , . . . , N ) for the classical FDCN
scheme () are approximated by Un

d = �uβ
n
d (n = L + , L + , . . . , N ), i.e., Un are replaced

with Un
d = �uβ

n
d (n = L + , L + , . . . , N ), we can build the OFDCNI scheme based on the
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POD basis as follows:

⎧
⎪⎪⎨

⎪⎪⎩

�βn
d = �u�

T
u Un,  ≤ n ≤ L;

A�uβ
n+
d = A�uβ

n
d + �tFn, L ≤ n ≤ N – ,

Un
d = �βn

d, n = , , . . . , N ,

()

where Un (n = , , . . . , L) are the initial L known classical FDCN solutions to () and the
matrices A and A are given in (). OFDCNI scheme () is simplified into

⎧
⎪⎪⎨

⎪⎪⎩

βn
d = �T

u Un,  ≤ n ≤ L;

βn+
d = �T

u A–A�uβ
n
d + �t�T

u A–Fn, L ≤ n ≤ N – ,

Un
d = �uβ

n
d, n = , , . . . , N .

()

Remark  Because the classical FDCN scheme () includes M = (I + )(J + ) unknowns at
each time node, whereas OFDCNI scheme () at the same node only includes d unknowns
(d 
 M), we can expressly realize the merit of OFDCNI scheme ().

4 The existence, stability, and convergence of the OFDCNI solutions
In the following, we devote ourselves to deducing the existence, stability, and convergence
of the OFDCNI solutions. We have the following main results.

Theorem  Under the conditions of Theorem , OFDCNI scheme () has a unique set
of solutions {Un

d}N
n=, the solutions Un

d (n = , , . . . , N ) are unconditionally stable and abso-
lutely convergent, and the following error estimates hold:

∥
∥Un – Un

d
∥
∥

 ≤ E(n)
√

λ(d+), ()

where E(n) =  ( ≤ n ≤ L) and E(n) = exp[(n – L)γ�t(�x– + �y–)] (L +  ≤ n ≤ N ).
Moreover, if the vectors Ũ

n = (u(x, y, tn), u(x, y, tn), . . . , u(xI , y, tn), u(x, y, tn), u(x, y,
tn), . . . , u(xI , y, tn), . . . , u(xI , yJ , tn))T (n = , , . . . , N ) consist of the analytic solution of the
Sobolev equation (), then we have the following error estimates:

∥
∥Ũ

n – Un
d
∥
∥

 = O
(
�x,�y,�t, E(n)

√
λ(d+)

)
. ()

Proof By using Un
d = �βn

d (n = , , . . . , N ), OFDCNI scheme () is reverted into the fol-
lowing form:

Un
d = �u�

T
u Un, n = , , . . . , L; ()

AUn+
d = AUn

d + �tFn, L ≤ n ≤ N – . ()

Because the classical FDCN solutions Un (n = , , . . . , L) are known and stable, when n =
, , . . . , L, from (), we obtain unique solutions Un

d = �u�
T
u Un (n = , , . . . , L) that are

stable since ‖Un
d‖ ≤ ‖Un‖. On the other hand, when n = L + ,  + , . . . , N , because the

matrix A is positive definite, OFDCNI scheme () has a unique set of solutions {Un
d}N

n=L+.
By using the same arguments as those in Theorem , we easily deduce that the OFDCNI
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solutions {Un
d}N

n=L+ are unconditionally stable. Thus, OFDCNI scheme () has a unique
set of stable solutions {Un

d}N
n=. Furthermore, by Lax’s stability theorem (see, e.g., [, ]),

it is deduced that the OFDCNI solutions {Un
d}N

n= are absolutely convergent.
When n = , , . . . , L, from (), we immediately obtain the following error estimates:

∥
∥Un – Un

d
∥
∥

 =
∥
∥Un – �u�

T
u Un∥∥

 ≤ √
λ(d+), n = , , . . . , L. ()

Let en = Un – Un
d . Because ‖A–‖, <  and ‖B‖, = ‖C‖, < , when n = L+, L+, . . . , N ,

from () and (), we have

‖en+‖ =
∥
∥A–[A – γ�t

(
�x–B + �y–C

)]
en

∥
∥



≤ ‖en‖ + γ�t
(
�x– + �y–)‖en‖. ()

By summing () from L to n –  and using () and Gronwall’s inequality (see, e.g., [,
]), we have

‖en‖ ≤ √
λ(d+) + γ�t

(
�x– + �y–)

n–∑

i=L

‖ei‖ ≤ E(n)
√

λ(d+), ()

where E(n) = exp[(n – L)γ�t(�x– + �y–)] (n = L + , L + , . . . , N ). Combining () with
() yields (), and combining Theorem  with () yields (), which accomplishes the
demonstration of Theorem . �

Remark  The error factors
√

λd+ and E(n) = exp[(n – L)γ�t(�x– + �y–)] (n = L +
, L + , . . . , M) in Theorem  are induced by the reduced-order of the classical FDCN
scheme and the iteration, respectively, which could be acted as the suggestions of choos-
ing the number d of POD bases, i.e., as long as we choose d such that E(N)

√
λd+ =

O(�x,�y,�t).

5 Numerical simulations
In this section, we provide some numerical simulations to verify the superiority of the
OFDCNI scheme for the D Sobolev equation.

In the D Sobolev equation (), we chose the computational domain as � = {(x, y) :  ≤
x ≤ ,  ≤ y ≤ }, f (x, y, t) = πe–π t sinπx sinπy, Q(x, y, t) = , G(x, y) = sinπx sinπy, ε =
–, and γ = . The spatial steps are chosen as �x = �y = . and the time step is chosen
as �t = ..

First, the snapshots were extracted from the initial classical FDCN solutions Un (n =
, , . . . , ) for the classical FDCN scheme (). And then, the snapshot matrix Au was com-
piled and the eigenvalues and the corresponding eigenvectors of AuAT

u were computed. It
was achieved by estimation that

√
λ ≤ –, which implies that as long as the initial five

eigenvectors of matrix AuAT
u are chosen as the POD basis, the accuracy requirement could

be satisfied. In the end, the OFDCNI solutions at t = ., ., . were computed out via
OFDCNI scheme () with five POD bases, and the classical FDCN solutions were also
computed out by means of the classical FDCN scheme () at the same time nodes, which
were exhibited in Figures  to , respectively.
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Figure 1 The classical FDCN solution at t = 0.1.

Figure 2 The OFDCNI solution at t = 0.1.

Comparing the numerical conclusions of the classical FDCN scheme with the OFDCNI
scheme summarized the following conclusions. The charts in Figures  and  are basically
identical at t = .. However, the classical FDCN solution appeared with a little disper-
sion (see Figure ) at t = ; whereas the OFDCNI solution was still stable and smooth
(see Figure ). Especially, the classical FDCN solution emerged with very great dispersion
(see Figure ) at t =  due to the truncated error amassing, but the OFDCNI solution yet
remained stable and smooth (see Figure ). It implies that the OFDCNI solutions were
much better than the classical FDCN solutions and shows that the OFDCNI scheme is
much more efficient and advanced than the classical FDCN scheme for solving the D
Sobolev equation.

Due to the OFDCNI scheme greatly decreasing the degrees of freedom, the consuming
time of the OFDCNI scheme is far less than that of the classical FDCN scheme in the above
numerical simulations. For example, the execution time for the OFDCNI scheme with five
POD bases was only  seconds at t = , while that of the classical FDCN scheme was 
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Figure 3 The classical FDCN solution at t = 1.

Figure 4 The OFDCNI solution at t = 1.

seconds in the same PC, but the errors of both solutions did not exceed O(–), which
also shows that the numerical computational results were in line with the theoretical ones.

In addition, in the above numerical simulations, we only used the initial few given clas-
sical FDCN solutions over a very short time span [, T] (T 
 T ) as the snapshots to
constitute the POD basis and build the OFDCNI scheme before calculating the OFD-
CNI solutions over the total time span [, T]. When one solves the real-world engineering
problems, one may use the recorded data (over a very short time span [, T]) to constitute
the POD basis, to build the OFDCNI scheme, and to predict future physical phenomena
and changes (over a time span [T, T]). Therefore, the OFDCNI scheme holds very exten-
sive applied prospect.

6 Conclusions
In this article, we have established the OFDCNI scheme based on the POD technique for
the D Sobolev equation. First, the snapshots are extracted from the initial few FDCN so-



Xia and Luo Advances in Difference Equations  (2017) 2017:196 Page 10 of 12

Figure 5 The classical FDCN solution at t = 2.

Figure 6 The OFDCNI solution at t = 2.

lutions for the D Sobolev equation. And then, the POD basis is constituted by the snap-
shots, and the OFDCNI scheme having the fully second-order accuracy and containing
very few unknowns is established by replacing the unknown FDCN solution vectors with
the linear-combination of the POD basis. Finally, the stability and convergence of the OFD-
CNI solutions are deduced. The numerical simulations have exhibited that the OFDCNI
solutions are far better than the classical ones. This implies that the OFDCNI scheme is
highly efficient and reliable for solving the D Sobolev equation.

Even though we only discuss the OFDCNI scheme for the D Sobolev equation on the
domain � = [a, b] × [c, d], the approach here can be extended to more general domains,
even extended to more complicated engineering problems. Therefore, the technique here
has very extensive applications.
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