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Abstract
Atherosclerosis usually occurs within the large arteries. It is characterized by the
inflammation of the intima, which involves dynamic interactions between the plasma
molecules; namely, LDL (low density lipoproteins), monocytes or macrophages,
cellular components and the extracellular matrix of the arterial wall. This process is
referred to as plaque formation. If the accumulation of LDL cholesterol progresses
unchecked, atherosclerotic plaques will form as a result of increased number of
proliferating smooth muscle cells (SMCs) and extracellular lipid. This can thicken the
artery wall and interfere further with blood flow. The growth of the plaques can
become thrombotic and unstable, ending in rupture which gives rise to many life
threatening illnesses, such as coronary heart disease, cardiovascular diseases,
myocardial infarction, and stroke. A mathematical model of the essential chemical
processes associated with atherosclerotic plaque development is analyzed,
considering the concentrations of LDLs, oxidized LDLs, foam cells, oxidized
LDL-derived chemoattractant and macrophage-derived chemoattractant, the density
of macrophages, smooth muscle cells (SMCs), and extracellular matrix (ECM). The
positive invariant set is found and local stability is established. Oscillatory behavior of
the model solutions is also investigated. Numerical solutions show various dynamic
behaviors that can occur under suitable conditions on the system parameters.

Keywords: atherosclerosis; atherosclerotic plaque growth; system stability; Hopf
bifurcation

1 Introduction
Atherosclerosis is a serious disease occurring in the major arteries, or blood vessels,
caused by a formation of fatty lesions which contain cholesterol and cell debris in the
arterial wall. Lesions, which is a region that has been damaged due to injury, can form
quite early in life and develop throughout one’s lifetime.

Atherosclerotic plaque formation and growth in arteries are complex processes hemo-
dynamically and mechanically. Some plaques, which are build-ups inside your arteries
composed of fat, cholesterol, calcium, and other matters, remain stable throughout an
individual’s life, or they become unstable and can grow to such a size that they pose a
health risk from stenosis, which is a partial blockage of the artery, leading to disruption.
The rupture of these vulnerable plaques is thought to be responsible for most fatalities.
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Figure 1 Diagram showing different layers of the arterial wall.

According to Davies [], almost % of deaths from myocardial infarction (heart attack)
are caused by plaque rupture.

Medium-to-large arteries have three main layers. The interior boundary of the artery is
lined with a layer of endothelial cells (ECs). Then there is the intima, surrounded by the
media, and finally an outer layer called adventitia. Fatty streaks and plaques form in the
intima. Please see Figure  for the diagram of these layers of the arterial wall.

According to recent statistics [], atherosclerosis overwhelmingly causes more morbid-
ity and mortality in the western world than other diseases. The prevention and treatment
of atherosclerosis is one of the most important problems in medicine. For this reason, bet-
ter understanding of the atherosclerotic plaque development has been a subject of intense
investigation.

The disease process begins when LDL (‘bad’ cholesterol) in the bloodstream internalizes
through the endothelial cells and enters the intima in the artery wall. The LDL particles
then are modified by free receptors and can get oxidized into a modified form such as ox-
idized LDL (oxLDL). The immune response following the diffusion and oxidation of LDL
cholesterol urges the endothelial cells near the inflammatory area to recruit monocytes
from the bloodstream, which subsequently enter the intima []. Once in the intima, the
monocytes differentiate (or become specialized) to turn into macrophages in the artery
wall and ingest the oxLDLs through the scavenger receptors on their surfaces [].

These macrophages eventually transform into foam cells, the hallmark of the artery le-
sion of fatty streak. This leads to trapping of cholesterol within the artery wall. The mat-
uration of fatty streaks into more advanced plaques produces lesions that are usually cov-
ered with a fibrous cap composed of smooth muscle cells (SMCs) and extracellular matrix
(ECM) components, such as elastin and collagen [].

The migration of SMCs responds to a chemical signal produced during the accumu-
lation of oxLDL, foam cells, and debris. This results in the formation of a fibrous cap, a
layer of connective tissue that forms an atherosclerotic plaque, which shields the lesion
from the lumen. The fibrous cap encloses a lipid-rich necrotic core composed of oxLDLs,
cholesterol and apoptotic or necrotic cells that are unable to obtain sufficient nutrients
for survival []. As the inflammatory process progresses, apoptosis (cell death that occurs
normally) and matrix degradation by matrix metalloproteinases (MMPs) become appar-
ent. As inflammation escalates, accompanied by persistent foam cell recruitment and the
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ever more necrotic environment within the atherosclerotic plaque, further development
and maturation of the atherosclerotic lesion ensue. This assists in the enlargement of the
lipid rich core and thickening of the fibrous cap [].

Atherosclerotic plaques can be classified into two types: stable and unstable plaques.
Stable atherosclerotic plaques are characterized by a thicker layer of fibrous cap, which
protects the plaque from rupture. Unstable atherosclerotic plaques are characterized by a
lipid core covered by a relatively thin fibrous cap containing less extracellular matrix and
vascular smooth muscle cells, often with inflammatory cells and secretion of proteinases.
This may lead to rupture or fissure of the surface of the plaque, thus exposing the lipid
core to the bloodstream causing thrombosis (local clotting of the blood) and many car-
diovascular diseases [].

Most modeling of plaque development involves spatial-temporal constructs because
there are also fluid stresses that come into play [, , ]. Because of the effort spent in
dealing with the partial differential equations, the chemistry gets reduced drastically. Our
purpose is to develop the basic dynamic model that describes the interaction among vital
components in the temporal dynamics of the plaque formation process to which the spa-
tial aspect could be readily incorporated later. First, the positive invariant set is found and
local stability is established. Then, Hopf bifurcation analysis is carried out to illustrate the
existence of sustained oscillatory behavior of the model solutions. Next, numerical sim-
ulations are carried out to verify our theoretical predictions concerning various dynamic
behaviors that can occur under suitable conditions on the system parameters. Finally, clin-
ical interpretation and conclusion are given.

2 System model
Atherosclerotic plaques start with some ‘insult’ to the intimal layer of the cardiac artery
that initiates an inflammatory response. LDLs and immune cells (mainly monocytes and
T-cells) migrate from the lumen into the intima. The monocytes quickly mature into
macrophages, and through a rather complicated process the LDLs are oxidized, mainly
due to the pressure of the free radicals. The macrophages are now able to ingest the oxi-
dized LDLs and become fat-ladened foam cells.

We assume there are chemotactic mechanisms, like a macrophage colony stimulating
factor, that facilitate the migration of smooth muscle cells into the intima to augment the
native smooth muscle cell population. A late process is the formation of the cap separating
the plaques from the lumen.

The ‘health’ of the cap is our main concern because it is what determines stable from
unstable plaque.

Our model follows the following variables: LDL concentration (Ll), oxidized LDL con-
centration (LO), macrophages density (M), smooth muscle cell density (S), and two
chemoattractants, one an oxidized-LDL-derived chemoattractant (CO), and the other a
macrophage-derived chemoattractant (CM). We also have equations for the foam cell den-
sity (F) and extracellular matrix concentration (E). Figure  shows a schematic diagram of
the process being modeled below.

The equation that models the evolution of LDL concentration is as follows:

dLl

dt
= σ – dRf Ll, ()
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Figure 2 Diagram showing the reactions among the variables modeled in (1)-(8).

which assumes that Ll is supplied at a constant rate, σ , by the blood and is lost through
the oxidization process modeled by the last term. Here, Rf denotes the free radicals in the
oxidization according to Ll + Rf →

d
LO, d being the oxidation rate, and is left as a fixed

parameter of the model.
The equation

dLO

dt
= dRf Ll – dMLO – dOLO ()

models the evolution of oxidized LDL concentration, whose source is Ll and is lost through
ingestion by macrophages with rate constant d. dO is the degradation rate of LO. It is
assumed that the uptake of LO is sufficiently efficient that there is no loss of LO to processes
other than degradation.

The evolution of macrophage concentration within the compartment is modeled by

dM
dt

= sCO – dMLO – dMM, ()

where s is the immigration rate of M fostered by CO, and dM is the death rate, and a
percentage of oxidized LDL-ingested macrophages is lost to foam cell development (β ∈
(, )), so that the evolution of foam cells follows the following equation:

dF
dt

= βdMLO – dF F , ()

where dF is the death rate of foam cells and β is the fraction of MLO that goes into the
production of foam cells. CO is modeled by

dCO

dt
= sLO – dCCO, ()

in which we assume that an oxidized LDL-derived chemoattractant fosters the migration
of macrophages into the compartment at the rate given by the first term in () with the
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Table 1 Meanings and units of variables in the model system (1)-(8)

Variable Meaning Unit

Ll Low density lipoprotein concentration g cm–3

LO Oxidized low density lipoprotein concentration g cm–3

M Macrophage concentration g cm–3

F Foam cells density g cm–3

CO Concentration of oxidized-LDL-derived chemoattractant g cm–3

CM Concentration of macrophage-derived chemoattractant g cm–3

S Smooth muscle cell density g cm–3

E Extracellular matrix concentration g cm–3

rate constant s, sCO being the ‘immigration fostering’ term in the M-equation. CO can
degrade at the rate dC .

The equation for the macrophage-derived chemoattractant is

dCM

dt
= sM – dcCM –

ρCMS
 + kcCM

, ()

in which CM is produced at the rate s and naturally degrades at the rate dc. The last term
represents CM being captured by the smooth muscle cells S; that is CM is responsible for
the movement of smooth muscle cells into the intima from the media layer with the satu-
ration constant kc and the maximal rate constant ρ

kc
.

The smooth muscle cells follow the equation

dS
dt

=
sCM

 + kcCM
+ pS – mSS – dSS, ()

where the first term on the right-hand side is a ‘chemotactic’ immigration term with the
maximal production rate s

kc
. The second term is a linearized proliferation term with p

being intrinsic growth rate, since there is a ‘native’ population of smooth muscle cells.
The last term is an intrinsic death term with the death rate constant dS . mS is the rate at
which S is lost to produce E.

Finally, the growth and degradation of the cap depend on the concentrations of S and M.
Extracellular matrix material (collagen) mainly comes from smooth muscle cells and pro-
vides the building material for the cap. We assume that the production rate of extracel-
lular matrix is proportional to the concentration of smooth muscle cells, and the level of
macrophages in the cap is proportional to the concentration of matrix metalloproteinases
(MMPs). Hence, the portion of smooth muscle cells devoted to the cap is mSS, and the
portion of the oxidized LDL consumed macrophages affecting the cap is proportional to
dMLO; that is, αdMLO. Here, α is the fraction of MLO that goes into the production of
E, which β is the fraction that goes into the production of F so that α + β = . Thus, the
rate of growth of cap material is given by

dE
dt

= αdsMLOE + (mS + μ)S – dEE. ()

The long term behavior of E determines whether the cap becomes vulnerable to rupturing
or not. The meanings and units of the variables in our model are given in Table .

In the next section, we show that the model consisting of equations ()-() admits posi-
tive and bounded solutions under suitable conditions on the system parameters.
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3 Stability analysis
First, we need to show the following lemma which ensures that, under suitable conditions,
all the solutions of system ()-() are nonnegative. We also identify a set B in R


+ such that

all solutions starting from B remain bounded.

Lemma  Let all parameters in ()-() be positive and

mS + dS > p ()

and B be the region in R

+ defined by

B =

⎧
⎪⎨

⎪⎩
(Ll, LO, M, F , CO, CM, S, E) ∈R


+

∣
∣
∣
∣
∣
∣
∣

 < Ll ≤ L̄l,  < LO ≤ L̄O,  < M ≤ M̄,
 < F ≤ F̄ ,  < CO ≤ C̄O,  < CM ≤ C̄M,

 < S ≤ S̄,  < E ≤ Ē

⎫
⎪⎬

⎪⎭
,

where

L̄l =
σ

dRf
, L̄O =

σ

dO
, M̄ =

σ ss

dCdMdO
, F̄ =

βdσ
ss

dF dCdMd
O

, C̄O =
σ s

dCdO
,

C̄M =
σ sss

dcdCdMdO
, S̄ =

σ ssss

(mS + dS – p)dcdCdMdO
,

Ē =
σ ssss(mS + μ)

(mS + dS – p)dcdCdEdMdO
.

Then B is positive invariant and all solutions starting in B are uniformly bounded.

Proof First, we show that a solution starting from within B is positive. Let

(
Ll(), LO(), M(), F(), CO(), CM(), S(), E()

) ∈ B.

If Ll(t) were to become nonpositive, then there would exist t >  such that Ll(t) = 
and Ll(t) >  for any t,  ≤ t < t. Then, necessarily, dLl

dt |t=t ≤ , which is a contradiction
because

dLl

dt

∣
∣
∣
t=t

= σ – dRf Ll(t) = σ > .

Hence, Ll(t) remains positive for all t ≥ .
Next, LO(t) would become nonpositive if there existed t >  such that LO(t) =  and

LO(t) >  for any t,  ≤ t < t. Then, necessarily, dLO
dt |t=t ≤ , which is a contradiction

because

dLO

dt

∣
∣
∣
t=t

= dRf Ll(t) – dM(t)LO(t) – dOLO(t) = dRf Ll(t) > .

Hence, LO(t) remains positive for all t ≥ .
If CO(t) were to become nonpositive, then there would exist t >  such that CO(t) = 

and CO(t) >  for any t,  ≤ t < t. Then, necessarily, dCO
dt |t=t ≤ , which is a contradiction
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because

dCO

dt

∣
∣
∣
t=t

= sLO(t) – dCCO(t) = sLO(t) > .

Hence, CO(t) remains positive for all t ≥ .
If M(t) were to become nonpositive, then there would exist t >  such that M(t) = 

and M(t) >  for any t,  ≤ t < t. Then, necessarily, dM
dt |t=t ≤ , which is a contradiction

because

dM
dt

∣
∣
∣
t=t

= sCO(t) – dM(t)LO(t) – dMM(t) = sCO(t) > .

Hence, M(t) remains positive for all t ≥ .
Next, F(t) would become nonpositive if there existed t >  such that F(t) =  and F(t) >

 for any t,  ≤ t < t. Then, necessarily, dF
dt |t=t ≤ , which is a contradiction because

dF
dt

∣
∣
∣
t=t

= βdM(t)LO(t) – dF F(t) = βdM(t)LO(t) > .

Hence, F(t) remains positive for all t ≥ .
CM(t) would become nonpositive if there existed t >  such that CM(t) =  and CM(t) >

 for any t,  ≤ t < t. Then, necessarily, dCM
dt |t=t ≤ , which is a contradiction because

dCM

dt

∣
∣
∣
t=t

= sM(t) – dcCM(t) –
ρCM(t)S(t)
 + kcCM(t)

= sM(t) > .

Hence, CM(t) never vanishes and is positive for all t ≥ .
S(t) would become nonpositive if there existed t >  such that S(t) =  and S(t) >  for

any t,  ≤ t < t. Then, necessarily, dS
dt |t=t ≤ , which is a contradiction because

dS
dt

∣
∣
∣
t=t

=
sCM(t)

 + kcCM(t)
– (mS + dS – p)S(t) =

sCM(t)
 + kcCM(t)

> .

Hence, S(t) never vanishes and is positive for all t ≥ .
Finally, E(t) would become nonpositive if there existed t >  such that E(t) =  and

E(t) >  for any t,  ≤ t < t. Then, necessarily, dE
dt |t=t ≤ , which is a contradiction because

dE
dt

∣
∣
∣
t=t

= (mS + μ)S(t) + αdsM(t)LO(t)E(t) – dEE(t) = (mS + μ)S(t) > .

Hence, E(t) never vanishes and is positive for all t ≥ .
We next consider the model system ()-() with (Ll, LO, M, F, CO, CM, S, E) ∈ B.

From (), we obtain

Ll(t) = Ll()e–dRf t +
σ

dRf

(
 – e–dRf t) ≤ L̄le–dRf t + L̄l

(
 – e–dRf t).

Hence,

Ll(t) ≤ L̄l =
σ

dRf
.
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From (), we can write

dLO

dt
≤ dRf L̄l – dOLO = σ – dOLO.

Then

LO(t) ≤ LO()e–dOt +
σ

dO

(
 – e–dOt) ≤ L̄Oe–dOt + L̄O

(
 – e–dOt).

Hence,

LO(t) ≤ L̄O =
σ

dO
.

From (), we can write

dCO

dt
≤ sL̄O – dCCO =

σ s

dO
– dCCO.

Then

CO(t) ≤ CO()e–dC t +
σ s

dCdO

(
 – e–dC t) ≤ C̄Oe–dC t + C̄O

(
 – e–dC t).

Hence,

CO(t) ≤ C̄O =
σ s

dCdO
.

From (), we can write

dM
dt

≤ sC̄O – dMM =
σ ss

dCdO
– dMM.

Then

M(t) ≤ M()e–dMt +
σ ss

dCdMdO

(
 – e–dMt) ≤ M̄e–dMt + M̄

(
 – e–dMt).

Hence,

M(t) ≤ M̄ =
σ ss

dCdMdO
.

From (), we obtain

dF
dt

≤ βdM̄Ō – dF F =
βdσ

ss

dCdMd
O

– dF F .

Then

F(t) ≤ F()e–dF t +
βσ dss

dF dCdMd
O

(
 – e–dF t) ≤ F̄e–dF t + F̄

(
 – e–dF t).
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Hence,

F(t) ≤ F̄ =
βσ dss

dF dCdMd
O

.

Similarly, we can prove in the same fashion that

CM(t) ≤ C̄M =
σ sss

dcdCdMdO
,

S(t) ≤ S̄ =
σ ssss

(mS + dS – p)dcdCdMdO

and

E(t) ≤ Ē =
σ ssss(mS + μ)

(mS + dS – p)dcdCdEdMdO
. �

Next, we let

P = dM∗ + dL∗
O + dM + dO,

Q = ddMM∗ + ddOL∗
O + dMdO,

R = dssL∗
O

and X̃∗ = (L∗
l , L∗

O, M∗, F∗, C∗
O, C∗

M, S∗, E∗) be the equilibrium point of ()-(), where

L∗
l =

σ

dRf
, L∗

O =
σ

dM∗ + dO
,

M∗ =
–(σddC + dCdMdO) +

√
(σddC + dCdMdO) + σdnnCdMss

ddCdM
,

C∗
O =

σ s

dC(dM∗ + dO)
, F∗ =

βσdM∗

dF (dM∗ + dO)
, C∗

M =
(mS + dS – p)S∗

s – kc(mS + dS – p)S∗ ,

S∗ =
–dg +

√
d

c + ρssM∗/(mS + dS – p)
ρ

, E∗ =
(mS + μ)(dM∗ + dO)S∗

ασdsM∗ + dE(dM∗ + dO)
.

By using the Routh-Hurwitz criteria, the following theorem can be shown.

Theorem  If () holds and

P
(
d

C + dCP + Q
)

> R, ()

then X̃∗ is locally asymptotically stable.

Proof By finding the determinant of the Jacobian matrix of the model system ()-() at X̃,
the characteristic equation associated with system ()-() can be written as

(λ + dRf )(λ + dF )
(
λ + dE + αdsM∗L∗

O
)(

λ + aλ + a
)(

λ + bλ
 + bλ + b

)
= , ()
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where

a =
(

dc +
ρS∗

( + kcC∗
M)

)

+ (mS + dS – p), ()

a =
(

dg +
ρS∗

( + kcC∗
M)

)

(mS + dS – p) +
ρsC∗

M
( + kcC∗

M) ,

b = dC + P,

b = dCP + Q, ()

b = dCQ + R.

We first find directly that the three eigenvalues of ()-() are clearly negative. In fact,
from the first three factors in (), we have

λ = –dRf < ,

λ = –dF < 

and

λ = –dE – αdsM∗L∗
O < .

We then consider the factor

λ + aλ + a. ()

We see that a >  and a >  since () holds. Hence, the eigenvalues λi, i = , , which are
the roots of (), also have negative real parts by using the Routh-Hurwitz criteria.

We next consider the polynomial

λ + bλ
 + bλ + b. ()

We observe that b = dC + P > , b = dCP + Q >  and b = dCQ + R and since () holds,
we have

bb – b = (dC + P)(dCP + Q) – (dCQ + R)

= P
(
d

C + dCP + Q
)

– R > .

Hence, the eigenvalues for λi, i = , , , which are the roots of (), also have negative real
parts, by the Routh-Hurwitz criteria.

Therefore, the equilibrium point X̃∗ is locally asymptotically stable as claimed. �

4 Sustained oscillation
We next show that the model system ()-() admits periodic solutions through a Hopf
bifurcation of the equilibrium point X̃∗ = (L∗

l , L∗
O, M∗, F∗, C∗

O, C∗
M, S∗, E∗).
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Theorem  Using the symbols defined in () and () in Theorem , if () holds and

P
(
d

C + dCP + Q
)

< R, ()

then system ()-() undergoes a Hopf bifurcation. A limit cycle of system ()-() will emerge
and can be observed in the vicinity of the equilibrium point X̃∗.

Proof Following from the proof of Theorem , the roots λi, i = , , . . . , , of the character-
istic equation (), that are the roots of the first five factors of (), will have negative real
parts since () holds. Now, for the factor in (), the conditions

b = dC + P > ,

b = dCP + Q > 

and

b = dCQ + R > 

still hold.
If λ is any root of the cubic (), then we may factor out (λ – λ) using polynomial long

division to obtain

λ + bλ
 + bλ + b = (λ – λ)

(
λ + (b + λ)λ +

(
b + bλ + λ


))

. ()

The quadratic factor in () has the roots

λ, =
–b – λ ±

√

b
 – b – bλ – λ




.

When b = –λ, then

λ, = ±i
√

b,

which is pure imaginary. Moreover, since λ is a root of (), we have

λ
 + bλ


 + bλ + b = ,

from which we can write

λ
(
λ

 + bλ + b
)

= –b,

and hence

λ = –
b

b + bλ + λ


< –
b

b
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Figure 3 Simulated time courses of ECM concentration with the parametric values given in Table 2
and 1.7 ≤ p ≤ 1.755.

when –b – λ > . From the definitions of b, b, and b, we have

bb = (dC + P)(dCP + Q)

= P
(
d

C + dCP + Q
)

+ dCQ

< R + dCQ = b

since () holds. Hence

–
b

b
> –b.

Thus, a Hopf bifurcation occurs []. �

5 Model simulation
In the following, we show simulated solutions of the system model ()-(), in which some
of the parameter values have been chosen based on the work of Hao and Friedman [].
Some parameters have been chosen, however, so that the necessary conditions for specific
dynamic behavior are satisfied. We simulated equations ()-() using parametric values
that satisfy the conditions in Theorem , obtaining a solution trajectory which tends to-
ward a stable equilibrium point as seen in Figure , where ECM concentration is plotted
against time for different values of intrinsic growth rate p of the smooth muscle cells. The
parametric values used here are given in Table . The simulated time courses of ECM, E(t),
are compared for . ≤ p ≤ . in which case the equilibrium point is stable. When p is
small, the level of ECnrops to a very low level. This is the situation where the fibrous cap
becomes very thin. When the caps are too thin, they are vulnerable plaques and have a
higher percentage of macrophages than SMCs. Conversely, thick plaques with lower per-
centage of macrophages are more stable.

Physically, if there is a time τ >  such that for some predetermined δ >  ECM level
decreases to the point that E(T) ≤ δ, the plaque would be expected to reach a point of
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Table 2 Parametric values used in the model simulations shown in Figures 3-5

Parameter Meaning Value (Figures 3, 4) Value (Figure 5) Unit

d1 Reaction rate constant in (1) 1.520× 104 1.520× 103 g–1 cm3 wk–1

d2 Variation constant in (2) 1.429 0.8024 g–1 cm3 wk–1

dO Degradation rate of LO 6.048× 10–1 0.01 wk–1

dM Death rate ofM 6.048× 10–1 0.01 wk–1

dF Death rate of F 4.285× 10–3 0.25 wk–1

dC Degradation rate of CO 0.01 0.01 wk–1

dc Degradation rate of CM 0.01 0.1 wk–1

dS Intrinsic death rate of S 1.08 0.1 wk–1

dE Removal rate of E 0.5 0.05 wk–1

kc Saturation constant of migration 10–4 10–2 wk–1

ms Removal rate of S to form E 1.68 0.5 wk–1

s1 Production rate of CO 6.05× 10–3 1.520× 103 wk–1

s2 Immigration rate ofM fostered by CO 10.2 0.8024 wk–1

s3 Production rate of CM 0.1814 0.01 wk–1

s4 Proportionality constant in production rate
of S due to migration

1.814 0.01 wk–1

s5 Variation constant in production rate of E 6.0 0.25 wk–1

Rf Number of free radicals in oxidation process 0.02772 0.01 mg/ml
α Fraction ofMLO that goes into E production 0.5 0.6 -
β Fraction ofMLO that goes into F production 0.5 0.4 -
μ Proportionality constant in (8) 6.05 0.00238 wk–1

ρ Migration rate of S at vanishing CM 7.5 0.001 g–1 cm–3 wk–1

σ Growth rate of Ll 2.016× 103 2.016× 103 g–1 cm–3 wk–1

p Proliferation rate of S [1.700, 1.765] 0.4 wk–1

‘rupture’. The rupture of these vulnerable plaques is discovered to be responsible for most
human fatalities suffering from heart diseases. According to Davies () [], almost %
of deaths from myocardial infarction (heart attack) are caused by plaque rupture.

On the other hand, some plaques may remain stable throughout a person’s life, or the
plague may become of such a size that it poses a serious risk to a patient’s health due
to stenosis, a partial blockage of the artery which causes blood flow disruption. Such a
situation is simulated by our model shown in Figure , where the conditions that ensure
system stability stipulated in Theorem  are violated. ECM level thus continues to grow
substantially increasing the risk of serious health complications for that person.

Figure  shows the simulated time course of our model system ()-() in the case that
conditions in Theorem  are satisfied and a Hopf bifurcation occurs. The parametric val-
ues used here are given in Table . EMC level is seen to oscillate periodically as time
progresses as theoretically predicted. Periodicity corresponds to biological fluctuations or
sustained oscillations that are found in most physiological systems. They are the conse-
quence of a medley of the fluctuating environment. A model that does not admit periodic
solutions, for this reason, is not an adequate representation of the system of interest. Our
model has been shown to exhibit sustained oscillation and thus serves a suitable repre-
sentation of the plaque formation process.

6 Conclusion
Atherosclerosis is an extremely dangerous disease due to the fact that the process of nar-
rowing and hardening of the arteries occurs slowly and can take several decades before it
shows any symptoms. Apart from leading to heart attacks and strokes, which cause thou-
sands of deaths annually, atherosclerosis also leads to kidney failure, blindness, and even
impotence []. Mathematical modeling can shine some light on this stealthy disease in
order to learn how to prevent its often hidden complications.
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Figure 4 Simulated time courses of ECM concentration with the parametric values given in Table 2
and p ≥ 1.76 in which case conditions in Theorem 2 are violated and the equilibrium is unstable.

Figure 5 A simulated time course of EMC concentration when parametric values, given in Table 2,
satisfy the conditions in Theorem 3 and the solution of (1)-(8) eventually oscillates periodically.

In this paper, we have constructed and analyzed a model of the process of atherosclerotic
plaque formation. The system model is capable of simulating various dynamic behaviors
in different cases which have been observed clinically. Ranges of physical parameters that
delineate unstable from stable atherosclerotic plaques have been identified.

Including more chemistry considerations into our model, we are able to discover critical
conditions that delineate different dynamic behaviors exhibited by the system. Specifically,
there are two main types of atherosclerotic lesions: the stable plaque which simply impedes
blood flows and an unstable one which is vulnerable to rupture. Our model identifies the
proliferation rate p of the smooth muscle cells as the critical physical parameter that plays
the most important role in maintaining the system’s stability. If mS + dS > p, the system is
stable, but if p increases beyond mS + dS , the system may become unstable, posing higher
risk of coronary heart diseases.
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Insights gained from our investigation are expected to form a basis for further research
to better understand the build-up of plaque in the arteries. Deeper comprehension of the
process may lead us to a new way to treat this life threatening disease. Rather than trying
to reduce the build-up by reducing LDL cholesterol levels in blood serum, regression and
stabilization of plaque, not LDL cholesterol, may become the new approach in the treat-
ment and prevention of cardiovascular disease, the leading cause of death in the U.S. and
around the world [].
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