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1 Introduction

Let N be the set of nonnegative integers and N, = N\ {0}. Throughout this note, we as-
sume that m,n € N, x € R, and that f : R — R is an arbitrary function. The kth forward
differences of f are recursively defined by A% (x) = f(x), Alf(x) = f(x + 1) — f(x), and

k
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The starting point of this note is the following classical formula for sums of powers:

“ m _ Bm+1(x +n+ 1) _Bm+1(x)
> k)= s : (2)

k=0

where B,,(x) is the mth Bernoulli polynomial. Since the time of James Bernoulli (1655-
1705), several methods have been developed to find such sums, trying in many occasions
to obtain different generalizations. For instance, Kannappan and Zhang [1] (see also the
references therein) have used Cauchy’s equation to prove (2), when the monomial function
x is replaced by a polynomial of degree m. Some g-analogues of formula (2) can be found
in Guo and Zeng [2] and the references therein.

On the other hand, the sums in (2) can also be computed by means of the forward dif-
ferences of the monomial function ¥,,(x) = ™, u € R. We actually have (see, for instance,
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Rosen [3], p.199, or Spivey [4])

k=Y (Z ' i) A (), 3)
k=0 k=0

where m A n = min(m, n). For x = 0, formula (3) can be written in terms of the Stirling
numbers of the second kind S(, k) defined as

S(m, k) = %Akwm(m.

Computationally, formulas (2) and (3) are equivalent in the sense that the computation
of a sum of # + 1 terms is reduced to the computation of a polynomial in # of degree
m + 1. However, (2) can easily be derived from (3) as follows. Suppose that (P,,(x)) >0 is a

sequence of polynomials satisfying

AlPrru—l(x) = le//m(x) (4)

for a certain constant ¢,, only depending upon m. Then we have from (3), (4), and formula
(7) below
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The Bernoulli polynomials satisfy (4) with c,, = m + 1. However, one can construct other
sequences of polynomials (P, (x))m>0 fulfilling (4) (in this respect, see Luo et al. [5]). For
this reason, we will extend formula (3) rather than (2). This is done in Theorem 2.1 below
by means of a simple identity involving binomial mixtures.

2 Main results
Let S, = (S,(¢),0 <t <1) be a stochastic process such that S, (¢) has the binomial law with
parameters # and ¢, i.e.,

n

P(Su(t) = K) - ( "

)tk(l -t k=01,...,n, (5)
and let T be a random variable taking values in [0,1] and independent of S,,. The random
variable S, (T), obtained by randomizing the success parameter ¢ by 7, is called a binomial
mixture with mixing random variable T (see [6] and the references therein). As follows
from (5), the probability law of S,(T) is given by

P(S,(T) = k) = (Z)E[Tk(l —Ty k], k=0,1,...,m,

where E stands for mathematical expectation. Our first main result is the following.
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Theorem 2.1 With the preceding notations, we have

e 5] =3 ({)es s oelria- =3 () syl
k=0

k=0

Let U be a random variable having the uniform distribution on (0,1). Observe that

1
E[u*@-uy]= / 051 = 0" db = plk + Ln— k +1) = R
0
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where (-, ) is Euler’s beta function. Setting 7' = U and f = ¥, in Theorem 2.1, we obtain
(3), as follows from (6) and the fact that Ay, (x) =0, k = m + 1,m + 2,.... On the other
hand, choosing T’ = 1 in Theorem 2.1, we obtain the well-known identity (see, for instance,
Flajolet and Vepstas [7])

fa+nm=>" (Z) AMf (). (7)

k=0

In the terminology of binomial transforms (see, for instance, Mu [8] and the references
therein), identity (7) means that (f(x + k)= is the binomial transform of (A¥f(x))i=o. In
this sense, Theorem 2.1 appears as a generalization of (7).

Every choice of the function f and the random variable 7 in Theorem 2.1 gives us a differ-
ent binomial identity. Whenever the probability density of 7 includes the uniform density
on (0,1) as a particular case, we are able to obtain a different extension of formula (3). In
this respect, we give the following two corollaries of Theorem 2.1.

Corollary 2.2 Forany p >0 and q > 0, we have

ki(; (“/f) (n—_qk)/(x +k) = kXO: (‘:) (—(pn+_qk+ k)) A (o)

Finally, recall that the discrete Cesaro operator C is defined as

@+ fx+) 4+ fx+n)

n+1l

Cf(x +n) 8)

We denote by C the j iterate of C,j € N, (see Galaz and Solis [9] and Adell and Lekuona
[10] for the asymptotic behavior of such iterates, as j — 00).

Corollary 2.3 Foranyj € N,, we have

d 1 o
cfterm=3 st +n(;) [ ora-ort ERE
k=0 </ Jo
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Observe that both corollaries extend formula (3) by choosing f = ¢, and p =g =11in
Corollary 2.2, and f = v, and j =1 in Corollary 2.3.
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3 The proofs

Proof of Theorem 2.1 Let t € [0,1]. We have from (1) and (5)

E[f(x+S:0)]= > (Z)/(x + R - £y
k=0
n n-k
-y (Z)/(x sy (” . k)(—tY
k=0 o N/
=2 (Z) (" ; k) (~1Yf (e + )<

Thus, it suffices to replace ¢ by the random variable 7" and then to take expectations. [

Proof of Corollary 2.2 Let T be a random variable having the beta density

or-1(1 - 9)1-1

p(6) = soa

0 €(0,1),p>0,g>0.

As in (6), we have

1
[T~ 1)] [ orra-opetap - AL ©)
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whenever r > —p and s > —g. Hence, applying Theorem 2.1, we get

n n

k=0 k=0

The conclusion follows from (10) and the well-known formulas

(g Cp+k) (P
B q) = Torg) e =(-1) <k) keN.

O

Proof of Corollary 2.3 Let j € N,. The following formula for the j iterate of the discrete
Cesaro operator C was shown by Hardy [11], Section I1.12,

, 1 1  (~logO)y
c = k ”) k(1 — oy k280 g, 1
e =3 fas )(k | ra—or2Es )

A probabilistic representation of (11) can be built as follows (see [10] for more details). Let
(Ur)k=1 be a sequence of independent identically distributed random variables having the
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uniform distribution on (0,1), and denote T; = Ul - - - U;. It turns out (cf. [10], Lemma 2.2)
that the probability density of Tj is given by

(—logfy™

W, 0<0<1. (12)

p;(0) =

On the other hand, we see that

E[Tf] = E[Uf]---E[Uf] = ﬁ keN. (13)

Therefore, the conclusion follows by choosing T = T; in Theorem 2.1 and taking into ac-
count (11)-(13). (|
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