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1 Introduction

The application of fractional calculus is very broad, including characterization of me-
chanics and electricity, earthquake analysis, the memory of many kinds of material, elec-
tronic circuits, electrolysis chemical, etc. ([1-5]). In recent years, there has been a signif-
icant development in solving differential equations involving fractional derivatives ([6—14]
and the references therein).

In the left and right fractional derivatives D%, x and °Dj x, a is called a left base point
and b a right base point. Both a4 and b are called base points of the fractional derivatives.
A fractional differential equation (FDE) containing more than one base point is called
a multiple base points FDE ([10]). In this paper, we study the following boundary value
problem (BVP) of nonlinear multiple base points fractional differential equations with

impulses:
CD:x(t) + )"x(t) =f(t: x(t))¢ te ] \ {tl’ t27 ceey tm—l}:] = [Or 1]! (11)
Ax(t) =L, k=12,...,m-1, (1.2)
%(0) + I, x(n) = 0, x(1) + CDgnxu) =0, ne(0,t), (1.3)

wherea,y,8 €(0,1), @ > y,a > 8, 1 > 0.°D, is the standard Caputo fractional derivative at
the base points ¢ = t (k= 0,1,2,...,m), thatis, °D, |, 1, 1%(£) = CD‘t;x(t) forall ¢ € (¢, tril,
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I}, denotes the fractional integral of order y, f : J x R — R is an appropriate function to
be specified later. The impulsive moments {t;} are given such that 0 < #; <--- < ¢,1 <1,
Ax(t) represents the jump of function x at #, which is defined by Ax(fx) = x(¢) — x(£;),
where x(£7), x(¢;) represent the right and left limits of x(¢) at ¢ = # respectively, the con-
stant I denotes the size of the jump.

In 1954, Barrett ([6]) applied the method of successive approximations to derive the exis-
tence of solutions to the fractional differential equations of order « € (0,1) with constant
coefficients. Recently, as mentioned in [13, 14] and the references therein, the existence
results of the impulsive fractional differential equations with anti-periodic boundary con-
ditions involving the Caputo differential operator of order « € (0,1) are obtained by the
Mittag-Leffler functions. Inspired by the work of the above papers, the aim of the present
paper is to establish some simple criteria for the existence of solutions of BVP (1.1)-(1.3).

The paper is organized as follows. In Section 2, we present some basic concepts, the
notations about the fractional calculus and the properties of the Mittag-Leffler functions.
In Section 3, we present the definition of solution for (1.1)-(1.3). In Section 4, by applying
Krasnoselskii’s fixed point theorem, we verify the existence of solutions for problem (1.1)-

(1.3). We give an example to illustrate the result in Section 5.

2 Preliminaries

In this paper, we denote by L?(/, R) the Banach space of all Lebesgue measurable functions
1

[:] — R with the norm ||/||;» = (f] |{(£)|P dt)? < oo and by AC([a, b], R) the space of all the

absolutely continuous functions defined on [a, b].

Definition 2.1 ([2, 3]) The fractional integral of order g with the lower limit « for a func-
tion g(¢) € L'([a, +00), R) is defined as

1 t
I7.0)(8) = —/ (t—95)""tg(s)ds, t>a,q>0,
Uee)0 =15 | g q
where I'(-) is the gamma function.

Definition 2.2 ([2, 3]) If g(¢) € AC"([a,b],R), then the Riemann-Liouville fractional

derivative (LDZ+ 2)(2) of order g exists almost everywhere on [a, b] and can be written as

1 dn t
(*DLg)(t) = r,(ni_q)ﬁ‘/ﬂ(t—s)”’”l’lg(s)ds, t>a,n-l<q<n.

Definition 2.3 ([2, 3]) If g(¢) € AC"([a, ], R), then the Caputo derivative (”DZ+g)(t) of

order g exists almost everywhere on [4, b] and can be written as

-1

(‘Di.g)(0) = (LDZ |: Z (a) ki|)(t), t>a,n—-1<q<n,

k=0

moreover, if g(a) = g'(a) = - - - = g"Y(a) = 0, then (CDZ+g)(t) = (LDZ+g)(t).
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Remark 2.4 ([2, 3]) The Caputo fractional derivative of order g for a function g €
C"([a, b],R) is defined by

‘DZ.g)(t) t>a,n-1 .
(‘D g)(») T q)/ —s)q —ds, t>an-l<q<n

Definition 2.5 ([2, 3]) For «, 8 > 0, z € C, the classical Mittag-Leffler function E,(z) and
the generalized Mittag-Leffler functions E, 4(z) are defined by

00 00 k

z
Ey(2) = Z (k 1) Ea,ﬁ(2)=k2=0:m,

[e¢]

,0)/<
Z I'( ak+,8 Kk

k=0

where (p)g =1and (p)r =p(p+1)--- (o +k—1) for ke N.
Clearly, E, 1(2) = Ey(2).

Lemma 2.6 ([2]) Let v, B,« > 0. The usual derivatives of E,(z), Eq g(z) and the Riemann-
Liouville integration of E,(—At") are expressed by
(1) (£)"[Eap(2)] = nELY, o n(2), m € N;

(2) (fz)”[Ea(Z)] nEG (@), neN;

(3) ( ) [tﬁ_lEa ﬂ( —At%)] _tﬂ_n_lEa,ﬁ—n(_)‘ta)fnzl;
) [1§+(s” LEa (FASNIB) = g Jo (6 = )1 Eoyy (<hs”) ds = 697 Eg g (<18%).

As mentioned in ([14]), E,(-At*) and E, o (—At¥) can be represented by

Eq(-1t%) = / ooe*““%(e)de, (2.1)
0
Ego(-2t") = / N 0e "0 p(0) db, (2.2)
0
where

n!

:1

1 & r 1
o6 —Z D 1Msm(mwz) O<a<1,0>0.
n=1

Moreover,
e £ _ F(E"'l)
/0 0506)d0 = o (€2 0) 2.3)

Lemma 2.7 For . >0, &, 8,61,6, € (0,1), @ > 0,, the generalized Mittag-Leffler functions
have the following properties:

(1) Ea(-2£)] = —MHEM( );

(2) Evarp(-2t) fo (MUY (1 = )P

(3) Eup(—ht") = £ = M Enpqup (-119);

() Euppa(ht) = o5 Jo Ea At u) (1 = ) dus
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(5) [*DPEy(~i(s = @))](t) = —A(t = @)* " Eqqg, 1 (<A — @)?).
In particular, when o = 0,, [°D%, Eq(—A(s — a)*)](t) = —AE, (= (t — a)*).

Proof We denote the beta function by B(:, -). From Lemma 2.6(2),

B ()] = hat B ()

e (AR + k)
P A Pt s
¢ kX(; T(ak+1+a)

o o ( )\ta)k
Z IN'ak + o)

M Eg o (—A2%).
From [14], the second result holds. Moreover,

o e (a1 v (—Ag)kt
Fap(-4) = ; T(ak+B) T(B) M ; ok + B)

= —— — M Eqqup(-1t%),

(ﬂ)
S (=ao)k 1 2\ (=X Blak +1,6;)
Eupon (= kz Tak+6,+1) T(6) 2 T(ak +1)
=0 k=0
( N D()/( 61-1
F(el) F(a/<+1 Tk L -W" an

I‘(Gl)/o E, ( )»t“ua)(l_u)el_ldu'

Applying Remark 2.4 and the fact f;(t —s)" (s — )"V ds = (t — a)™ "2 B(my, m»), we

have
1 L d [ A
1“(1—92)/a (t-5) %(;0: T(ak +1) )ds

— 1 - (_)\')k ! —6 ak-1
“Ta-a) ; (k) / (£=9)7> (s —a)™ ds

S _)L)kfl(t _ a)a(k—l)

_ (
__ _ \a-t2
Me-a) ; Tk +1-0,)

Mt = ) Euagyr (18 - a)*). 0

[‘DZE.(-1(s—a)*)]()

Lemma 2.8 ([3]) If0 <« <2, B is an arbitrary real number, 75* < j1 < min{m, wa}, then

C
“1+]z|

|Eapl2)| < w<|arg@)| <m, |zl >0,

where C is a positive constant.



Miao and Li Advances in Difference Equations (2017) 2017:190 Page 5 of 14

Lemma 2.9 Letw, €(0,1), A > 0. Then the functions E,, Eq o and Ey 4.p are nonnegative
and have the following properties:

(1) For any L 6], Ea(_)‘ta) = 17 Eot,uz (_}\ta) = %{x)’ Ea,aﬂi(_)‘ta) = mv
Eqp(—At*) < %ﬂ), moreover, E,(0) = 1. In particular,

o 1 o
Ea,ot—é (_)\t ) = m: |Ea,a—8 (_)\t )| = C. (24')

(i) Foranyt),ty €],

|Eq(-185) = Eo(-28)| = O(Ia - t1]*), ast, — &,

|Evo (~285) = Equ(-287)| = O(Ia - 1]%), asta — 1,

|Ea,a—8 (—th) —Eyus (—)\tix)| = O(|t2 - t1|a), as ty — t.
Proof (i) From (2.1), we get E,(—At¥) = fooo e 09 (0)do < fooo ¢(0)do =1.

By (2.2), we find Eyo(—1t%) = & [5° 077 (0) db < 5.
Using Lemma 2.7(2), one sees

o) _ 1 ! o o), o1 p-1 1
ana.,.ﬁ(—)\.t )— Tﬁ)/o‘ Ea,a(—)\.lf u )M (].—M) du < m

Noting Eyq4.g(—At*) > 0 and Lemma 2.7(3), we have E,g(—At*) < ﬁ Taking B =

a — & in Egg(—AtY) < ﬁ, we obtain E,,_s(-At*) < =~—=. By Lemma 2.8, we get

— T(a-9)
|Ea,a—6(_)\ta)| < C
(ii) For 0 < t; < t, <1, using the Lagrange mean value theorem and the fact [t§ — ¢{'| <
(&, —1)%, (2.1), (2.2) and (2.3), we find
|Eo(=1£5) = Eo(-A8]) | = / le2 — eM1%|$(0) d < A(ts tl)"‘/ 0¢(0) do
0 0

Aty — )"
=——":=0(|lt, —t1|%), asty— #,
M@+l (12 —11l) 2> 0

oo
Epa(-AtS) = Ego(-16%)| =« e M0 _ eM%09(0) do
2 1 0

_ )
< 2l a (tz tl)

= 0(|t, — 1]%), t: t1,
= TRa+1) (|2 1|) asly —n0
by Lemma 2.7(3), Lemma 2.9(i) and Lemma 2.7(2), one has

|Eaa—s (=15) = Eqas (—=227)]
= M|tS Eqpas (—AES) = £ Eqpas (—18) |
< )»[|t2 —t|Eg0-s (—Mg) +1 |Eot,2a—8 (—Mg) —Ey20-s (—Mf’) |]

<ty
“TQa-6)" "

A 1 ] N
+ m/o |Ea,a(—)»t§‘ua) —Ea,a(—)»tj"u“)|u“ 11— 1) iy

= O(|t2 - t1|a), as ty — f. (2.5)
(|
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Lemma 2.10 ([2]) The solution to the Cauchy problem

D x(t) + ax(t) =f(t),
x(a)=b, b €eR,

with 0 < a <1 has the form

x(t) = b Ey (—k(t - a)“) + /t(t —5)" 1 Eyq (—k(t - s)"‘)f(s) ds.

Theorem 2.11 (Krasnoselskii’s fixed point theorem) Let M be a closed convex and
nonempty subset of a Banach space X. Let A, B be two operators such that (i) Ax + By € M
whenever x,y € M, (ii) A is compact and continuous, (iii) B is a contraction mapping. Then
there exists a z € M such that z = Az + Bz.

3 Solutions for BVP
Setting Jo = [0, 41], Jk = (b tina), k=1,...,m =1, ], = [tm, 1], and we define X = {x: [0,1] —
R : x|;, € CUi,R) and there exist x(;) and x(¢;), with x(£;) = x(tx),k = 1,...,m — 1} with

the norm

[l%ll1 ;== sup sup|x(t)|.
k=0,1,....m tefi

Obviously, X is a real Banach space.
In this paper, we consider the following assumption.

(H1) f:J x R — R satisfies f(-,x) : /] — R is measurable for all x € R and f(¢,-) : R - R is
1
continuous for a.e. t € J, and there exists a function u € L% (J,R*) (0 < ¢; < min{%, o —
8}) such that |[f(¢,%)| < u(2).

Definition 3.1 A function x:J — R is said to be a solution of (1.1)-(1.3) if
1) x € AC(Ji, R);

(2) x satisfies the equation CD‘;‘;x(t) + 2x(t) =f(t,x(2)) on Ji;
(3) fork=1,2,...,m -1, Ax(t) = I, and x(0) + I, x(n) = 0, x(1) + °D?, x(1) = 0.

Next, we present the following lemmas.

Lemma 3.2 Forany 13,71 € Jx (k=0,1,2,...,m) and 7, < 11,

/TZ [(12 -9 (g —s)"‘_l],u(s) ds— 0, ast— 1.

73

Proof It follows from the Holder inequality that

[ T = @9 e ds

k

) . . 1-q
<lpll 1 |:/ ’(Tz —8)* 7 — (11 —8)* ’1—q1 ds]
L | Jy,
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T 1 ﬁ 1-q1
=1 -a)lul 1(/ / ((—S)a_zdﬁ‘ dS)
ta \Jy, |/

(9} 1-q1
< ]W[/ (2= 9)" = (11 -9)") ds:|

73

- Tl - 0 g

— 0, ast— 1,
where M > 0 is a constant and 6 = %= 1 ql € (-1,0). O
Fory>gqiandt;,; €] (i=1,...,m + 1), from the Holder inequality, we have

t 17 y-1 1-q1
[ tuoas < ([ -9 as) il g - oe-ny, (31)
tiq ti-1 Ln

where ¢, = (=)l 2

For brevity, we deﬁne

(Qkx (t) —/ (¢ —3)S'E, ( At —s)“)f(s,x(s))ds,

then, for ¢ € (¢, txs1], from (3.1) and Lemma 2.9(i), we obtain

_ )1 _ a—-q1
| Qkx (t)| / wd < Lo %, (3.2)
Q%) )] <C / (t = )"0 u(s) ds < Clus(t — 1), (3.3)

which means that (t — s)*E,, o (=A(£ —s)*)f (s, %(s)) and (£ — 5)* 5 E,, o_s (=A.(t = 5)*)f (5, %(s))
are Lebesgue integrable with respect to s € [#x, fx.1] for all £ € [#, tx.1] and x € X.

Lemma 3.3 Forany k=0,1,2,...,m, (Q¢x)(t) € C(,R), (Qi‘ax)(t) € C(Ji, R).

Proof Forany h >0, t <t <t + h < ty,, by (H1), Lemma 2.9(i), (ii), Lemma 3.2 and (3.1),

we get

|(Qix)(e + ) - (Qi) ()]

< /t|(t +h=8)""" = (6= 8)" T Equ (=Mt + 1 = 9)%) |f (5, %(5)) | ds
+ /t(t ) |Ea,a (—A(t +h-— s)"‘) —Eyq (—k(t - S)") | [f(s,x(s)) | ds
tk

t+h
+ / (t+h- s)"‘flEa,a (—A(t +h- s)"‘) [f(s,x(s)) | ds

/ [(t +h—s)* = (£ —s)*7|

o ! a-1
) pc(s)ds+O(h )/ (t—s)*"u(s)ds

73
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t+h (t +h _S)a—l
+ /t‘ WM(S) ds

—0, ash— 0.

Similarly, noting (2.4) and (2.5), we find (Qi_‘sx)(t) € CUw, R). O

Lemma 3.4 Assume that (H1) holds. Then (Q¢x)(t) € AC([tx, txa],R), for x € X, k =
0,1,...,m

Proof For every finite collection {(a;, b;)}1<i<n on [k, tisa] with Y7 (b; — a;) — 0, noting

(3.1), Lemma 3.2 and Lemma 2.9(ii), we have

Z| Qi) (b) - (Q¢x) ()|

—s)*'E, a( Alb; — s)“)f(s,x(s)) ds

v / [0 =971 = (@1 = 5 | (~361 — 5)7)f (5,5(6)) | s
i=1 V'

+ Z /;k i(ﬂi —S)Ot—l’Ea,a (—)»(b,' - s)“) —Eyu (_)‘(ﬂi _S)a) ’ lf(S,x(s)) ’ s
i=1

b (bi = 5)*~ us) 1 & [ o o
SZ-/@ lf(a)'us d“l“(a);/tk [(ﬂi—s) 1—(bi—s) l]ll-(S)dS
3 [ w9 uods- Oflbi - ail)
i=1 Yk

Sa - . g1 1 -
T Z(bl—m) * Ty 2
i=1 i=1

+2a Y O(Ibi - ail®)
i=1

— 0.

" [(ﬂi -9 — (b - S)a_l],u(s) ds

Hence, (Qgx)(¢) is absolutely continuous on [f, tx,1]. Furthermore, for almost all £ €
[t tieen]s [“Die (Qx)(s)](¢) and [CD‘S (Qxx)(9)](2) exist. O

Lemma 3.5 Assume that (H1) holds. Then, forx e X, k=0,1,...,m

D5 (Qfx) 9)]0) = f (6:2(0) = M(Qx) @), ae L€,
[CD;S; (Qx)(9)](®) = (Q°%)(®), a.e t ek
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Proof According to Lemma 2.6(4), we can see that

/t(t — 7)1 —5)" ' Eye (—A(r - s)"‘) dr = /H(t —s—1) 1" 'E,, (—At“) dr
s 0
=1 -a)E, (-2t -5)%),
/t(t 1)t = 8)* " Eg o (-A(r —9)¥) dT = /H(t — 5= 1) 1" Eg o (-AT%) dt
s 0

=T(1-8)(t—5)*Eqasn (-1 —5)%).

Moreover, noting Lemma 2.6(1) and Lemma 2.7(1), we obtain

[*Df (Qix) )] (@)
1 d
Wdt (=] [ 60 Bt ) (40 e
1 ¢
Wdt f(r x(v))d /T(t—s)‘“(s—r)“‘lana(_)\(s_t)a)d,

:—/ Mt —1))f (v, x(0)) dt
=f(t;x(8)) - A(Qx) (1), a.e.t € [t trsl, (3.4)

and by Lemma 2.6(3), one gets

[0 <o2x><s>]<t>

1

ﬂdt f(T x(7)) dr/ (t=9)"(s =) "Equ(-A(s— 1)) ds

= /(t T)*Eqq-ss1 (At = 1)%)f (7, %(7)) d

= / (t = 1) Egaes (<10t = T)*)f (1, %(7)) d
73

= (Q7x)(1), ae.te[titinl (3.5)
Noting (3.2) and (3.3), we have (Qfx)(¢{) = 0 and (Qz“sx)(t,j) = 0. Then, from Defini-

tion 2.3, with g(¢) replaced by (Q¢x)(t) and (Qz“sx)(t), and applying (3.4) and (3.5), we

derive
[0 (@) )0 = D% (@x) 90 = (1:3(0) = 1))
and [CD‘s (Qgx)(s)](2) = (QF~ 3x)(t). This completes the proof. O

Lemma 3.6 Assume that (H1) holds. Then [I}. (Q3x)(s)1(t) = (Qg " x)(¢).
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Proof It follows from (3.2) that (Q3«)(¢) is Lebesgue integrable, noting Lemma 2.6(4), we
have

[15- (Q5x)(9)]®)

) %}/) fot(t - (/os(s = 1) B (-A(s = 0)*)f (7,%(v)) dr) ds

) %)/) /Otf(r,x(t)) ar /Aotr (t r- S)y_lsa_lEa,a (_)»Sa) ds

= /0 (t = T)*7 " Eqary (<At = T)*)f (T, %(1)) dv = (Qg 7 ) (2). 0

As a consequence of Lemmas 3.4-3.6, by directly computation, we get the following
result. For brevity, we define

_(@am)
' 1+ UVEa,yu(—)ﬂ?“),

al

(Pox)(t) := TEq (=A%),
(P,x)(t) = [(P,'_lx)(ti) + (Q?‘_lx) (tl‘) + Il']Ea (—)x(t — ti)a), i=1,....m-1,

[(Q5x)Q) + (%) (D] Ea (At = £n)*)

(me)(t) = _Ea(_)‘-(l - tm)a) - )\(1 - tm)a_anz,a—Ml (_)‘-(1 - tm)a) '

Lemma 3.7 A function x is a solution of (1.1)-(1.3) if and only if x is a solution of the fol-
lowing equation:

(Pox)(2) + (Qgx)(2), fort e,

(Prx)(2) + (Q7x)(2), fortel,

x(t)=1--- (3.6)
(Prax)(8) + (Q5,12)(8),  for t € Jua,

(Px)(2) + (Q5x)(2), Sort €.

Proof (Necessity) For ¢ € Jy, it follows from Lemma 2.10 that x(f) = aoE, (-At*) + (Qgx)(2).
Obviously, x(0) = ao. Moreover, from Lemma 2.6(4) (taking 8 := y, v := 1) and Lemma 3.6,
we have

1Y x(n) = aon” Eaya (10%) + (Q5 ™ %) ().
Using the condition x(0) + I, x(17) = 0, we obtain ao =7, then, for ¢ € Jo,
x(t) = (Pox)(2) + (Qfx) ().

For t € J1, x(t) = aEo(—A(t — t1)*) + (Qx)(2), since x(t) = a1 = (Pox)(t1) + (Qgx)(t1) + 11,
then, for t € J;,

x(t) = (Pux)(8) + (QFx) ().
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Repeating the above process, we find
x(t) = (Prx)(¢) + (ng)(t), teli,k=0,1,...,m-1.

For £ € Jy = [tm, 1], %(2) = @mEo(=A(£ = 1)) + (Q%)(2).
Noting Lemma 2.7(5) and Lemma 3.5, we get

“Dps 2(t) = =hat(t = 1) Eqas1 (=10 = 1)) + (Q5 %) ().
From x(1) + ”Df+ x(1) = 0, one can obtain

) (Q 0D + (Q x)(W)
Ea(_)‘(l - tm)a) - )\(1 - tm)aiaEa,a—Bﬂ(_)t(l - m)a) ’

Ay =

Now, x(t) = (Px)(£) + (Q5,%)(2).

(Sufficiency) Let x(¢) satisfy (3.6). Noting Lemma 2.7(5) and Lemma 3.5, (°Df, x)(¢) exists
k

and CD‘;‘;x(t) + dx(t) =f(t,x(¢)) for t € Jy (k=0,1,...,m). Moreover, for k =1,2,...,m -1,

x(tf) —x(t7) = (Pex)(t) + (Q) (t) — (Pror®) () — (QF_yx) (t)
= (Preorx)(t) + (QF_1%) (t) + I — (Prca) () — (QR_yx) (8)

= I.
The boundary conditions of (1.3) are clearly satisfied, that is, x(¢) satisfies (1.1)-(1.3). O
4 Existence result

In this section, we deal with the existence of solution for the problem (1.1)-(1.3). To this

end, we consider the following assumption.

1
(H2) There exists a function ¥ € L% (J,R*) (¢, € (0,«)) such that

f(&.2) - f&5)] < v @Ol -yl
For convenience, we introduce the following notation:

1 (1-q\'™® 1 [(1-q\'"™®
Co =73 . My = —— ,
o F(o{) (a_ql> ”M“L% o F(Ot) o—q> ”.(//”Lé

_ Ca+y
1+ nVEa,yu(—M") '

Ty

Ti=Tii+ce+ 1L, i=1,2,...,m—1,

Coy t Cga—é

Ty = .
|Eoz (_}\(1 - m)a) - )‘4(1 - tm)a_BEa,a—SH(_)\(l - tm)a)|

Clearly, To < Ty <+ - < Typg.

Theorem 4.1 Assume that (H1) and (H2) are satisfied, then the problem (1.1)-(1.3) has at
least a solution x € X if M, < 1.
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Proof Define an operator F : X — X by

(Pox)(2) + (Qg)(2), t€Jo,

(Prx)(2) + (Q7x)(2), tel,

(Fx)t)=1--- (4.1)
(Pr12)(8) + (Q,_12)(8), € 1,

(Px)(2) + (Qx)(2), t € Jm

From Lemma 2.9(ii) and Lemma 3.3, we see that 7 : X — X is clearly well defined.
Similar to (3.2) and (3.3), combining with Lemma 2.9(i) and (2.4), one can get

Q7RO <carys  [(Q %) ()] < Class
|(Qx) (&) <car k=0,1,...,m.

(4.2)

Setting B, = {x € X : ||x|l; < r}, where r > max{T},, T)-1} + ¢, we shall prove (Px)(t) +
(Q¥y)(t) € B, foranyx,y € B,and t € J; (i=0,1,...,m).
By Lemma 2.9(i) and (4.2), we have

Co+y

+cy=Tog+cy <.
Ea,y+1(_)\na) “ “

|(Pox)(2) + (Q3y) (8)] < o
For t € J;, one has

(i) (£) + (Q)B)] < |(Pox)(t1) + (Qax) (1) + L] + | (Q2y)(2)|

<To+cy+ || +ca=T1+cy <r.
Repeating the above process, for t € J; (i = 2,...,m — 1), we find
[(Px)(®) + (Qy) ()| < Ti+ca <.
For t € J,,,, one sees
|(Px)(®) + () ()| < T +co <.

Now, we can see that (Pix)(¢) + (Q¥y)(¢) € B, forany t € J; (i=0,1,...,m) and x,y € B,.
Similar to (3.1), fort € J;,i = 0,1,...,m, one gets

’(thx) (t) - (Q;xy) (t)| = / (t - S)a_lEa,a (_)\(t - S)a) V(s,x(s)) —f(S:J’(S)) | dS

t
< — | (t-9)*"Y(s)dsllx—ylly < Mqllx -yl
r(a) t;

This implies that QY (i =0,1,...,m) is a contraction mapping.
Let {x,} be a sequence such that x,, — x in X, then there exists ¢ > 0 such that ||x, —x||; <
¢ for n sufficiently large. By (H2), we obtain

If (t.2:(8)) = £ (£,2®)| < ¥ (D)s.
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Moreover, f satisfies (H1), for almost every ¢ € J, we get f(¢,x,(t)) — f(¢,x(£)) as n — oo.
It follows from the Lebesgue dominated convergence theorem that

|(Pixs) = (Pix) ”1 — 0, asun— oo.

Now we can see that P; (i = 0,1,...,m) is continuous.

Moreover, by Lemma 2.9(ii) and (4.2), {P;x : x € B,} is an equicontinuous and uniformly
bounded set. Therefore, P; is a completely continuous operator on B,|;, (i = 0,1,...,m).
Now, it follows from Theorem 2.11 that problem (1.1)-(1.3) has at least a solution x € B,.

O
5 Application
In this section, we give an example to illustrate the usefulness of our main result.
Example 5.1 Consider the following impulsive boundary problem of fractional order:
1 .
‘D7 x(t) + 5x(t) = 6+% sin(3 + |x(¢)]), a.e.t€(0,1]\ {i},
Ax(})=2, (5.1)
1 1
x(0) + I&x(%) =0, x(1) +<D?,x(1) = 0.
3
Corresponding to (1.1)-(1.3), we have o = %, y = %, 8= i, A=5m=2,4 = i, ty = %, n= %,

f(t,x(t) = ﬁ% sin(3 + |x(2)]), I = 2.
It is easy to see that |[f(¢,x(¢))| < v(¢) and |f (¢, x(2)) — f (&, y(2))| < ¥ (¢)|x(¢) — y(2)|, where

v(t) =y (t) = 6+i% € Lé([O,l])(q = %) and ||V |7 = %. By direct computation, we find that

M, -+ (174 1_q||1p|| L (6 022<1
w=—|— 1=——(=) ~022<1.
M) \a-q L 3J7\5

Now, due to the fact that all the assumptions of Theorem 4.1 hold, problem (5.1) has at
least a solution.
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