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Abstract
In this paper, our aim is to develop a compensated split-step θ (CSSθ ) method for
nonlinear jump-diffusion systems. First, we prove the convergence of the proposed
method under a one-sided Lipschitz condition on the drift coefficient, and global
Lipschitz condition on the diffusion and jump coefficients. Then we further show that
the optimal strong convergence rate of CSSθ can be recovered, if the drift coefficient
satisfies a polynomial growth condition. At last, a nonlinear test equation is simulated
to verify the results obtained from theory. The results show that the CSSθ method is
efficient for simulating the nonlinear jump-diffusion systems.

Keywords: jump-diffusion systems; nonlinear; compensated split-step θ -method;
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1 Introduction
The aim of this paper is to study the strong convergence of the CSSθ method for the fol-
lowing nonlinear jump-diffusion systems:

dX(t) = f
(
X
(
t–))dt + g

(
X
(
t–))dW (t) + h

(
X
(
t–))dN(t) (.)

for t > , with X(–) = X ∈ R
n, where X(t–) denotes lims→t– X(s), f : Rn → R

n, g : Rn →
R

n×m, h : Rn → R
n, W (t) is an m-dimensional Wiener process, and N(t) is a scalar Poisson

process with intensity λ.
Most of the studies concerned with numerical analysis for stochastic differential equa-

tions with jumps (SDEwJs) are based on the assumption of globally Lipschitz continuous
coefficients, for example, [–]. However, they cannot be applied to many real-world mod-
els, such as financial models [] and biology models [], which violate the global Lipschitz
assumptions. Hence, the development of numerical methods for SDEwJs under a non-
globally Lipschitz condition has become a focus point.

Firstly, we review some achievements of the numerical analysis for highly nonlinear
SDEs. Here, we highlight work by Higham et al. [], Hutzenthaler et al. [], Szpruch and
Mao [], Mao and Szpruch [], Huang [], Zong et al. [, ].

However, the development of numerical methods for nonlinear jump-diffusion systems
with non-globally Lipschitz continuous coefficients is not as fast as nonlinear SDEs. There
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are only few results on the numerical methods for nonlinear SDEwJs. For example, Higham
and Kloeden proved the strong convergence and its order of the split-step backward Eu-
ler (SSBE) method and compensated split-step backward Euler (CSSBE) method for non-
linear jump-diffusion system in [, ]. Huang applied the split-step θ (SSθ ) method to
SDEwJs, but he only studied the mean-square stability of the SSθ method for SDEwJs in
[]. To the best of our knowledge, there is no result about the strong convergence of the
CSSθ method for SDEwJs with non-globally Lipschitz continuous coefficients. The main
difference of this paper from our previous work [] is that we deal with SDEwJs with non-
globally Lipschitz condition on the drift coefficient f .

The outline of the paper is as follows. In Section , we introduce some notions and as-
sumptions for SDEwJs. In Section , we construct the CSSθ method for nonlinear SDEwJs.
In Section , the strong convergence of the numerical solutions produced by the CSSθ

method is investigated. The convergence rate is studied in Section . Finally, a nonlinear
numerical experiment is given to verify the convergence and efficiency of the proposed
method.

2 Conditions on the SDEwJs
Let (�,F ,P) be a complete probability space with a filtration {Ft}t≥, which satisfies the
usual conditions, i.e., the filtration is continuous on the right and F contains all P-null
sets. Let 〈·, ·〉 denote the Euclidean scalar product, and | · | denote both the Euclidean
vector norm in R

n and the Frobenius matrix norm in R
n×m. For simplicity, we also denote

a ∧ b = min{a, b}, a ∨ b = max{a, b}.
Now, we give the following assumptions on the coefficients f , g and h.

Assumption . The functions f , g , h in (.) are C, there exist constants K , Lg and Lh > ,
such that the drift coefficient f satisfies a one-sided Lipschitz condition,

〈
x – y, f (x) – f (y)

〉≤ K |x – y|, ∀x, y ∈ R
n, (.)

and the diffusion and jump coefficients satisfy the global Lipschitz conditions,

∣∣g(x) – g(y)
∣∣ ≤ Lg |x – y|, ∀x, y ∈R

n, (.)
∣
∣h(x) – h(y)

∣
∣ ≤ Lh|x – y|, ∀x, y ∈R

n. (.)

We also assume that all moments of the initial solution are bounded, that is, for any p ∈
[, +∞) there exists a positive constant C, such that

E|Y|p ≤ C. (.)

Lemma . Under Assumption ., equation (.) has a unique cadlag solution on [, +∞).

Proof See [], and for a more relaxed conditions see []. �

From Assumption ., we have the following estimates:

〈
x, f (x)

〉
=
〈
x, f (x) – f () + f ()

〉≤
(

K +



)
|x| +



∣
∣f ()

∣
∣, (.)
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∣∣g(x)
∣∣ =

∣∣g(x) – g() + g()
∣∣ ≤ Lg |x| + 

∣∣g()
∣∣, (.)

∣∣h(x)
∣∣ =

∣∣h(x) – h() + h()
∣∣ ≤ Lh|x| + 

∣∣h()
∣∣. (.)

It follows that

〈
x, f (x)

〉∨ ∣
∣g(x)

∣
∣ ∨ ∣

∣h(x)
∣
∣ ≤ L

(
 + |x|), (.)

where L = max{(K + 
 ), Lg , Lh, 

 |f ()|, |g()|, |h()|}.

3 The compensated split-step θ -method
First defining

fλ := f (x) + λh(x),

we can rewrite the jump-diffusion system (.) in the following form:

dX(t) = fλ
(
X
(
t–))dt + g

(
X
(
t–))dW (t) + h

(
X
(
t–))dÑ(t), (.)

where

Ñ(t) := N(t) – λt,

is the compensated Poisson process.
Note that fλ satisfies the one-sided Lipschitz condition with lager constant; that is,

〈
x – y, fλ(x) – fλ(y)

〉 ≤ (K + λ
√

Lh)|x – y|

:= Kλ|x – y|, ∀x, y ∈ R
n. (.)

Then we can get

〈
x, fλ(x)

〉∨ ∣∣g(x)
∣∣ ∨ ∣∣h(x)

∣∣ ≤ Lλ

(
 + |x|), (.)

where Lλ = max{(K + λ
√

Lh + 
 ), Lg , Lh, 

 |fλ()|, |g()|, |h()|}.
Now we define the CSSθ method for the jump-diffusion system (.) by Y = X() and

Y ∗
n = Yn + θ fλ

(
Y ∗

n
)
�t, (.)

Yn+ = Yn + fλ
(
Y ∗

n
)
�t + g

(
Y ∗

n
)
�Wn + h

(
Y ∗

n
)
�Ñn, (.)

where θ ∈ [, ], �t > , Yn is the numerical approximation of X(tn) with tn = n ·�t. More-
over, �Wn := W (tn+) – W (tn), �Ñn := Ñ(tn+) – Ñ(tn) are independent increments of the
Wiener process and Poisson process, respectively.

If we have θ = , the CSSθ method becomes the CSSBE method in [].
Since the CSSθ method is an implicit scheme, we need to make sure that equation (.)

has a unique solution Y ∗
n given Yn.
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In fact, under the one-sided Lipschitz condition (.) with θ�tKλ < , equation (.)
admits a unique solution (see []). Meanwhile, if Kλ < , then θ�tKλ <  holds for any
�t > . Hence, we define

� =

⎧
⎨

⎩
∞, if Kλ < , or θ = ,


θKλ

, if Kλ > , θ ∈ (, ].
(.)

From now on we always assume that �t ≤ �.

4 Strong convergence on finite time interval [0, T]
First, for t ∈ [tn, tn+), we define the step function:

Y (t) =
NT –∑

n=

Y ∗
n I[n�,(n+)�)(t), (.)

where NT is the largest number such that NT�t ≤ T , and IA is the indicator function for
the set A, i.e.,

IA(x) =

⎧
⎨

⎩
, x ∈ A,

, x /∈ A.

Then we define the continuous-time approximations

Y (t) = Yn + fλ
(
Y ∗

n
)
(t – tn) + g

(
Y ∗

n
)(

W (t) – W (tn)
)

+ h
(
Y ∗

n
)(

Ñ(t) – Ñ(tn)
)
, t ∈ [tn, tn+). (.)

Thus we can rewrite (.) in integral form:

Y (t) = Y +
∫ t


fλ
(
Y
(
s–))ds +

∫ t


g
(
Y
(
s–))dW (s)

+
∫ t


h
(
Y
(
s–))dÑ(s). (.)

It is easy to verify that Y (tn) = Yn, that is, Y (t) is a continuous-time extension of the discrete
approximation {Yn}.

Now we will prove the strong convergence of the CSSθ method. The main technique of
the following proof is based on the fundamental papers [, , ], we refer to them for a
fuller description of some of the technical details.

The following two lemmas show the pth moment properties of the true solutions and
numerical solutions.

Lemma . Let Assumption . hold, and  < θ ≤ , p ≥ ,  < �t < min{, 
θLλ

}, then there
exists a positive constant A independent of NT such that

E

(
sup

≤n�t≤T
|Yn|p

)
∨E

(
sup

≤n�t≤T

∣
∣Y ∗

n
∣
∣p

)
< A,

where Y ∗
n and Yn are produced by (.) and (.).
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Proof In the following we assume that M is a positive integer such that n�t ≤ M�t ≤ T .
Squaring both sides of (.), we find

∣∣Y ∗
n
∣∣ =

∣∣Yn + θ�tfλ
(
Y ∗

n
)∣∣

= |Yn| + θ�t∣∣fλ
(
Y ∗

n
)∣∣ + θ�t

〈
Yn, fλ

(
Y ∗

n
)〉

(.)

and

〈
Yn, fλ

(
Y ∗

n
)〉

=
〈
Y ∗

n , fλ
(
Y ∗

n
)〉

– θ�t
〈
fλ
(
Y ∗

n
)
, fλ
(
Y ∗

n
)〉

. (.)

Substituting (.) into (.), we have

∣
∣Y ∗

n
∣
∣ = |Yn| – θ�t〈fλ

(
Y ∗

n
)
, fλ
(
Y ∗

n
)〉

+ θ�t
〈
Y ∗

n , fλ
(
Y ∗

n
)〉

≤ |Yn| + θ�t
〈
Y ∗

n , fλ
(
Y ∗

n
)〉

≤ |Yn| + θ�tLλ

(
 +

∣
∣Y ∗

n
∣
∣), (.)

which gives

∣
∣Y ∗

n
∣
∣ ≤ 

 – θ�tLλ

|Yn| +
θ�tLλ

 – θ�tLλ

= |Yn| +
θ�tLλ

 – θ�tLλ

|Yn| +
θ�tLλ

 – θ�tLλ

= |Yn| + α|Yn| + α

= β|Yn| + α, (.)

where α = θ�tLλ

–θ�tLλ
, β =  + α. By (.) we have

|Yn+| =
∣∣Yn + fλ

(
Y ∗

n
)
�t + g

(
Y ∗

n
)
�Wn + h

(
Y ∗

n
)
�Ñn

∣∣

= |Yn| +
∣∣fλ
(
Y ∗

n
)
�t

∣∣ +
∣∣g
(
Y ∗

n
)
�Wn

∣∣ +
∣∣h
(
Y ∗

n
)
�Ñn

∣∣

+ 
〈
Yn, fλ

(
Y ∗

n
)
�t

〉
+ 

〈
Yn, g

(
Y ∗

n
)
�Wn

〉
+ 

〈
Yn, h

(
Y ∗

n
)
�Ñn

〉

+ 
〈
fλ
(
Y ∗

n
)
�t, g

(
Y ∗

n
)
�Wn

〉

+ 
〈
fλ
(
Y ∗

n
)
�t, h

(
Y ∗

n
)
�Ñn

〉

+ 
〈
g
(
Y ∗

n
)
�Wn, h

(
Y ∗

n
)
�Ñn

〉
. (.)

Then by (.), (.) and (.), we get

|Yn+| ≤ |Yn| +
∣
∣g
(
Y ∗

n
)
�Wn

∣
∣ +

∣
∣h
(
Y ∗

n
)
�Ñn

∣
∣ + 

〈
Y ∗

n , fλ
(
Y ∗

n
)
�t

〉

+ 
〈
Yn, g

(
Y ∗

n
)
�Wn

〉
+ 

〈
Yn, h

(
Y ∗

n
)
�Ñn

〉

+ 
〈

Y ∗
n – Yn

θ
, g
(
Y ∗

n
)
�Wn

〉

+ 
〈

Y ∗
n – Yn

θ
, h
(
Y ∗

n
)
�Ñn

〉

+ 
〈
g
(
Y ∗

n
)
�Wn, h

(
Y ∗

n
)
�Ñn

〉



Tan and Men Advances in Difference Equations  (2017) 2017:189 Page 6 of 20

≤ |Yn| +
∣∣g
(
Y ∗

n
)
�Wn

∣∣ +
∣∣h
(
Y ∗

n
)
�Ñn

∣∣ + Lλ�t
(
 +

∣∣Y ∗
n
∣∣)

+ 
(

 –

θ

)〈
Yn, g

(
Y ∗

n
)
�Wn

〉

+ 
(

 –

θ

)
〈
Yn, h

(
Y ∗

n
)
�Ñn

〉

+

θ

〈
Y ∗

n , g
(
Y ∗

n
)
�Wn

〉
+


θ

〈
Y ∗

n , h
(
Y ∗

n
)
�Ñn

〉

+ 
〈
g
(
Y ∗

n
)
�Wn, h

(
Y ∗

n
)
�Ñn

〉
. (.)

Hence from (.) we have

|Yn+| ≤ |Yn| + βLλ�t|Yn| + (α + )Lλ�t

+
∣
∣g
(
Y ∗

n
)
�Wn

∣
∣ +

∣
∣h
(
Y ∗

n
)
�Ñn

∣
∣

+ 
(

 –

θ

)
〈
Yn, g

(
Y ∗

n
)
�Wn

〉

+ 
(

 –

θ

)〈
Yn, h

(
Y ∗

n
)
�Ñn

〉

+

θ

〈
Y ∗

n , g
(
Y ∗

n
)
�Wn

〉
+


θ

〈
Y ∗

n , h
(
Y ∗

n
)
�Ñn

〉

+ 
〈
g
(
Y ∗

n
)
�Wn, h

(
Y ∗

n
)
�Ñn

〉
. (.)

By the recursive calculation, we can get

|Yn| ≤ |Y| + βLλ�t
n–∑

j=

|Yj| + (α + )LλT

+
n–∑

j=

∣∣g
(
Y ∗

j
)
�Wj

∣∣ +
n–∑

j=

∣∣h
(
Y ∗

j
)
�Ñj

∣∣

+ 
(

 –

θ

) n–∑

j=

〈
Yj, g

(
Y ∗

j
)
�Wj

〉

+ 
(

 –

θ

) n–∑

j=

〈
Yj, h

(
Y ∗

j
)
�Ñj

〉

+

θ

n–∑

j=

〈
Y ∗

j , g
(
Y ∗

j
)
�Wj

〉
+


θ

n–∑

j=

〈
Y ∗

j , h
(
Y ∗

j
)
�Ñj

〉

+ 
n–∑

j=

〈
g
(
Y ∗

j
)
�Wj, h

(
Y ∗

j
)
�Ñj

〉
. (.)

Raising both sides to the power p, we can obtain

|Yn|p ≤ p–

{

|Y|p + np–(βLλ�t)p
n–∑

j=

|Yj|p +
(
(α + )LλT

)p

+ np–
n–∑

j=

∣
∣g
(
Y ∗

j
)
�Wj

∣
∣p + np–

n–∑

j=

∣
∣h
(
Y ∗

j
)
�Ñj

∣
∣p



Tan and Men Advances in Difference Equations  (2017) 2017:189 Page 7 of 20

+ p
(


θ

– 
)p

∣
∣∣∣
∣

n–∑

j=

〈
Yj, g

(
Y ∗

j
)
�Wj

〉
∣
∣∣∣
∣

p

+ p
(


θ

– 
)p

∣
∣∣
∣∣

n–∑

j=

〈
Yj, h

(
Y ∗

j
)
�Ñj

〉
∣
∣∣
∣∣

p

+ p
(


θ

)p
∣∣∣
∣∣

n–∑

j=

〈
Y ∗

j , g
(
Y ∗

j
)
�Wj

〉
∣∣∣
∣∣

p

+ p
(


θ

)p
∣∣
∣∣
∣

n–∑

j=

〈
Y ∗

j , h
(
Y ∗

j
)
�Ñj

〉
∣∣
∣∣
∣

p

+ p

∣∣
∣∣
∣

n–∑

j=

〈
g
(
Y ∗

j
)
�Wj, h

(
Y ∗

j
)
�Ñj

〉
∣∣
∣∣
∣

p}

. (.)

Notice that

E sup
≤n≤M

[ n–∑

j=

|Yj|p

]

=
M–∑

j=

E|Yj|p. (.)

Thus, for  ≤ M ≤ NT , we obtain

E sup
≤n≤M

|Yn|p ≤ p–

{

|Y|p + np–(βLλ�t)p
M–∑

j=

E|Yj|p +
(
(α + )LλT

)p

+ np–
E sup

≤n≤M

n–∑

j=

∣∣g
(
Y ∗

j
)
�Wj

∣∣p

+ np–
E sup

≤n≤M

n–∑

j=

∣∣h
(
Y ∗

j
)
�Ñj

∣∣p

+ p
(


θ

– 
)p

E sup
≤n≤M

∣
∣∣∣
∣

n–∑

j=

〈
Yj, g

(
Y ∗

j
)
�Wj

〉
∣
∣∣∣
∣

p

+ p
(


θ

– 
)p

E sup
≤n≤M

∣
∣∣
∣∣

n–∑

j=

〈
Yj, h

(
Y ∗

j
)
�Ñj

〉
∣
∣∣
∣∣

p

+ p
(


θ

)p

E

∣∣∣
∣∣

n–∑

j=

〈
Y ∗

j , g
(
Y ∗

j
)
�Wj

〉
∣∣∣
∣∣

p

+ p
(


θ

)p

E

∣∣
∣∣
∣

n–∑

j=

〈
Y ∗

j , h
(
Y ∗

j
)
�Ñj

〉
∣∣
∣∣
∣

p

+ p
E sup

≤n≤M

∣∣
∣∣
∣

n–∑

j=

〈
g
(
Y ∗

j
)
�Wj, h

(
Y ∗

j
)
�Ñj

〉
∣∣
∣∣
∣

p}

. (.)

To bound the fourth term on the right side of (.), we note that Y ∗
n ∈ Ftn , �Wn is

independent of Ftn and E|�Wj|p ≤ cp�tp, where cp is a constant. Meanwhile, letting
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C = C(p, T , Lλ, θ ) be a constant that may change from line to line,

np–
E sup

≤n≤M

n–∑

j=

∣
∣g
(
Y ∗

j
)
�Wj

∣
∣p = np–

E

M–∑

j=

∣
∣g
(
Y ∗

j
)
�Wj

∣
∣p

≤ np–
M–∑

j=

E
∣∣g
(
Y ∗

j
)∣∣p

E|�Wj|p

≤ np–cp�tpLp
λ

M–∑

j=

E
[
 +

∣∣Y ∗
j
∣∣]p

≤ Tp–cp�tLp
λ

M–∑

j=

E
[
 + β|Yj| + α

]p

≤ p–Tp–cp�tLp
λ

M–∑

j=

E
[
βp + βp|Yj|p]

≤ (T)p–cp�tLp
λβ

p

(

M +
M–∑

j=

E|Yj|p

)

≤ C + C�t
M–∑

j=

E|Yj|p. (.)

Using a similar approach to the fifth term and noticing that E|�Ñj|p ≤ cp�tp, we have

np–
E

M–∑

j=

∣
∣h
(
Y ∗

j
)
�Ñj

∣
∣p ≤ C + C�t

M–∑

j=

E|Yj|p. (.)

Now we bound the sixth term in (.), using the Burkholder-Davis-Gundy inequality

E sup
≤n≤M

∣
∣∣
∣∣

n–∑

j=

〈
Yj, g

(
Y ∗

j
)
�Wj

〉
∣
∣∣
∣∣

p

≤ CE

[M–∑

j=

|Yj|
∣∣g
(
Y ∗

j
)∣∣�t

]p/

≤ C�tp/Mp/–Lp
λE

M–∑

j=

|Yj|p
(
 +

∣∣Y ∗
j
∣∣)p/

≤ CTp/–�tE
M–∑

j=

|Yj|p + ( + |Y ∗
j |)p



≤ C�tE
M–∑

j=

[|Yj|p + p– + p–∣∣Y ∗
j
∣
∣p]

≤ C�tE
M–∑

j=

[|Yj|p + p–(β|Yj| + α
)p + p–]

≤ C + C�t
M–∑

j=

E|Yj|p. (.)
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Similar to the sixth term, we can bound the seventh term

E sup
≤n≤M

∣∣
∣∣
∣

n–∑

j=

〈
Yj, h

(
Y ∗

j
)
�Ñj

〉
∣∣
∣∣
∣

p

≤ C + C�t
M–∑

j=

E|Yj|p. (.)

Also similar to the sixth term, we can bound the eighth term in (.),

E sup
≤n≤M

∣∣
∣∣
∣

n–∑

j=

〈
Y ∗

j , g
(
Y ∗

j
)
�Wj

〉
∣∣
∣∣
∣

p

≤ CE

[M–∑

j=

∣∣Y ∗
j
∣∣∣∣g

(
Y ∗

j
)∣∣�t

]p/

≤ C�tp/Mp/–Lp
λE

M–∑

j=

∣
∣Y ∗

j
∣
∣p( +

∣
∣Y ∗

j
∣
∣)p/

≤ CTp/–�tE
M–∑

j=

|Y ∗
j |p + ( + |Y ∗

j |)p



≤ C�tE
M–∑

j=

[∣∣Y ∗
j
∣∣p + p– + p–∣∣Y ∗

j
∣∣p]

≤ C�tE
M–∑

j=

[(
 + p–)(β|Yj| + α

)p + p–]

≤ C + C�t
M–∑

j=

E|Yj|p, (.)

and the ninth term,

E sup
≤n≤M

∣∣
∣∣∣

n–∑

j=

〈
Y ∗

j , h
(
Y ∗

j
)
�Ñj

〉
∣∣
∣∣∣

p

≤ C + C�t
M–∑

j=

E|Yj|p. (.)

Finally we bound the tenth term in (.), by (.)-(.); we have

E sup
≤n≤M

∣∣
∣∣∣

n–∑

j=

〈
g
(
Y ∗

j
)
�Wj, h

(
Y ∗

j
)
�Ñj

〉
∣∣
∣∣∣

p

≤ –p
E sup

≤n≤M

∣∣
∣∣
∣

n–∑

j=

(∣∣g
(
Y ∗

j
)
�Wj

∣∣ +
∣∣h
(
Y ∗

j
)
�Ñj

∣∣)
∣∣
∣∣
∣

p

≤ –pMp–
E sup

≤n≤M

n–∑

j=

(∣∣g
(
Y ∗

j
)
�Wj

∣
∣ +

∣
∣h
(
Y ∗

j
)
�Ñj

∣
∣)p

≤ –Mp–
E sup

≤n≤M

n–∑

j=

(∣∣g
(
Y ∗

j
)
�Wj

∣
∣p +

∣
∣h
(
Y ∗

j
)
�Ñj

∣
∣p)

≤ C + C�t
M–∑

j=

E|Yj|p. (.)
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Combining (.)-(.) into (.), we obtain

E sup
≤n≤M

|Yn|p ≤ C + C�t
M–∑

j=

E|Yj|p

≤ C + C�t
M–∑

j=

E sup
≤n≤j

|Yn|p. (.)

Using the discrete-type Gronwall inequality and noting that M�t ≤ T , we obtain

E sup
≤n≤M

|Yn|p ≤ CeC�tM ≤ CeCT . (.)

By (.), we find that E sup≤n≤M |Y ∗
n |p is also bounded. �

Lemma . Let Assumption . hold, and  < θ ≤ , p ≥ ,  < �t < min{, 
θLλ

}, then the
exact solution of (.) and the continuous-time extension (.) satisfy

E

(
sup

≤t≤T

∣∣X(t)
∣∣p

)
∨E

(
sup

≤t≤T

∣∣Y (t)
∣∣p

)
< A,

where A is a positive constant independent of NT .

Proof From Lemma  in [], we can see that E(sup≤t≤T |X(t)|p) is bounded. Now we
prove that E(sup≤t≤T |Y (t)|p) is bounded.

From (.), we obtain

Y (t) = Yn + fλ
(
Y ∗

n
)
(t – tn) + g

(
Y ∗

n
)(

W (t) – W (tn)
)

+ h
(
Y ∗

n
)(

Ñ(t) – Ñ(tn)
)
, t ∈ [tn, tn+). (.)

Let s ∈ [,�t), we have

Y (tn + s) = Yn + fλ
(
Y ∗

n
)
s + g

(
Y ∗

n
)
�Wn(s) + h

(
Y ∗

n
)
�Ñn(s), (.)

where

�Wn(s) = W (tn + s) – W (tn),

�Ñn(s) = Ñ(tn + s) – Ñ(tn).

However, Y ∗
n = Yn + θ�tfλ(Y ∗

n ) and so, for a = s/�t, we can rewrite equation (.) in the
following form:

Y (tn + s) =
a
θ

Y ∗
n +

(
 –

a
θ

)
Yn + g

(
Y ∗

n
)
�Wn(s) + h

(
Y ∗

n
)
�Ñn(s). (.)

By (.), we have

∣∣Y (tn + s)
∣∣ ≤ C

[
 + |Yn| +

∣∣g
(
Y ∗

n
)
�Wn(s)

∣∣ +
∣∣h
(
Y ∗

n
)
�Ñn(s)

∣∣]. (.)
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Thus

sup
≤t≤T

∣
∣Y (t)

∣
∣p

≤ sup
≤n�t≤T

sup
≤s≤�t

∣
∣Y (tn + s)

∣
∣p

≤ sup
≤n�t≤T

sup
≤s≤�t

C
[
 + |Yn|p +

∣∣g
(
Y ∗

n
)
�Wn(s)

∣∣p +
∣∣h
(
Y ∗

n
)
�Ñn(s)

∣∣p]

≤ C

[

 + sup
≤n�t≤T

|Yn|p + sup
≤s≤�t

NT∑

j=

∣∣g
(
Y ∗

j
)
�Wj(s)

∣∣p

+ sup
≤s≤�t

NT∑

j=

∣∣h
(
Y ∗

j
)
�Ñj(s)

∣∣p
]

.

Now using Doob’s martingale inequality, (.) and Lemma ., we have

E sup
≤s≤�t

∣∣g
(
Y ∗

j
)
�Wj(s)

∣∣p ≤ CE
∣∣g
(
Y ∗

j
)
�Wj(�t)

∣∣p

≤ CE
∣
∣g
(
Y ∗

j
)∣∣p

E
∣
∣�Wj(�t)

∣
∣p

≤ C
(
 + E

∣
∣Y ∗

j
∣
∣p)

�tp

≤ C�t. (.)

Since the �Ñj(s) is also a martingale, by a similar method, we get

E sup
≤s≤�t

∣
∣h
(
Y ∗

j
)
�Ñj(s)

∣
∣p ≤ C�t. (.)

Then by (.), (.) and Lemma ., combining NT�t ≤ T , we have

E

(
sup

≤t≤T

∣
∣Y (t)

∣
∣p

)
≤ A.

Then we get the desired results. �

Now we use the above lemmas to prove a strong convergence result.

Remark . Since f (x) ∈ C, i.e. f ′(x) is continuous, |f ′(x)| is bounded locally. Then by the
mean value theorem, there exists a positive constant LR for each R > , such that

∣∣f (x) – f (y)
∣∣ =

∣∣f ′(z)
∣∣|x – y| ≤ LR|x – y|, (.)

for all x, y, z ∈R
n with |x| ∨ |y| ≤ R.

We note that the function fλ in (.) automatically inherits this condition, with a larger
LR.

Theorem . Under Assumption ., let  < θ ≤ ,  < �t < min{, 
θLλ

}, the continuous-
time approximate solution Y (t) defined by (.) will converge to the true solution X(t) of
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(.) in the mean-square sense, i.e.

lim
�t→

E sup
≤t≤T

∣∣Y (t) – X(t)
∣∣ = . (.)

Proof First, we define

τd := inf
{

t ≥ ,
∣∣X(t)

∣∣≥ d
}

, σd := inf
{

t ≥ ,
∣∣Y (t)

∣∣≥ d
}

, υd = τd ∧ σd,

and let

e(t) = Y (t) – X(t).

Recall the Young inequality: for 
p + 

q =  (p, q > ), we have

ab = aδ

p

b

δ

p

≤ (aδ

p )p

p
+

bq

qδ
q
p

=
apδ

p
+

bq

qδ
q
p

, ∀a, b, δ > .

Thus, for any δ > , we have

E

[
sup

≤t≤T

∣
∣e(t)

∣
∣
]

= E

[
sup

≤t≤T

∣
∣e(t)

∣
∣I{τd>T and σd>T}

]
+ E

[
sup

≤t≤T

∣
∣e(t)

∣
∣I{τd≤T or σd≤T}

]

= E

[
sup

≤t≤T

∣
∣e(t)

∣
∣I{υd>T}

]
+ E

[
sup

≤t≤T

∣
∣e(t)

∣
∣I{τd≤T or σd≤T}

]

≤ E

[
sup

≤t≤T

∣
∣e(t ∧ υd)

∣
∣
]

+ E

[
sup

≤t≤T

∣
∣e(t)

∣
∣I{τd≤T or σd≤T}

]

≤ E

[
sup

≤t≤T

∣
∣e(t ∧ υd)

∣
∣
]

+
δ

p
E

[
sup

≤t≤T

∣
∣e(t)

∣
∣p

]

+
 – 

p

δ


p–
P{τd ≤ T or σd ≤ T}. (.)

By Lemma ., then

P{τd ≤ T} ≤ E

[
I{τd≤T}

|X(τd)|p

dp

]
≤ 

dp E
[

sup
≤t≤T

∣∣X(t)
∣∣p

]
≤ A

dp .

Similarly, the result can be derived for σd

P{σd ≤ T} = E

[
I{σd≤T}

|Y (σd)|p

dp

]
≤ 

dp E
[

sup
≤t≤T

∣∣Y (t)
∣∣p

]
≤ A

dp ,

so that

P{σd ≤ Torνd ≤ T} ≤ P{σd ≤ T} + P{νd ≤ T} ≤ A

dp .
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Using the bounds of X(t) and Y (t), we have

E

[
sup

≤t≤T

∣
∣e(t)

∣
∣p

]
≤ p–

E

[
sup

≤t≤T

(∣∣X(t)
∣
∣p +

∣
∣Y (t)

∣
∣p)]≤ pA.

Substituting the above inequality into (.) leads to

E

[
sup

≤t≤T

∣
∣e(t)

∣
∣
]

≤ E

[
sup

≤t≤T

∣
∣Y (t ∧ υd) – X(t ∧ υd)

∣
∣
]

+
pδA

p
+

A( – 
p )

d

p

δ


p– . (.)

Now we bound the first term on the right-hand side of (.). By the definitions of X(t)
and Y (t), combining the fact that  < θ ≤ , we have

∣
∣Y (t ∧ υd) – X(t ∧ υd)

∣
∣

=
∣∣
∣∣

∫ t∧υd



[
fλ
(
Y (s)

)
– fλ

(
X(s)

)]
ds

+
∫ t∧υd


g
(
Y (s)

)
– g

(
X(s)

)
dW (s)

+
∫ t∧υd


h
(
Y (s)

)
– h

(
X(s)

)
dÑ(s)

∣
∣∣∣



≤ 
∣∣
∣∣

∫ t∧υd



[
fλ
(
Y (s)

)
– fλ

(
X(s)

)]
ds
∣∣
∣∣



+ 
∣∣
∣∣

∫ t∧υd


g
(
Y (s)

)
– g

(
X(s)

)
dW (s)

∣∣
∣∣



+ 
∣∣
∣∣

∫ t∧υd


h
(
Y (s)

)
– h

(
X(s)

)
dÑ(s)

∣∣
∣∣



.

For any τ ∈ [, T], using the Cauchy-Schwarz inequality and the Doob martingale inequal-
ity, we obtain

E

[
sup

≤t≤τ

∣∣Y (t ∧ υd) – X(t ∧ υd)
∣∣
]

≤ TE

∫ τ∧υd



∣
∣fλ
(
Y (s)

)
– fλ

(
X(s)

)∣∣ ds

+ E
∫ τ∧υd



∣
∣g
(
Y (s)

)
– g

(
X(s)

)∣∣ ds

+ Eλ

∫ τ∧υd



∣
∣h
(
Y (s)

)
– h

(
X(s)

)∣∣ ds.

Applying the local Lipschitz condition (.) and Assumption ., we get

E

[
sup

≤t≤τ

∣∣Y (t ∧ υd) – X(t ∧ υd)
∣∣
]

≤ (TLR + Lg + Lhλ)E
∫ τ∧υd



∣
∣Y (s) – X(s)

∣
∣ ds
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≤ (TLR + Lg + Lhλ)
[
E

∫ τ∧υd



∣
∣Y (s) – Y (s)

∣
∣ ds

+
∫ τ


E sup

≤r≤s

∣
∣Y (r ∧ υd) – X(r ∧ υd)

∣
∣ ds

]
. (.)

To bound the first term inside the parentheses of (.), we denote by ns the integer for
which s ∈ [tns , tns+ ] and note that

Y (s) – Y (s) = –fλ
(
Y ∗

ns

)
(s – tns ) – g

(
Y ∗

ns

)(
W (s) – W (tns )

)

– h
(
Y ∗

ns

)(
Ñ(s) – Ñ(tns )

)
,

and hence that

∣∣Y (s) – Y (s)
∣∣ ≤ 

[∣∣fλ
(
Y ∗

ns

)
�t

∣∣+
∣∣g
(
Y ∗

ns

)
�Wns

∣∣ +
∣∣h
(
Y ∗

ns

)
�Nns

∣∣].

Note that

∣∣fλ
(
Y ∗

ns

)∣∣ ≤ 
[∣∣fλ

(
Y ∗

ns

)
– fλ()

∣∣ +
∣∣fλ()

∣∣]

≤ LR
∣
∣Y ∗

ns

∣
∣ + 

∣
∣fλ()

∣
∣.

Thus by the second moments of martingale increments and the moment bound on the
numerical solution Y ∗

n , we can obtain

E

∫ τ∧υd



∣
∣Y (s) – Y (s)

∣
∣ ds ≤ C�t,

for a constant C = C(R, T , A). Substituting this bound into (.) and applying the con-
tinuous Gronwall inequality gives

E

[
sup

≤t≤T

∣
∣Y (t ∧ υd) – X(t ∧ υd)

∣
∣
]

≤ C�te(TLR+Lg +Lhλ)T , (.)

for a constant C = C(R, T , A).
Now combining (.) with (.), we have

E

[
sup

≤t≤T

∣∣e(t)
∣∣
]

≤ C�te(TLR+Lg +Lhλ)T +
pδA

p
+

A( – 
p )

d

p

δ


p– . (.)

For any given ε > , we can choose δ sufficiently small for

pδA

p
≤ ε


,

and then choose d sufficient large for

A( – 
p )

dpδ


p–
<

ε


,
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and finally choose �t so that

C�te(TLR+Lg +Lhλ)T <
ε


.

Thus E[sup≤t≤T |e(t)|] < ε. The proof is completed. �

5 Convergence rate
To prove the convergence rate of the CSSθ method, we give the following assumption.

Assumption . There exist constants D ∈R
+ and q ∈ Z

+ such that, for all a, b ∈R
n,

∣
∣fλ(a) – fλ(b)

∣
∣ ≤ D

(
 + |a|q + |b|q)|a – b|. (.)

Firstly, we establish Lemma . under Assumptions . and ..

Lemma . Under Assumptions . and ., let  < θ ≤ ,  < �t < min{, 
θLλ

}, for any
given integer r ≥ , there exists a positive constant E = E(r) such that

E sup
≤t≤T

∣∣Y (t) – Y (t)
∣∣r ≤ E�t

r
 . (.)

Proof Since for any given t ∈ [n�t, (n + )�t], we have Y (t) = Yn, and then by the
continuous-time approximate solution Y (t) defined by (.), we can get

Y (t) – Y (t) = –fλ
(
Y ∗

n
)
(t – tn) – g

(
Y ∗

n
)(

W (t) – W (tn)
)

– h
(
Y ∗

n
)(

Ñ(t) – Ñ(tn)
)
,

and hence for t – tn ≤ �t

∣∣Y (t) – Y (t)
∣∣r ≤ r–[�tr∣∣fλ

(
Y ∗

n
)∣∣r +

∣∣g
(
Y ∗

n
)∣∣r∣∣W (t) – W (tn)

∣∣r

+
∣∣h
(
Y ∗

n
)∣∣r∣∣Ñ(t) – Ñ(tn)

∣∣r].

By Assumption . on fλ, and linear growth condition (.)-(.) for g and h, we have

E sup
≤t≤T

∣
∣Y (t) – Y (t)

∣
∣r

≤ C(r)
[
�tr

(
 + sup

≤t≤T
E
∣
∣Y ∗

n
∣
∣u
)

+
(

 + sup
≤t≤T

E
∣
∣Y ∗

n
∣
∣u
)
|t – tn|r/

+
(

 + sup
≤t≤T

E
∣∣Y ∗

n
∣∣u
)
|t – tn|r/

]
, (.)

where C(r) and u are both integer constants depending on q from Assumption . and r.
By Lemma ., we obtain

E sup
≤t≤T

∣
∣Y (t) – Y (t)

∣
∣r ≤ E�t

r
 ,

where E = E(r) a positive constant which depends on r. �
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Theorem . Under Assumptions . and ., let  < θ ≤ ,  < �t < min{, 
θLλ

}, the
continuous-time approximate solution Y (t) defined by (.) will converge to the true so-
lution X(t) of (.) with strong order of one half, i.e.

E sup
≤t≤T

∣∣Y (t) – X(t)
∣∣ = O(�t). (.)

Proof Let

e(t) = Y (t) – X(t).

From the identity

X(t) = X +
∫ t


fλ
(
X
(
s–))ds +

∫ t


g
(
X
(
s–))dW (s)

+
∫ t


h
(
X
(
s–))dÑ(s), (.)

and (.), we apply the Itô formula [] to obtain

∣
∣e(t)

∣
∣ = 

∫ t



〈
fλ
(
Y
(
s–)) – fλ

(
X
(
s–)), e

(
s–)〉ds +

∫ t



∣
∣g
(
Y
(
s–)) – g

(
X
(
s–))∣∣ ds

+ λ

∫ t



∣∣h
(
Y
(
s–)) – h

(
X
(
s–))∣∣ ds

+
∫ t



〈
e
(
s–), g

(
Y
(
s–)) – g

(
X
(
s–))dW (s)

〉

+
∫ t



〈
e
(
s–), h

(
Y
(
s–)) – h

(
X
(
s–))〉dÑ(s)

+
∫ t



∣∣h
(
Y
(
s–)) – h

(
X
(
s–))∣∣ dÑ(s)

≤ 
∫ t



〈
fλ
(
Y
(
s–)) – fλ

(
Y
(
s–)), e

(
s–)〉 +

〈
fλ
(
Y
(
s–)) – fλ

(
X
(
s–)), e

(
s–)〉ds

+
∫ t



∣∣g
(
Y
(
s–)) – g

(
X
(
s–))∣∣ ds

+ λ

∫ t



∣
∣h
(
Y
(
s–)) – h

(
X
(
s–))∣∣ ds

+ M(t) + M(t) + M(t),

where

M(t) =
∫ t



〈
e
(
s–), g

(
Y
(
s–)) – g

(
X
(
s–))dW (s)

〉
,

M(t) =
∫ t



〈
e
(
s–), h

(
Y
(
s–)) – h

(
X
(
s–))〉dÑ(s),

M(t) =
∫ t



∣∣h
(
Y
(
s–)) – h

(
X
(
s–))∣∣ dÑ(s).
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Using the Assumptions . and ., and (.) we have

∣∣e(t)
∣∣ ≤

∫ t



〈
fλ
(
Y
(
s–)) – fλ

(
Y
(
s–)), e

(
s–)〉 + Kλ

∣∣e
(
s–)∣∣ ds

+
∫ t


(Lg + λLh)

∣
∣Y
(
s–) – X

(
s–)∣∣ ds

+ M(t) + M(t) + M(t)

≤
∫ t



∣
∣fλ
(
Y
(
s–)) – fλ

(
Y
(
s–))∣∣ +

∣
∣e
(
s–)∣∣ ds + Kλ

∫ t



∣
∣e
(
s–)∣∣ ds

+ (Lg + λLh)
∫ t



∣∣e
(
s–)∣∣ +

∣∣Y
(
s–) – Y

(
s–)∣∣ ds

+ M(t) + M(t) + M(t)

≤ [
 + (Kλ + Lg + λLh)

]∫ t



∣
∣e
(
s–)∣∣ ds

+ D
∫ t



(
 +

∣∣Y
(
s–)∣∣q +

∣∣Y
(
s–)∣∣q)∣∣Y

(
s–) – Y

(
s–)∣∣ ds

+ (Lg + λLh)
∫ t



∣
∣Y
(
s–) – Y

(
s–)∣∣ ds

+ M(t) + M(t) + M(t)

≤ [
 + (Kλ + Lg + λLh)

]∫ t



∣
∣e
(
s–)∣∣ ds

+ D

(
sup

≤s≤t

∣∣Y
(
s–) – Y

(
s–)∣∣

)∫ t



(
 +

∣∣Y
(
s–)∣∣q +

∣∣Y
(
s–)∣∣q)ds

+ M(t) + M(t) + M(t),

where we use D to denote a generic constant (independent of �t) that may change from
line to line.

Using the Lemma ., Lemma . and Lemma ., we have

E sup
≤s≤t

∣∣e(s)
∣∣ ≤ D

∫ t


E
∣∣e
(
s–)∣∣ ds + D�t

+ E sup
≤s≤t

M(s) + E sup
≤s≤t

M(s) + E sup
≤s≤t

M(s). (.)

Now, as in the proof of [], the Burkholder-Davis-Gundy inequality can be used to get the
estimate

E sup
≤s≤t

Mi(s) ≤ 

E sup

≤s≤t

∣∣e(t)
∣∣ + D

∫ t


E
∣∣e
(
s–)∣∣ ds + D�t, i = , , .

Using this in (.), we obtain

E sup
≤s≤t

∣
∣e(s)

∣
∣ ≤ D

∫ t


E sup

≤s≤t

∣
∣e
(
s–)∣∣ ds + D�t.

The result follows from the continuous Gronwall inequality. �
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6 Numerical experiments
We consider the following nonlinear stochastic different equation with jumps from []:

⎧
⎨

⎩
dX(t) = (–X(t–) – X(t–)) dt + X(t–) dW (t) + X(t–) dN(t),

X() = .
(.)

Define f (x(t)) = –x(t) – x(t), g(x(t)) = x(t), h(x(t)) = x(t). It is easy to compute that

〈
x – y, f (x) – f (y)

〉
=
〈
x – y, –(x – y) –

(
x – y)〉

= –|x – y|( + x + xy + y)

≤ –|x – y|,

which implies that f (x) satisfies the one-sided Lipschitz condition, g(x) and h(x) satisfy the
global Lipschitz condition, then the Assumptions of Theorem . hold. That is to say, the
numerical solution by our method will converge to the true solution of system (.).

To show the convergence of the CSSθ method for system (.), we fix �t = –, T = ,
λ = , θ = .. Noting that the exact solution of nonlinear jump-diffusion system (.) is
not available, we use the numerical solution by the SSBE method with step size �t = –

as the ‘referenced exact solution’ (Theorem  in [] can guarantee its strong convergence)
in Figure .

In Figure , we show the numerical solution by the CSSθ method with step size �t = –

and the ‘referenced exact solution’. we can easy to find that the CSSθ approximation and
the ‘referenced exact solution’ make no major difference between both paths. That is to
say the CSSθ method converges to the ‘referenced exact solution’ well. Hence our method
is efficient for the nonlinear jump-diffusion systems.

To show the strong convergence order of the CSSθ method with different parameter θ ,
we fix T = , λ =  and change θ = ., ., ., respectively. The ‘referenced exact solution’
of system (.) is also used by the SSBE method with step size �t = –. We simulate the
numerical solutions with five different step sizes h = p–�t for  ≤ p ≤ , �t = –. The
mean-square errors ε = /,

∑,
i= |Yn(ωi) – X(T)|, all measured at time T = , are

estimated by trajectory averaging. We plot our approximation to
√

ε against �t on a log-
log scale. For reference a dashed line of slope one-half is added.

In Figure , we see that the slopes of the four curves appear to match well. Therefore,
the results verify the strong convergence order of the proposed method.

Figure 1 CSSθ solution and ‘referenced exact
solution’ for system (6.1).
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Figure 2 Errors simulation by CSSθ method
with different θ .
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