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Abstract
In this paper, we introduce a general (p,q)-Sturm-Liouville difference equation whose
solutions are (p,q)-analogues of classical orthogonal polynomials leading to Jacobi,
Laguerre, and Hermite polynomials as (p,q) → (1, 1). In this direction, some basic
characterization theorems for the introduced (p,q)-Sturm-Liouville difference
equation, such as Rodrigues representation for the solution of this equation, a general
three-term recurrence relation, and a structure relation for the (p,q)-classical
polynomial solutions are given.
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1 Introduction
Postquantum calculus, or (p, q)-calculus, is known as an extension of quantum calculus
that recovers the results as p → . For some basic properties of (p, q)-calculus, we refer to
[–].

In the q-case, the solutions of a q-Sturm-Liouville problem are q-orthogonal func-
tions [, ], which reduce to the q-classical orthogonal polynomials, appear in a natural
way []. Very recently [], a new generalization of q-Sturm-Liouville problems, namely,
(p, q)-Sturm-Liouville problems, has been analyzed. In this paper, we show that the (p, q)-
difference equation is of hypergeometric type, that is, the (p, q)-difference of any solution
of the equation is also a solution of an equation of the same type. From this fundamen-
tal property the Rodrigues formula for the solutions is derived, and the coefficients of the
three-term recurrence relation, satisfied by the orthogonal polynomial solutions of the
(p, q)-difference equation, are obtained.

The paper is organized as follows: In Section , we collect some definitions and nota-
tions of (p, q)-calculus and include some new results that will be used in this paper. In
Section , the (p, q)-difference equations of hypergeometric type are introduced, in the
sense that the (p, q)-difference of a solution of the equation is solution of an equation of
the same type. In Section , a Rodrigues-type formula for the polynomial solutions of
the (p, q)-difference equation of hypergeometric type is obtained. In Section , we obtain
the coefficients in the three-term recurrence relation for the orthogonal polynomial solu-
tions of the (p, q)-difference equation of hypergeometric type. A difference representation

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13662-017-1236-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-017-1236-9&domain=pdf
http://orcid.org/0000-0003-0872-5017
mailto:area@uvigo.es


Masjed-Jamei et al. Advances in Difference Equations  (2017) 2017:186 Page 2 of 17

and a (p, q)-structure relation are also obtained. Finally, in Section , we present (p, q)-
analogues of shifted Jacobi, Laguerre, and Hermite polynomials. For each of this specific
families, we provide a (p, q)-difference equation of hypergeometric type, the coefficients of
the three-term recurrence relation, the weight function, and the orthogonality property.
Limit transitions from these (p, q)-analogues to the classical families are also given. Appell
families are also studied in detail.

2 Basic definitions and notations
In this section, we summarize the basic definitions and results, which can be found in [,
–] and references therein.

For k ≥ , the q-shifted factorial is defined as

(a; q)k =
k–∏

j=

(
 – aqj) with (a; q) = , ()

which can be generalized to the (p, q)-power as

(
(a, b); (p, q)

)
k =

k–∏

j=

(
apj – bqj) with

(
(a, b); (p, q)

)
 = . ()

Moreover, for k < , we define

(
(a, b); (p, q)

)
k =


∏–k

j=(ap–j – bq–j)
. ()

Hence, we have

(
(, a); (, q)

)
k = (a; q)k ,

(
(ra, rb); (p, q)

)
k = rk((a, b); (p, q)

)
k ,

and

(b/a; q/p)k = a–kp–k(k–)/((a, b); (p, q)
)

k .

Moreover,

(a; q)∞ =
∞∏

j=

(
 – aqj) for  < |q| < 

can be generalized as

(
(a, b); (p, q)

)
∞ =

∞∏

j=

(
apj – bqj) for  <

∣∣∣∣
q
p

∣∣∣∣ < .

For any complex number λ, we also introduce

(
(a, b); (p, q)

)
λ

=
((a, b); (p, q))∞

((apλ, bqλ); (p, q))∞
. ()
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The q-numbers are defined as

lim
p→

[n]p,q = [n]q =
n–∑

j=

qj, q �= ,

and their generalization as

[n]p,q =
pn – qn

p – q
=

n–∑

j=

qjpn––j, n = , , . . . , ()

where

[–]p,q = –


pq
and []p,q = .

The (p, q)-factorial is defined by

[n]p,q! =
n∏

j=

[j]p,q, n ≥ , and []p,q! = . ()

Since the definition of q-hypergeometric series

rφs

(
a, . . . , ar

b, . . . , bs

∣∣∣ q; z

)
=

∞∑

j=

(a, . . . , ar ; q)j

(b, . . . , bs; q)j

zj

(q; q)j

(
(–)jq

j(j–)


)+s–r ,

where

(a, . . . , ar ; q)j = (a; q)j · · · (ar ; q)j,

is based on the symbol (a; q)j defined in (), its generalization, known as the (p, q)-
hypergeometric series, can be defined as

r�s

(
(ap, aq), . . . , (arp, arq)
(bp, bq), . . . , (bsp, bsq)

∣∣∣ (p, q); z

)

=
∞∑

j=

((ap, aq), . . . , (arp, arq); (p, q))j

((bp, bq), . . . , (bsp, bsq); (p, q))j

zj

((p, q); (p, q))j

(
(–)j(q/p)

j(j–)


)+s–r , ()

where

(
(ap, aq), . . . , (arp, arq); (p, q)

)
j =

(
(ap, aq); (p, q)

)
j · · ·

(
(arp, arq); (p, q)

)
j,

and r, s ∈ Z+ and ap, aq, . . . , arp, arq, bp, bq, . . . , bsp, bsq, z ∈C.
It is clear that

lim
q→

rφs

(
qa , . . . , qar

qb , . . . , qbs

∣∣∣ q; (q – )+s–rz

)
= rFs

(
a, . . . , ar

b, . . . , bs

∣∣∣ z

)
, ()
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where

rFs

(
a, . . . , ar

b, . . . , bs

∣∣∣ z

)
=

∞∑

j=

(a, . . . , ar)j

(b, . . . , bs)j

zj

j!

denotes a hypergeometric series with

(a, . . . , ar)j = (a)j · · · (ar)j.

Also, when ap = ap = · · · = arp = bp = bp = · · · = bsp = , aq = a, . . . , arq = ar and bq =
b, . . . , bs,q = bs, we have

lim
p→

r�s

(
(, a), . . . , (, ar)
(, b), . . . , (, bs)

∣∣∣ (p, q); z

)
= rφs

(
a, . . . , ar

b, . . . , bs

∣∣∣ q; z

)
.

The functions

Eq(x) :=
∞∑

n=

q 
 n(n–)

(q; q)n
xn = (–x; q)∞

(
 < |q| <  and |x| < 

)
()

and

Ep,q(x) :=
∞∑

n=

q 
 n(n–)

((p, q); (p, q))n
xn =

(
(, –x); (p, q)

)
∞

(
 <

∣∣∣∣
q
p

∣∣∣∣ <  and |x| < 
)

()

are respectively known as a q-analogue and a (p, q)-analogue of the exponential function.
The (p, q)-difference operator is defined by (see e.g. [, ])

(Dp,qf )(x) =
Lpf (x) – Lqf (x)

(p – q)x
, x �= , ()

where

Lah(x) = h(ax) ()

and (Dp,qf )() = f ′(), provided that f is differentiable at .
The (p, q)-difference operator is a linear operator: for any constants a and b, we have

(
Dp,q(af + bg)

)
(x) = a(Dp,qf )(x) + b(Dp,qg)(x).

Moreover, it can be proved that

(
Dp,q(fg)

)
(x) = f (px)(Dp,qg)(x) + g(qx)(Dp,qf )(x)

= g(px)(Dp,qf )(x) + f (qx)(Dp,qg)(x). ()

The (p, q)-integral is defined by

∫ x


f (t) dp,qt = (p – q)x

∞∑

j=

qj

pj+ f
(

qj

pj+ x
)

. ()
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For two nonnegative numbers a and b with a < b, definition () yields

∫ b

a
f (x) dp,qx =

∫ b


f (x) dp,qx –

∫ a


f (x) dp,qx.

A regular Sturm-Liouville problem of continuous type is a boundary value problem of
the form

d
dx

(
r(x)

dyn(x)
dx

)
+ λnw(x)yn(x) = 

(
r(x) > , w(x) > 

)
, ()

which is defined on an open interval, say (a, b), with boundary conditions

αy(a) + βy′(a) = , αy(b) + βy′(b) = , ()

where α, α and β, β are constant numbers, and r(x), r′(x), and w(x) in () are assumed
to be continuous for x ∈ [a, b]. In this sense, if yn and ym are two eigenfunctions of equation
(), then according to Sturm-Liouville theory [], they are orthogonal with respect to the
weight function w(x) under the given condition (), that is, we have

∫ b

a
w(x)yn(x)ym(x) dx = d

nδmn, ()

where d
n =

∫ b
a w(x)y

n(x) dx denotes the norm square of the functions yn, and δmn stands
for the Kronecker delta.

The following result has been proved in [].

Theorem . Let {yn(x; p, q)} be a sequence of functions satisfying the equation

A(x)
(
D

p,qyn
)
(x; p, q) + B(x)(Dp,qyn)(px; p, q) +

(
λn,p,qC(x) + D(x)

)
yn(pqx; p, q) = , ()

where A(x), B(x), C(x), and D(x) are known functions, and λn,p,q is a sequence of constants,
then

∫ b

a
w∗(x; p, q)yn(x; p, q)ym(x; p, q) dp,qx =

(∫ b

a
w∗(x; p, q)y

n(x; p, q) dp,qx
)

δn,m,

where

w∗(x; p, q) = w(x; p, q)L–
pqC(x) = w(x; p, q)C

(


pq
x
)

, ()

and w(x; p, q) is a solution of the (p, q)-Pearson difference equation

(
Dp,q

(
LpwL–

q A
))

(x; p, q) = B(x)Lpqw(x; p, q), ()

which is equivalent to

w(px; p, q)
w(pqx; p, q)

=
A(x) + (p – q)xB(x)

A(pq–x)
.
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Of course, the weight function defined in () must be be positive, and

w
(
q–x; p, q

)
A

(
p–q–x

)

must vanish at x = a, b.

Remark . Let θ (x; p, q) be a known and predetermined function. The solution of the
difference equation

w(px)
w(pqx)

= θ (x; p, q) ()

can be represented as []

w(x) =
∞∏

k=

θ

(
qk

pk+ x; p, q
)

.

3 (p, q)-Difference equations of hypergeometric type
First, from the definition of shift operator () we can be verify that

Dp,q
(
Lqf (x)

)
= qLq

(
Dp,qf (x)

)
.

Let us assume in () that A(x) and B(x) are polynomials of degree at most  and , respec-
tively, D(x) = , and C(x) = . For our purposes, it is convenient to consider a particular
case of () as

σ (x)
(
D

p,qy
)
(x) + τ (x)Lp

(
(Dp,qy)(x)

)
+ λLpqy(x) = , ()

where

σ (x) = ax + bx + c and τ (x) = dx + e ()

with d �= . Let y(x) be a solution of (), and let

v(x) = (Dp,q)y(x). ()

We prove that v(x) is also a solution of an equation of the same type as ().
With notation (), we can rewrite () as

σ (x)(Dp,qv)(x) + τ (x)Lp(v)(x) + λLpqy(x) = . ()

If the (p, q)-difference operator Dp,q is applied to the latter equation, then it yields

Dp,q
(
σ (x)(Dp,qv)(x)

)
+ Dp,q

(
τ (x)Lp(v)(x)

)
+ Dp,q

(
λLpqy(x)

)
= . ()

Also, since

Dp,q
(
σ (x)(Dp,qv)(x)

)
= Lp

(
Dp,qv(x)

)
(Dp,qσ )(x) + Lq

(
σ (x)

)(
D

p,qv(x)
)
, ()
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Dp,q
(
τ (x)Lp(v)(x)

)
= Lpτ (x)pLp

(
Dp,qv(x)

)
+ Lpq

(
v(x)

)(
Dp,qτ (x)

)
, ()

and

Dp,q
(
λLpqy(x)

)
= λpqLpq

(
v(x)

)
, ()

we obtain

(
Lqσ (x)

)(
D

p,qv
)
(x) + τ(x)Lp

(
(Dp,qv)(x)

)
+ μLpqv(x) = , ()

where

τ(x) = pLp
(
τ (x)

)
+

(
Dp,qσ (x)

)
. ()

Therefore, v(x) defined in () is solution of an equation of the same type as ().
If the above procedure is similarly iterated, then we conclude that vn(x) = Dn

p,qy(x) is also
a solution of the equation

(
Ln

qσ (x)
)(
D

p,qvn
)
(x) + τn(x)Lp

(
(Dp,qvn)(x)

)
+ μnLpqvn(x) = , ()

where

τn(x) = pLp
(
τn–(x)

)
+

(
Dp,qσn–(x)

)
. ()

Hence, it is proved by induction that vn(x) satisfies

σn(x)
(
D

p,qvn
)
(x) + τn(x)Lp

(
(Dp,qvn)(x)

)
+ μnLpqvn(x) = , ()

where

σn(x) = σ
(
qnx

)
, Dp,qσn(x) = qn(b + aqn(p + q)x

)
()

and

τn(x) = epn + b[n]p,q +
(
dpn + a

(
pn + qn)[n]p,q

)
x. ()

4 Rodrigues-type representation for the polynomial solutions of equation (22)
Theorem . The polynomial solutions of equation () satisfy the Rodrigues-type for-
mula

yn(x) = KnL–n
pq Dn

p,q

(
Ln

pw(x)
n∏

k=

Ln–k
p Lk–

q σ (x)

)
, ()

where

Kn =
(–)n(Dn

p,qyn)(x)

(pq)( n+n–
 ) ∏n–

k= μk

with μ = λ.
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Proof Let w(z) and wn(z) satisfy the following (p, q)-Pearson difference equations:

Dp,q
(
Lpw(x)Lq–σ (x)

)
= τ (x)Lpqw(x)

and

Dp,q
(
Lpwn(x)Lqn–σ (x)

)
= τn(x)Lpqwn(x).

Multiplying () and () by w(z) and wn(z), we can rewrite the equations in a self-adjoint
form as

Dp,q
(
Lpw(x)Lq–σ (x)(Dp,qy)(x)

)
+ λnLpqw(x)Lpqy(x) =  ()

and

Dp,q
(
Lpwn(x)Lqn–σ (x)(Dp,qvn)(x)

)
+ μnLpqwn(x)Lpqvn(x) = . ()

On the other hand, since

wn+(x) = Lpwn(x)Ln–
q σ (x) ()

and

vn+(x) = Dp,qvn(x), ()

using () and (), we can write () as

Lpqwn(x)Lpqvn(x) = –


μn
Dp,q

(
wn+(x)vn+(x)

)
.

If y(x) is a polynomial of degree n, that is, y = yn(x), then

vm(x) = y(m)
n (x) and vn(x) = y(n)

n (z) = const.,

and for y(m)
n (x), we obtain

Dm
p,q

(
Lpqyn(x)

)
= K ′

nL–(n–m–)
pq Dn–m

p,q
(
wn(x)

)
,

where

K ′
n =

(–)n–m(Dn
p,qyn)(x)

(pq)( n+n+m–
 ) ∏n–

k=m μk

.

The result follows from this expression for m = . �
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5 Three-term recurrence relation for the polynomial solutions of equation (22)
First, to calculate the corresponding eigenvalues λn,p,q, since

Dp,q
(
xn) =

pnxn – qnxn

(p – q)x
= [n]p,qxn–,

by equating the coefficients of xn we obtain

λn,p,q = –
[n]p,q

(pq)n

(
a[n – ]p,q + dpn–). ()

Lemma . For each nonnegative integer n, the uniqueness of a monic polynomial solution
of equation () is equivalent to the following conditions:

() The equation in j

λj,p,q = λn,p,q

has j = n as a unique solution in N;
() λk,p,q �=  for k = , , . . . , n – .

Proof The result can be obtained following the same steps as in the continuous case. �

Let us define a linear operator as

Ln
[
y(x)

]
:=

(
ax + bx + c

)
D

p,qy(x; p, q) + (dx + e)Dp,qy(px; p, q) + λny(pqx; p, q), ()

where λn = λn,p,q is defined in ().

Lemma . There exists a sequence {βn}n∈N such that the polynomial

Un(x) = Ln+
(
(x – βn)Pn(x)

)
()

has exactly degree n –  for each n ∈ N and

βn = �,n +
p–nq–n[n + ]p,q(b[n]p,q + epn)

λn+ – λn
. ()

Moreover, Un(x) = ϑnxn– + · · · with

ϑn =


pq
((

–p+nqnλn+(βn�,n – �,n) – pnq
(
d(βn�,n – �,n)[n – ]p,q

+ ep(βn – �,n)[n]p,q
)

+ pq
(
[n – ]p,q

(
a(–βn�,n + �,n)[n – ]p,q

+ b(–βn + �,n)[n]p,q
)

+ c[n]p,q[n + ]p,q
)))

()

and Pn(x) = xn + �,nxn– + · · · .

Proof Let us expand the monic polynomial solution of equation ():

yn(x; p, q) = Pn(x) = xn + �,nxn– + �,nxn– + · · · . ()



Masjed-Jamei et al. Advances in Difference Equations  (2017) 2017:186 Page 10 of 17

Since

(x – βn)Pn(x) = xn+ + xn(�,n – βn) + xn–(�,n – βn�,n) + · · · ,

we have

Ln+
[
(x – βn)Pn(x)

]

=
(
p+nq+nλn+ +

(
dpn + a[n]p,q

)
[n + ]p,q

)
xn+

+

p
((

p+nqnλn+(–βn + �,n) – dpnβn[n]p,q

+ dpn�,n[n]p,q – apβn[n – ]p,q[n]p,q

+ ap�,n[n – ]p,q[n]p,q + ep+n[n + ]p,q + bp[n]p,q[n + ]p,q
))

xn

+


pq
((

–p+nqnλn+(βn�,n – �,n) – pnq
(
d(βn�,n – �,n)[n – ]p,q

+ ep(βn – �,n)[n]p,q
)

+ pq
(
[n – ]p,q

(
a(–βn�,n + �,n)[n – ]p,q

+ b(–βn + �,n)[n]p,q
)

+ c[n]p,q[n + ]p,q
)))

xn–. ()

The coefficient in xn+ in () is zero by noting the value of λn in (). To have a polynomial
of degree exactly n– in the variable x, we obtain () with the condition λn+ �= λn. Finally,
the coefficient of xn– is derived by (). �

Lemma . For each nonnegative integer n, we have

Ln–
(
Un(x)

)
= ,

where Un(x) is defined in ().

By the uniqueness of the polynomial solution of () there exists a constant n such
that

Un(x) = nPn–(x).

Lemma . Let P̄n(x) be the unique monic polynomial solution of degree n of (). Then,
there exist two sequences {βn}n≥ and {γn}n≥ such that the following three-term recurrence
relation holds:

P̄n+(x) = (x – βn)P̄n(x) – γnP̄n–(x). ()

Moreover, βn is given in (), and

γn =
n

λn– – λn+
. ()

These two lemmas can be improved as follows.
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Theorem . Let P̄n(x) be the monic polynomial solution of degree n of (), where σ (x)
and τ (x) are given in (), and λn is given in (). Then, the coefficients βn and γn of the
three-term recurrence relation () are explicitly given by

βn = �,n – �,n+ ()

and

γn = �,n – �,n+ – βn�,n, ()

where

�,n = –
pq[n]p,q(bp[n – ]p,q + epn)

[n – ]p,q(ap(pq[n – ]p,q – [n]p,q) + dqpn) – dpn[n]p,q
()

and

�,n = –
pq[n – ]p,q(�,n(bp[n – ]p,q + epn) + cp[n]p,q)

q[n – ]p,q(ap[n – ]p,q + dpn) – [n]p,q(ap[n – ]p,q + dpn)
. ()

Next, we obtain the (p, q)-difference representation for the polynomial solutions of ().

Theorem . Let Pn(x) be the unique monic polynomial solution of (). Then, the follow-
ing relation holds:

Pn(px) = UnDp,qPn+(x) + VnDp,qPn(x) + WnDp,qPn–(x), n ≥ , ()

where

Un =
pn

[n + ]p,q
, ()

Vn = pn
(

�,n

p[n]p,q
–

�,n+

[n + ]p,q

)
, ()

Wn = pn
(

–
� 

,n

p[n]p,q
+

�,n

p[n – ]p,q
+

�,n�,n+ – �,n+

[n + ]p,q

)
, ()

and �,n and �,n are explicitly given in () and ().

Proof The result follows by equating the coefficients of (). �

Moreover, the polynomial solutions of () also satisfy a (p, q)-structure relation.

Theorem . Let Pn(x) be the unique monic polynomial solution of (). Then, the follow-
ing relation holds:

φ(x)Dp,qPn

(
x
p

)
= ÛnPn+(x) + V̂nPn(x) + ŴnPn–(x), n ≥ , ()
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where

φ(x) = ax + bpqx + cpq, ()

and the coefficients are explicitly given by

Ûn = ap–n[n]p,q, ()

V̂n = p–n(ap[n – ]p,q�,n + [n]p,q(bpq – a�,n+)
)
, ()

Ŵn = p–n(p
(
[n – ]p,q�,n(bpq – a�,n) + ap[n – ]p,q�,n

)

+ [n]p,q
(
cpq + �,n(–bpq + a�,n+) – a�,n+

))
, ()

where �,n and �,n are given in () and (), respectively.

Proof The result follows by equating the coefficients of (). �

6 Examples
6.1 Example 1: Appell families
If {Pn(x)}n∈N is a polynomial solution of () such that

Dp,qPn(x) = [n]p,qPn–(x), ()

then the solution of () is said to be of Appell type.
To find these families, by the (p, q)-difference representation () the above condition

() is equivalent to Vn = Wn =  for all n.
By equating V = , since p �=  and q �= , we obtain three following possibilities:

(i) a = b = , which implies that Vn = Wn = . In this case, since d �= , we can conclude
that the coefficients of the three-term recurrence relation () are given by

βn = –
ep–nqn+

d
and γn = –

cp–nqn+

d
[n]p,q, ()

assuming that p �= q. Notice that

lim
p→q

γn = lim
p→q

–
cp–nqn+

d
[n]p,q = –

cnq

d
.

(ii) b = e = , which implies that Vn = . In order that Wn = , we must analyze three
cases,
(a) a = , which implies

βn =  and γn = –
cp–nqn+

d
[n]p,q,

assuming that p �= q;
(b) c = , which implies γn = , and therefore we have no orthogonal polynomial

sequences;
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(c) p → q, for which we also need c =  in order to have Wn = . Therefore we have
no orthogonal polynomial sequences again.

(iii) q = bdp–aep
ae , assuming that a �=  and e �= , which gives no orthogonal polynomial

sequence after imposing that Vn = Wn =  for n ≥ .
As a consequence of this analysis, we observe that the unique possibility for having (p, q)-

Appell families is a = b = , which contains as a particular case the symmetric option
a = b = e = . It is possible to assume that c =  without loss of generality.

Theorem . The polynomial solution of equation () in the cases a = b = e =  and c = 
is explicitly given by

yn(x; p, q) = xσn �

(
(pσn–n, qσn–n), (dp[(n–)/]+, )

(pσn+, qσn+)

∣∣∣
(
p, q); (q – p)x

)
, ()

up to a normalizing constant, where

σn =
 – (–)n


=

⎧
⎨

⎩
, n even,

, n odd.

In this case, the Pearson-type (p, q)-difference equation reads as

(
Dp,q(Lpw)

)
(x; p, q) = dxLpqw(x; p, q),

where

w(x; p, q) =
∞∑

n=

dnqn(n–)

pn ∏n
j=[j]p,q

xn = Ep,q
(
(p – q)p–dx) ()

with Ep,q defined in ().

Remark . We emphasize that as (p, q) → (, ), for d = –, the second-order (p, q)-
difference equation

(
D

p,qy
)
(x) + dxLp

(
(Dp,qy)(x)

)
–

dq–n

p
[n]p,qLpqy(x) =  ()

converges formally to the differential equation of Hermite polynomials. Moreover, the
polynomials yn(x; p, q) defined in () converge to the well-known Hermite polynomials,
and the weight function w(x; p, q) defined in () converges to exp(–x).

The monic polynomial solutions of () satisfy a three-term recurrence relation of the
form

yn+(x; p, q) = xyn(x; p, q) – Cn(p, q)yn–(x; p, q)

with

y(x; p, q) = , y(x; p, q) = x,
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where

Cn(p, q) = –
p–nqn+

d
[n]p,q.

To have the orthogonality with respect to a positive weight function, we need to impose
d < . Under this assumption, the orthogonality reads as

∫ ∞

–∞
yn(x; p, q)ym(x; p, q)Ep,q

(
(p – q)p–dx)dp,qx = c

(
–
d

)n q 
 n(n+)

p(n–)n [n]p,q!δn,m,

where

c =
∫ ∞

–∞
Ep,q

(
(p – q)p–dx)dp,qx,

and [z]p,q! is defined in ().

6.2 Example 2: (p, q)-Laguerre polynomials
Let us now consider the second-order equation

x
(
D

p,qy
)
(x) +

(
pα+q–α– – 

p – q
+ dx

)
Lp

(
(Dp,qy)(x)

)
–

dq–n

p
[n]p,qLpqy(x) = . ()

Theorem . The polynomial solution of () is given by

yn(x;α; p, q) = �

(
(p–n, q–n), (pn–, )

(pα+, qα+)

∣∣∣ (p, q); dqα+(q – p)x

)
()

up to a normalizing constant.

In this case, the Pearson-type (p, q)-difference equation reads as

w(px;α; p, q)
w(pqx;α; p, q)

= pαq–α –
dqx

p
+ dqx,

in which

w(x;α; p, q) = xαEp,q
(
dxp–α–qα+(p – q)

)
. ()

Remark . Once again, we emphasize that as (p, q) → (, ), for d = , the second-order
(p, q)-difference equation () converges formally to the differential equation of Laguerre
polynomials. Moreover, the polynomials yn(x;α; p, q) defined in () converge to the well-
known Laguerre polynomials, and the weight function w(x;α; p, q) defined in () con-
verges to xα exp(–x).

The monic polynomial solutions of equation () satisfy a three-term recurrence rela-
tion of the form

yn+(x;α; p, q) =
(
x – Bn(α; p, q)

)
yn(x;α; p, q) – Cn(α; p, q)yn–(x;α; p, q)
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with

y(x;α; p, q) = , y(x;α; p, q) = x – B(α; p, q),

where

Bn(α; p, q) =
p–nqn(qn(p + q) – pn+(pαq–α + ))

d(p – q)

and

Cn(α; p, q) =
p–nq–α+n–[n]p,q[α + n]p,q

d .

To have orthogonality with respect to a positive weight function, we need to impose
α > –. Under this assumption, the orthogonality reads as

∫ ∞


yn(x;α; p, q)ym(x;α; p, q)xαEp,q

(
dxp–α–qα+(p – q)

)
dp,qx

= c(α)
p(–n)nqn(n–α)

dn
[n]p,q![n + α]p,q!δn,m,

where

c(α) =
∫ ∞


xαEp,q

(
dxp–α–qα+(p – q)

)
dp,qx.

6.3 Example 3: (p, q)-shifted Jacobi polynomials
Consider the second-order (p, q)-difference equation

qx(qx – p)
p

(
D

p,qy
)
(x) +

(
xpα+β+q–α–β – pβ+q–β + pq – qx

p(p – q)

)
Lp

(
(Dp,qy)(x)

)

+ [n]p,q

(
qp–n– – pα+β–q–α–β–n

p – q

)
Lpqy(x) = . ()

Theorem . The polynomial solution of () is given by

yn(x;α,β ; p, q) = �

(
(p–n, q–n), (pα+β+n+, qα+β+n+)

(pβ+, qβ+)

∣∣∣ (p, q);
xq–α

p

)
()

up to a normalizing constant.

In this case, the Pearson-type (p, q)-difference equation reads as

w(px;α; p, q)
w(pqx;α; p, q)

=
pβq–α–β (xpα – qα)

x – 
,

where

w(x;α; p, q) =
xβ

((, xp–); (p, q))–α

, ()

and ((a, b); (p, q))λ is defined in ().
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Remark . It is straightforward to check that as (p, q) → (, ), the second-order (p, q)-
difference equation () converges formally to the differential equation of shifted Jacobi
polynomials. Moreover, the polynomials yn(x;α,β ; p, q) defined in () converge to the
well-known shifted Jacobi polynomials, and the weight function w(x;α,β ; p, q) defined in
() converges to xα( – x)β .

The monic polynomial solutions of equation () satisfy a three-term recurrence rela-
tion of the form

yn+(x;α,β ; p, q) =
(
x – Bn(α,β ; p, q)

)
yn(x;α,β ; p, q) – Cn(α,β ; p, q)yn–(x;α,β ; p, q)

with

y(x;α,β ; p, q) = , y(x;α,β ; p, q) = x – B(α,β ; p, q),

where

Bn(α,β ; p, q) =
pn+qα+n+

(p – q)[α + β + n]p,q[α + β + n + ]p,q

× ((
pβ + qβ

)
qα+β+n+ – (p + q)

(
pα + qα

)
pβ+nqβ+n

+
(
pβ + qβ

)
pα+β+n+),

Cn(α,β ; p, q) =
pβ+n+qα+β+n+[n]p,q[α + n]p,q[β + n]p,q[α + β + n]p,q

[α + β + n – ]p,q([α + β + n]p,q)[α + β + n + ]p,q
.

To have the orthogonality with respect to a positive weight function, we need to impose
α,β > –. Under these assumptions, the orthogonality reads as

∫ p/q


yn(x;α,β ; p, q)ym(x;α,β ; p, q)

xβ

((, xp–); (p, q))–α

dp,qx

= c(α,β)
pn(β+n+)qn(α+β+n+)[n]p,q![α + n]p,q![β + n]p,q![α + β + n]p,q!

[α + β + n – ]p,q!([α + β + n]p,q!)[α + β + n + ]p,q!
δn,m,

where

c(α,β) =
∫ p/q



xβ

((, xp–); (p, q))–α

dp,qx.
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