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1 Introduction

Fractional calculus and fractional differential equations are a field of increasing interest
due to their applicability to the analysis of phenomena, and they play an important role in
a variety of fields such as rheology, viscoelasticity, electrochemistry, diffusion processes,
etc. Usually applications of fractional calculus amount to replacing the time derivative in
a given evolution equation by a derivative of fractional order. One can find applications
of fractional differential equations in signal processing and in the complex dynamic in
biological tissues (see [1-3]). To observe some basic information and results of various
type of fractional differential equations, one can see the papers and monographs of Samko
et al. [4], Podlubny [5] and Kilbas et al. [6].

Interval analysis and interval differential equation were proposed as an attempt to han-
dle interval uncertainty that appears in many mathematical or computer models of some
deterministic real-world phenomena in which uncertainties or vagueness pervade. In the
recent time this theory has been developed in theoretical directions, and a wide number of
applications of this theory have been considered (see, for instance, [7-12]). Recently, the
issue of fuzzy fractional calculus and fuzzy fractional differential equations has emerged
as the significant subject, and this new theory has become very attractive to many scien-
tists. The concept of fuzzy type Riemann-Liouville differentiability based on the Hukuhara
differentiability was initiated by Agarwal et al. in [13, 14] with some applications to frac-
tional order initial value problem of fuzzy differential equation. By using the Hausdorff
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measure of non-compactness and under compactness type conditions, authors proved
the existence of solution of fuzzy fractional integral equation. Following this direction, the
concepts of fuzzy fractional differentiability have been developed and extended in some
papers to investigate some results on the existence and uniqueness of solutions to fuzzy
differential equations, and have been considered in a wide number of applications of this
theory (see, for instance, [15-28]).

It is well known that the Banach fixed point theorem is a useful tool in mathematics and
plays an important role in finding solutions to nonlinear, differential and integral equa-
tions, among others. In the recent time this theorem has been extended and generalized by
several authors in various ways, for instance, the results on the existence of a fixed point in
partially ordered sets for first order ordinary differential equations, Fredholm and Volterra
type integral equations, among others, have been studied. In particular, some applications
of fixed points in partially ordered sets to resolution of matrix equation were presented by
Ran and Reurings in [29], and the applicability of the existence of a unique fixed point for
mappings defined in partially ordered sets to the study of the existence of a unique solution
for periodic boundary condition problems for integer order ordinary differential equations
was shown by Nieto and Rodriguez-Lépez in [30, 31]. In [32] Harjani and Sadarangani pre-
sented some fixed point generalized theorems involving altering distance functions in the
ordered metric spaces, and this result was used to investigate the existence problem of
solution to first and second order ordinary differential equations. Besides, Villamizar-Roa
et al. [33] used some more generalized fixed point results of weakly contractive mappings
in a partial order metric space of fuzzy-valued functions to investigate the existence and
uniqueness of fuzzy solutions of the initial-valued problem for integer order fuzzy dif-
ferential equation in the setting of generalized Hukuhara derivatives. By employing the
weakly contractive mapping in the partially ordered space of fuzzy functions, Long et al.
[34-37] studied the existence and uniqueness of weak solution for some classes of fuzzy
fractional partially differential equations under Caputo gH-differentiability without the
Lipschitzian right-hand side. Briefly in this paper some recent results of fixed point of
weakly contractive mappings on the partially ordered space are used to investigate the ex-
istence and uniqueness of solution for interval fractional delay differential equations in
the setting of the Caputo generalized Hukuhara fractional differentiability. We focus on
the following initial value problem for an interval-valued delay differential equations with

Caputo generalized Hukuhara fractional differentiability under the form

(€D X)(¢) = F(t,X(£),X), t€ [a,b),
X(t) = ¢(t - a), tela-o,al,

(1.1)

where CDZZ is the Caputo derivative of order « € (0,1], F is a continuous interval function
on [a, b], and the initial function ¢ is continuous on [z — ¢, a]. Our aims are to
- give the existence and uniqueness theorem of solution for a general form of the
interval fractional integral equation by using some recent results of fixed point of
weakly contractive mappings on partially ordered sets, and use these results in order
to investigate the existence and uniqueness result of solution for problem (1.1).
- show that the solutions of the initial value problem (1.1) depend continuously on the

initial condition, the order and the right-hand side of equation.
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- propose a new technique to find the exact solutions of problem (1.1) by using the

solutions of interval integer order delay differential equation.

This paper is organized as follows. In Section 2, some basic concepts and notations about
fractional derivative for interval functions are introduced. Besides, some properties con-
cerning the partially ordered space of interval functions and a fixed point theorem in par-
tial metric spaces are presented. In Section 3, we prove the existence and uniqueness of
solution for a general form of the interval fractional integral equation and use this result
to investigate the existence and uniqueness results of solutions for problem (1.1). Finally,
a new technique to find the exact solutions of problem (1.1) is provided and two examples

are given to illustrate this technique.

2 Preliminaries

In this section, we present basic notations and necessary preliminaries used throughout
the paper. Some of them were detailed further in [8-10, 20, 38—4.0] and the references
therein. In the following, we denote the space of all nonempty compact intervals of the
real line R by K¢(R). Let A = [A,A], B = [B, B] € Kc(R), then the usual interval operations,
i.e., Minkowski addition, Minkowski difference and scalar multiplication, are defined by
A+B=[A+BA+B],A-B=A+(-1)B=[A-B,A-B] and

[ZA,AA] if A >0,
A =1[A,A] =10 if 1 =0,
[AA,2A] ifr<O0.

It is well known that with respect to the above operations, Kc(R) is a quasilinear space
(Markov [41]). Let A = [A, A], B = [B, B] € Kc(R), then the generalized Hukuhara difference
(or gH-difference for short) of two intervals A, B is defined as follows [10, 41]:

[A:Z] eg [E!E] = [mln{é _§1Z —E},max{é _E!Z - E}]

The width of A € K¢(R) is defined by w(A) = A - A. Then it is easy to see that w(-A) =
w(A), w(A + B) = w(A) + w(B) and w(A ©¢ B) = [w(A) — w(B)|. The Hausdorff-Pompeiu met-
ric H in Kc(R) is defined as follows:

H[A,B] =max{|A - B|,|A - B|}. (2.1)

It is well known that (K¢(R),H) is a complete, separable and locally compact metric
space. Some properties of the Pompeiu-Hausdorff metric are well known in (see [42]).
As (Kc(R), +, -, H) is a quasilinear metric space, then the concepts of continuity and limit
for interval-valued functions are understood in the sense of the metric H. Next, for
X,Y € Kc(R) with X = [X,X],Y = [Y,Y], we can define the partial orders < and > as
X<YX>Y)ifandonlyif X <Y and X <Y (X > Y and X > Y). Some interesting

properties on the partial orderings < and > are presented in [40].

Lemma 2.1 ([40, 43]) On Kc(R) the following properties hold:
() If X)uen C Kc(R) is a nondecreasing sequence such that X, — X in Kc(R), then
Xy <X forallneN.
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(i) Every pair of elements of Kc(R) has a lower bound or an upper bound.

The partial ordering < and > can be extended to the space of interval functions as follows:
X < Yifand only if X(£) < Y(¢) and X(t) < Y(¢), Vte€ [a,b].

In this paper we call C([a, b], Kc(R)) the set of continuous interval functions on [a, b]. It
is well known that C([a, b], Kc(R)) is a complete metric space with respect to the metric
Hc[X,Y] = |X &g Yllc, where || X||c:= sup H[X(£),0].

a<t<b

Lemma 2.2 ([40,43]) Let (Kc(R), <) be a partial ordered space, then we have the following
properties:
(i) (C([a,b],Kc(R)), <) is a partial ordered space.
(ii) If X)nen C C([a, b], Kc(R)) is a nondecreasing sequence such that X, — X in
C([a, b],Kc(R)), then X, < X for all n € N.
(ili) Every pair of elements of C([a, b], Kc(R)) has a lower bound or an upper bound.

Let an interval function X : [a,b] — K¢(R), then X is called w-increasing (w-decreasing)
on [a,b] if t — w(X(£)) is nondecreasing (nonincreasing) on [a,b]. We say that X is w-
monotone on [a, b] if X is w-increasing or w-decreasing on [a, b].

Generalized Hukuhara fractional derivative. [10] Let ty € [a, b], then the generalized
Hukuhara derivative (gH-derivative for short) of an interval mapping X : [a,b] — Kc(R)
at £ is the function X’(ty) € Kc(R) given by

X(t() + l’l) @g X(to)

7 (2.2)

X'(tp) = lim

h—0

We recall some definitions of Riemann-Liouville and Caputo derivatives for interval-

valued functions and some necessary results are given to use in the next section. Some
of them were detailed further in [38, 39] and the references therein.

Let L([a, b], Kc(R)) denote the space of all Lebesgue integrable interval-valued functions

on the bounded interval [a, b]. Let « € (0,1], then the interval-valued Riemann-Liouville
integral of interval-valued function X € L([a, b], Kc(R)) is defined by

(S‘;ﬁX)(t) = ﬁ /at (t—9)*"'X(s)ds forte[a,b] (2.3)

and the Riemann-Liouville gH -fractional derivative of X is defined by

(*DLX)(t) = ﬁ </at (t=s)"*X(s) ds) for t € [a, b].

Remark 2.1 ([16]) Let X,Y € C([a, b],Kc(R)) and A € Kc(R) and also X < Y, then for
every « € (0,1], we have
(i) (3%.X)() = (3% Y)(®), Ve € [a,b].



Vinh An et al. Advances in Difference Equations (2017) 2017:181 Page 5 of 20

(i) Ao (-D)RL.X)(1) <A (-1)(X8. Y)(t),Vt € [a,b], provided A © (-1)(J5, X)(£) and
A S (-1)(34,.Y)(¢) are well defined.

Let X € L([a, b], Kc(R)) be an interval-valued function such that the Riemann-Liouville
gH -fractional derivative RLD;QX , @ € (0,1] exists on [a, b]. In this case the interval-valued
Caputo fractional derivative (or Caputo gH-fractional derivative) of order « € (0,1] of X

is defined as follows:
(“DLX)(®) = (D [X() 0, X@)])(2) fort € [a,b].

Generalized fixed point theorems. In the sequel we recall some generalized fixed point
theorem in partially ordered space (see [32]) that will be used in the next section to analyze
the existence of solutions for a general form of the interval fractional integral equation.

Let C(R*,R*) denote the space of all continuously nonnegative functions ¥ : R* — R*,
then a real-valued function ¥ € C(R*,R*) is called an altering distance function on [0, c0)
if ¥ is nondecreasing and satisfies the following property: ¥ (¢) = 0 ifand only if £ = 0. Some
examples for altering distance functions on [0, c0) are ¢2,In(1 + t) and ¢2 — In(1 + £2). Let
(X, <) be a partially ordered set and f : X — X. The function f is said to be monotone
nonincreasing (or nondecreasing) if u < v for u,v € X, then f(v) < f(u) or (f(u) <f(v)),

respectively.

Theorem 2.1 ([32]) Assume that (X, <) is a partially ordered set such that every pair of
elements of X has a lower bound or an upper bound, and there exists a metric d on X such
that (X, <) is a complete metric space. Let f : X — X be a monotone nondecreasing function

satisfying the weakly contractive condition

Y (d(fW),f W) < ¥ (dw,v)) - & (d(u,v))

for all u > v and for some altering distance functions ¥ and &. In addition, suppose that X
satisfies the following property:
(i) if a nondecreasing sequence (u,),en C X converges to u in X, then u,, < u for all
neN,or
(ii) if a nonincreasing sequence (u,)nen C X converges to u in X, then u < u, for all
neN.
Then, if there exists uy € X satisfying case (i) such that uy < f(uo) or there exists uy € X
satisfying case (ii) such that uy > f(uo), then f has a unique fixed point. Moreover, if u* is
the fixed point of f, then it holds lim,,_, o f" (1) = u* for all u € X.

3 Main results

In this section, our aim is to give existence and uniqueness theorems of solutions for a
general form of the interval-valued delay fractional integral equation by using some re-
cent results of fixed point of weakly contractive mappings on partially ordered sets, and
in the next section, we use these results in order to investigate the existence and unique-
ness results of solutions for an interval-valued delay fractional differential equation. For a

positive number o, we denote by C, the space C([-0, 0], Kc(R)) equipped with the metric
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defined by

H,[X,Y]= sup H[X(t),Y(t)].

te[-0,0]

Define I = [a,b],] = [a —0,a] UI = [a — 0,D]. Then, for each ¢ € I, we denote by X; the
element of C, defined by X;(s) = X(t +s), s € [-0,0].
Interval-valued delay fractional integral equation: Consider the following interval-

valued delay fractional integral equation:

X(t) 64 X(a) = ﬁ [H(t=9)*F(s,X(s), Xs)ds, tela,b],

X(t) = p(t —a), tela-o,al,

(3.1)

where F : [a,b] x Kc(R) X C; = Kc(R), ¢(t—a) € Kc(R). We say that a continuous interval
function X : [a,b] — K¢(R) is a solution to the interval fractional integral equation (3.1)
if it satisfies equation (3.1). Let us suppose that X € C([a, b], Kc(R)) is w-monotone on
[a, b] and satisfies (3.1). As X is w-monotone on [a, b], then it follows that X () ©, X(a) is
w-increasing on [a, b]. Hence, from (3.1) it follows that the right-hand side of (3.1) must
be w-increasing on [a, b] (see [38]). Furthermore, we observe that if a continuous interval
function X is a unique w-monotone solution of (3.1) on [a, b], then the function Y(t) :=
X(t) &g X(a) is w-increasing on [a, b]. In addition, the function Y may create two solutions
of (3.1): a unique w-increasing solution of (3.1) and a unique w-decreasing solution of (3.1)

on [a,b].

Remark 3.1 If X € C([a, b], Kc(R)) is such that w(X(¢)) > w(X(a)) for all ¢ € [a, b], then

(3.1) can be rewritten as

X(£) = 9(0) + 55 [, (¢ =)' F(s, X(s), X,) ds, t € [a,b],
X(t) = o(t—a), tela-o,al.

If X € C([a, b], Kc(R)) is such that w(X(¢)) < w(X(a)) for all ¢ € [a, b], then (3.1) can be
rewritten as

X(£)=(0)© B [1(t- 5" F(s, X(s), X,)ds, t € [a,b],
X(t) = ¢(t -a), tela-o,al

Definition 3.1 A w-monotone interval function X* € C([a, b], Kc(R)) is a lower solution
for (3.1) if

XL (t) ©g XH(a) = ﬁ f; (t—s)*1F(s,XL(s), XL)ds, te€la,b),

XE(8) = pH(t — a) < ¢(t - a), tela-o,al. (3.2)

A w-monotone interval-valued function X% € C([a,b], Kc(R)) is an upper solution for

(3.1) if it satisfies the reverse inequalities of (3.2).
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In the following, for given k > 0, we consider the set By of all continuous interval functions
X € C([a—-o0,b],Kc(R)) such that sup,(, , , {H[X(2), 0] exp(—k(t +0))} < 00. On By we can

define the following metric:
H X, Y] = [sup ]{H[X(t), Y(t)] exp(—k(t + a)) },
tela—o,b

X,Y € C([a-0,b],Kc(R)), (3.3)

where k > 0 is large enough such that k > 2%, It is well known that (C([a, b], Kc(R)), Hy)

is a complete metric space.

Theorem 3.1 Let F € C([a,b] x Kc(R) x C,, Kc(R)) and suppose that F(t, A, B) is non-
decreasing in A and B for each t € [a,b], that is, if A = C and B > D, then F(t,A,B) >
E(t, C,D). Moreover, assume that the following conditions are satisfied:
(A1) there exists a w-monotone lower solution X* € C([a, b], Kc(R)) for problem (3.1);
(A2) F(t,A,B) is weakly contractive for comparable elements, that is, for some altering
distance functions Ty and T, it holds

Ty (H[F(t, A, B), F(t,C,D)])
S [’]rl (H[A,B]) — TQ (H[A,B])] + [Tl (Ho [AxB]) - ’]FZ (HU [A’B])]’

ifA>= C,B>Dandt € [a,b]. Then there exists a unique w-monotone solution X for prob-
lem (3.1) in some intervals [a, T], with T < b.

Proof Let X(t) := X(t) ©, X(a),t € [a — 0,b]. We define the operator Q : C([a - o, b],
Kc(R)) — C([a -0, b], Kc(R)) by

(p(t—ﬂ) egga(o)! te[ﬂ—o’,d],

@V@W=1"" 1
0 Ju € =) F(s,X(s), X;) ds, t€[a,b].

We check that the conditions in Theorem 2.1 are satisfied. Indeed, let X > Y and X; > Y,
on [a, b], then we have (QX)(a) = (QY)(a),t € la — 0,a], and for t € [a, b]

F(t,X;Xt) i F(ty Yy Yt)‘

From the result of Remark 2.1-(i), we obtain

1 ¢ 1 ¢
QX () = @ /a (t - )" "'F(s,X(s),X;) ds = T /; (t-9)*"'F(s,Y(s),Y;) ds
= (QY)(®).

Then QX > QY whenever X > Y, X; > Y; on [a, )], and consequently, the operator Q is

nondecreasing. Now, condition (A2) shows that

H[F(t,X(®),X,),F(t,Y(®),Y,)] <H[X(®),Y(®)] + Hy [X;, Y] (3.4)
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forall X > Y, X; > Y, for t € [a, b]. Indeed, from (A2) we get
T, (H[F(6,X(®), X.), E(, Y(8),Y?)]) < To(H[X®), Y(©)]) + T1(Ho [Xe, Y2]) (3.5)
forall X > Y, X; > Y;. If inequality (3.4) is not true, then for all X > Y, X; > Y; we have
H[X(2), Y(8)] + Hy [X,, Y] < max H[F (£, X(2),X,), F(t, Y (2), Y1) ].
Then, since T; is nondecreasing, for all X > Y, X; > Y, it holds
T, (H[X (@), Y(®)]) + T1(Ho [Xs, Ye]) < Ty (H[F (6, X(0), X)), F(2, Y (), Y) ]).
Therefore, from (3.5),
T, (H[X(®), Y(®)]) + T1(Ho [X,, Y,1) = Ty (H[F (6, X(©), X.), E (6, Y(£), Y2) ])

for all X > Y, X; > Y;. From (A2) it follows that 0 < —(Ty(H[X(2), Y(2)]) + T2 (H, [Xs, Yz])),
and therefore,

Ty (H[X(®), Y(®)]) = T2 (H, [X;, Y]) = 0.

As T, is an altering distance function, we have that H[X(t), Y (¢)] = 0, H, [X;, Y] = 0 for all
X > Y,X; > Y;. This infers a contradiction, that is, H[F(t, X(¢), X;), F(t, Y(¢), Y;)] = 0. Thus,
inequality (3.4) is true. Next, for X > Y, X; > Y; and ¢ € [a, b], we get

H[(QX)(®), (QY)(®)]

1 ! a-1
=t ). €9 (H[xG), Y(s)]+6;£€’s]H[X(0), Y(6)]) ds.

By the definition of metric (3.3), it follows that H[X(s), Y (s)] < Hi[X, Y]ek¢*?) for all £ >
a — o and supyc(;_, o HIX(0), Y(0)] < Hi[X, Y1e¥6*9) for all s > a. Then, for all ¢ > a, we
obtain

H[(QX)®),(@Y)®)]

2 t
< v | -9 YIS ds
@ J,

and so
2H (X, Y ¢
HlQx, Q) < XY sup f (t—s)* e ds
T(@)  iefap) Ja

2H(X,Y k(e-a)

< L sup / u* e du
k() tefap Jo

- 2H[X,Y]

= e
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Therefore, it holds that

Ty (Hi[QX, QY]) < Tl(%)
= Ty (Hk[X, Y1) - [Tl(Hk[X, Y]) - T(%)}

Then, if Ty () = T1(¢) — T1(2¢/k%), it follows that
Ty (H [QX,QY]) < Ty (H[X, Y]) — To(Hk[X, Y])

for all X > Y. Finally, using the existence of the lower solution, we check that X is such that
XL < QX" Indeed, since X" (¢t) =&(t —a) < p(t —a) for t € [a— o,a] and for t € [a,a + p],

1 t
XH0) 0 X(a) = s f (¢ = 5)*'F(s, X" (s), X7) s,

it follows that

XE(t) := X (1) ©4 0(0) < @(t —a) 6 9(0) = QX(t), tela-o,al,
X = i [y (=) F (s, XE(s), XP) ds = QXH(e), € [a,a+pl.

As the operator Q satisfies all hypotheses of Theorem 2.1, Q has a fixed point in
C([a — 0,b],Kc(R)). Moreover, since every pair of interval-valued functions in C([a —
0,b],Kc(R)) has an upper bound (see Lemma 2.2), the operator Q has a unique fixed
point X’ and X is the unique solution to (3.1). d

Remark 3.2 The conclusion of Theorem 3.1 is still valid if the existence of a w-monotone
lower solution for problem (3.1) is replaced by the existence of a w-monotone upper solu-
tion for problem (3.1).

Interval-valued delay fractional differential equation: Let us consider again the interval-
valued delay fractional differential equation with Caputo generalized Hukuhara fractional

differentiability under the form

(CDZ+X)(t) = F(trX(t)’Xt)r te [(,l, b]
X(t) = ¢(t-a), tela-o,al.

(3.6)

Denote by C¥¥([a, b], Kc(R)) the space of interval-valued functions which are continu-
ous Caputo gH-fractional differentiable on [a,b]. A solution X € C([a — o,b], Kc(R)) N
CY([a,b), Kc(R)) of (3.6) is said to be w-monotone if it is w-increasing or w-decreasing

on [a,b].

Lemma 3.1 Let F be interval functions such that F € C([a, b], Kc(R)) for any X € Kc(R).
Then a w-monotone interval function X € C([a — o, b], Kc(R)) is a solution of initial value
problem (3.6) if and only if X satisfies the interval fractional integral equation (3.1) and the
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interval-valued function t — 3. (t) is w-increasing on [a, b], where
F(¢):=F(,X(t),X), te€la,bl. (3.7)
Proof The proof of this lemma is similar to the proof of Lemma 3.1 in [38]. d

Corollary 3.1 If a w-monotone interval function X is a solution of (3.1) such that the
Sfunction t — J%.F(t) is w-increasing on [a,b], then X is a w-monotone solution of
(3.6).

Definition 3.2 A w-monotone interval function XY € X € C([a - o,b],Kc(R)) N
CY([a, b], Kc(R)) is an upper solution for (3.6) if

(¢DexY) () = F(£, X4 (1), XY), telabl, os)
3.8
XY =t(t-a)=¢(t-a), tela-o,al.

A w-monotone interval-valued function X* € C([a - o, b], Kc(R)) N CY ([a, b], Kc(R)) is a

lower solution for (3.6) if it satisfies the reverse inequalities of (3.8).

Corollary 3.2 Let F € C([a, b], Kc(R)) and suppose that F(t, A, B) is nondecreasing in A, B
foreach t € [a,b], that is, if A = C,B > D, then F(t,A,B) = F(t,C,D). Moreover, assume
that the following conditions are satisfied:
(A3) there exists a w-monotone upper solution
XY e C([a - o,b), Kc(R)) N CYE ([a, b], Kc(R)) for problem (3.6);
(A4) for an altering distance function T, it holds

H[F(t,A,B),F(t,C,D)]

< (HIA,B] + H,[B,D]) - (T3(H[A, B]) + T3(H, [B,D]))

if A= C,B>Dandt € [a,b]. Then there exists a unique w-monotone solution X for prob-
lem (3.6) in some intervals [a, T, with T < b.

Proof In the same way as the proof of Theorem 3.1, let X' := X(¢) ©; X(a),t € [a - 0, b],
and we define the operator P : C([a — o,b], Kc(R)) — C([a — o,b], Kc(R)) by (PX)(¢) =
¢(t—a) S ¢(0),t € la—o,a] and

BA)0) = ﬁ / (=9 (5, X (), X)) ds, ¢ € [a,b].

From the proof of Theorem 3.1 it is easy to see that from hypothesis of the nondecreasing
property of F with respect to the second and third variables, the operator PP is nondecreas-
ing, thatis, PA’ > P) whenever X > Y. On the other hand, hypothesis (A4) is implied from
hypothesis (A2) with considering T;(u) = u. Therefore, we can easily infer that the oper-
ator P is contractive-like. Finally, hypothesis (A3) infers that X > PX'Y. Indeed, since
XY is an upper solution and X¥(t) > X(t),t € [a — 0,a], from Lemma 3.1 for t € [a, b] we
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get

X4(t) 0, 0(0) = (3D X)(2)
1 ! a-1 u u
> m/ﬂ (t-s) F(S,X (s), X; )ds

= (PXY)(@®), telab).

Thus XY > PXY. We see that the operator P verifies all the hypotheses of Theorem
2.1. In consequence, IP has a fixed point in C([a — o, ], Kc(R)). Furthermore, the space
C(la — 0, b], Kc(R)) satisfies that every pair of elements of C([a — ¢, b], Kc(R)) has an up-
per bound (see Lemma 2.2). It follows that P has a unique fixed point. The proof is com-
plete. O

In the following corollary, we analyze the dependence of the solution on the order and the

initial condition for problem (3.6).

Theorem 3.2 Let F satisfy the assumptions of Corollary 3.2, and let o € (0,1), § > 0 such
that 0 <a —§ <« < 1. For t € [a,T], assume that X and Z are the solutions of the initial
value problem (3.6) and

(CDEZ) () = F(, 20, Z:),  t€la,bl, .
3.9
Z({t)=y(t—a), tela-o,al,

respectively. Then the following holds:

t 00 2 i(t _ S)L’(a—&)—l
H[X(®),Z(t)] <B®) + / 21: (@r(a - 5)) Ta@ =g B0

where

B(¢t) := H[X(a), Z(a)]

'(t—a)"‘5 1 1
ez <F(a—8) - r(a)>

t-a)? (t—a)
-9 T+l

sup F(t,Y(0),Y,)
te[0,T]

sup F(t,X(£),X;).
te[0,T]

Proof From Lemma 3.1, the solutions of the initial value problems (3.6) and (3.9) are given

by
1 ! a-1
X(t) ©g 0(0) = m/ (t—5s) F(s,X(s),XS) ds, tela,T]
and
1 ! a—8-1
Z(t) ©g ¥(0) = a9 / (t-s) F(s,Z(s), Z;) ds, t€[a,T],
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respectively. Observe that for t € T,

H[X(t),Z(1)]
< H[¢(0),%(0)]

01 -5-1
[F(a 5. F s Z(s),Z, )ds,

ﬁ /ﬂ (t - s)"’*‘s’lF(s,Z(s),Zs) ds]

L ' a—5-1 a 51

HI:F(a)L (t S) F(S’ ( dS’ )/ F S, ( )7Xs) dS:|
L ‘ _ o)a—d-1 L -l

H[F(a)/a (£ = 9" F (s X, X) ds, rm)fa (¢ - 5 F(5, X(5),X,) dS]

(t—ﬂ)a_5 1 1
H[go(());l/f(o)]Jf‘ R (r(a_a)_l“(a))

1 ! a—6-1
+W/a (=91 (H[X(9,29)] + sup H[X(0),2(6)]) ds

0€[s—0,s]

sup F(t,Z(t),Z;)
tela,T)]

(t-a)Q?  (t-a)
(a—S)F(oc) Mo +1)

sup F(t,X(),Xy).
tela,T)]

Putting k(s) = supy(s_o g H[X(0), Z(9)] for any s € [a,T], we have, by generalized Gron-
wall’s inequality (see Theorem 1 in [44]), that

t 2 i(L‘ _ S)i(a—s)—l 4
H|X(¢),Z(t)| <B(t —I'(a-0))| =———B .

[X(0,2(0)] < ()+l;<m) @-9) gy B0 .
Remark 3.3 Under the hypothesis of Corollary 3.2, if § = 0, then we get the following
estimate:

o 2i(t _ ﬂ)ia
H|X(¢),Z(t)| < H|9(0),¥(0 —
[X(®),Z()] < H[¢(0), ¥ ( )]; O

In the sequel, we show that the solutions of initial value problem (3.6) depend continuously

on the initial condition, the order and the right-hand side of equation.
Theorem 3.3 Let F, G satisfy the assumptions of Corollary 3.2, and let o« € (0,1), § >0

such that 0 <a — 8§ <a < 1. For t € [a, T], assume that X and Z are the solutions of initial

value problem (3.6) and
(‘D Z) (@) = G(t,Z(), Z:), telabl, Z#) =vy(t—-a), tela-o,a], (3.10)
respectively. Assume also that there exists a positive constant ¢ such that

H[F(t,A,B),G(t,A,B)| <&, tela,TI
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Then the following holds:

t _ o)il@—8)-1
H[X(1), Z(5)] < C(t) + / Z(r @ ) (?(i(sii_a))C(s)ds,

where

t-a)*? 1 1
C(#) = H[(0), (0)] + |-—2= ( - (a)) sup F(£Y(£),Y,)

a-8 \T(a-8) £€[0,T]
(t —a)*® (t-a) e(t—a)*°
@-9r@ Tary| oo FEXOX)+ ome =0

Proof Let X,Z denote the solutions of problems (3.6) and (3.10), respectively. For ¢ €
[a, T], we get

H[F(t,X,X,),G(t,Z,Z,)| < H[F(t, X,X,), G(t, X, X))] + H[G(t, X, X,), G(¢, Z, Z,)

<&+ H[X7Z] + H(T [Xtth]‘
Therefore, we obtain the following estimate:

H[X(2),Z(t)]
< H[p(0),(0)]
1 t
Hl:m \/ﬂ (t — S)OK*B—IG(S’Z(S)’ZS) dS,
a—8§-1
F(O()/ (t—3s) G(S,Z(S) Z) :|

1 wmb1 1 a-s-1
+H|:m/ (t-s) G(s, Z(s), Zs) ds,m/; (t —5)* "' F(s,X(5), Xs) dsi|

Ot —6-1 L ' _ -l
[F( )/ Fs, (s), S)ds, F(a)/a (t-s) F(s,X(s),Xs)ds:|

<C(t)+m / (-5 (H[X(9), 2(5)] + QE?EE,S]H[X(G),Z(G)])dS

Putting k(s) = supy(s_o . H[X(6), Z(0)] for any s € [a, T] we obtain, by generalized Gron-
wall’s inequality (see Theorem 1 in [44]), that

Py Qila=8)-1
H[X(t), Z(8)] < C(t) + / <r UG )) (;(i(s(li_a))C(s)ds. -

The following corollary shows a new technique to find the exact solutions of interval-
valued delay fractional differential equation by using the solutions of interval-valued delay

integer order differential equation.



Vinh An et al. Advances in Difference Equations (2017) 2017:181 Page 14 of 20

Corollary 3.3 Assume that the conditions of Corollary 3.2 hold. Then a solution of (3.6),
Xro, is given by

Xro(t) :XIO(%), tela,b]

XFO(t):(p(t_a)¢ te [ﬂ—O’,ﬂ],

where Xj0(v) is a solution of IVP of the interval-valued delay integer order differential equa-
tion

Xio(v) = F*(v, X10(v), Xi0,), vel0,(b—a)/T'(a+1)]

(3.11)
XioW) = p(t —a~[(t-a)* =y (@+D]V), ve[-0,0],

where F* (v, X;0(v), Xio0,) = F(k(t,v), Xro(k(t,v)), Xro k@), and k(t,v) := t—([t—a]® —vI (o +
1))1/01'

Proof From Corollary 3.2, we infer that the solution of problem (3.6), Xro, exists and is

given by

Xro(t) ©g Xrola) = ﬁ f; (t — ) F(s, Xro(s), Xro,s) ds, t € [a,b]
Xro(t) = o(t — a), tela-o,al.

(3.12)

Let s =t — [(t — a)* — vI['(« + 1)]V,¢ € [a, b]. Then the interval delay fractional integral
equation (3.12) can be written as

(t—a)® /T (o +1)
Xro(t) ©¢ Xrola) = / F(k(s,v), Xro(k(s,v)), Xroxes)) dv
0
(t-a)® /T (a+1)
= f F* (v, Xi0(v), Xi0,0) dv. (3.13)
0
On the other hand, from the interval differential equation (3.11) we obtain

Xio(v) 8 Xi0(0) = /0 F* (v Xio(v), Xio) dv (3.14)

where v € [0,(b — a)*/T (@ + 1)]. From (3.13), (3.14), Xro(a) = X;0(0) = ¢(0) and as 0 <
(t-a)/T(@+1) <(b-a)/T(x+1), we get

Xro(t) ©4 9(0) = X10(v) O, 9(0)
(t—a)®
=Xpo| —0——= 0).
Io(r(a A 1)) OS¢ »(0)
The proof is completed. O

Example 3.4 Consider the fractional order initial value problem for interval-valued delay
differential equation given by

(CDY2X)(8) = mX(E—1) = Aot, te[0,1]
X@t) =[t-11, te[-1,0],

(3.15)
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where A3, 15 € R\{0}. Using the result of Corollary 3.3 for this example, we get
F*(v, Xio(v), X10,0) = MX (k(£,v) = 1) = A5 (24/£T(3/2)v = T'%(3/2)).
The corresponding differential equation of this fractional initial value problem (3.15) is

Xio(v) = MXjok(t,v) - 1) — Aa(2/tT(3/2)v = v T%(3/2)), v e [0,1/T(3/2)]
Xio(v) = [k(t,v) = 1, k(t,v)], ve[-1,0],

where k(t,v) = (24/tT'(3/2)v — v’T'2(3/2)). Then, by using the method of steps, we get the
following problem:

Xjo(v) = Mk(t,v) = 2,k(t,v) = 1] = A2k(t,v), v € [0,1/T(3/2)]
Xi0(0) = [-1,0].

Case 1. A1,Ay € R* and Xjo is w-increasing. Then we obtain the solution Xjo(v) =
[X,6(v), X10(v)], where

r3/2)v?
3

3
I'(3/2)v ) .

Xio() = (M = Ag) (JZF(?,/z)vz - ) —2qv—1,

Xio(v) = (M - Kz)(x/zF(B/Z)vz -

From the result of Corollary 3.3, the solution of the given fractional order (3.17) is Xro () =
0.5 _—
Xlo(ﬁ) = [Xpo(t), Xpo(t)], where

24312 2/t 24312 AMAE

Xro(t) = (0 —kz)m - T(3/2) -1, Xro(t) = (A1 = 22) 3I(3/2) - r'(3/2)

Case 2. A1, Ay € R™ and Xjo is w-decreasing. Similar to Case 1, we obtain

24312 [2xlﬁ ) xlﬁ]

Xrol® Xro0] = 1 =235 + | R 1 T

In the sequel we consider an example which corresponds to the interval version of the
problem of the fish population size over time, and the propositional harvesting model in
uncertain environment is presented to show the efficiency of the approach. First of all, we
recall the framework of the fish population growth model in the situation where quantity
of fish is precisely described. Under simplified conditions such as a constant environment
(and with no migration), it can be shown that the change in population size p through time
¢ (the time horizon is from zero to b > 0) will depend on three factors including birth rate,
death rate and harvest rate, and given by

dp(t)

5 = Bp(©) - (m + cp()ple) - WO, p(0) =2, (316)
where Bp(t) is the birth rate, (m + cp(£))p(¢) is the death rate (here, the natural mor-
tality coefficient m is augmented by the term c¢p(t) which accounts for overcrowding),
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h(t) is the harvest rate which depends on time ¢, and 8, m, ¢ are negative proportional-
ity constants. The symbol p, denotes the initial population size and p denotes the cur-
rent population size. If the partial information in the classical population model (3.16)
may be known or in the parameters used in the above model may be uncertainty, then
model (3.16) can be appropriate by interval or fuzzy theory. Therefore, the corresponding
to (3.16) model incorporating uncertainty could be the interval fish population growth
model by using the concept of interval Caputo fractional derivative. Furthermore, in
the classical population model (3.16), it is considered that the birth rate changes im-
mediately as soon as a change in the number of individuals is produced. However, the
members of the population must reach a certain degree of development to give birth
to new individuals and this suggests an introduction of a delay term into the prob-

lem.

Example 3.5 From the crisp problem (3.16), in this example we choose a form (represen-
tation) for the corresponding interval fractional order initial value problem with delay as

follows:

(DY2?P)(t) + H(t) = (B —m)P(t) + P(t - 1), t€[0,1]
P(t)=[t+1,t+2] € Kc(R), te[-1,0],

(3.17)

where (8 — m) € R\{0} and H(¢) := [0,ht?] € Kc(R) is the harvest rate, for # > 0, and
there is no overcrowding, i.e., ¢ = 0. Using the result of Corollary 3.3 for this example,

we get
F*(v, Po(v), Proy) = MPio(v) + Po(k(t,v) — 1) © [0, hk* (£, v)],

where 1; := 8 — m. The corresponding differential equation of this fractional initial value
problem (3.17) is

Pip(v) = MPro(v) + Pro(k(t,v) - 1) © [0, hk%(t,v)], ve[0,1/T(3/2)]
Pio(v) = [k(t,v) + 1, k(t,v) + 2], v e [-1,0],

where k(t,v) = (24/tT'(3/2)v — v’T'2(3/2)). Then, by using the method of steps, we get the

following problem:

P}O(V) = MPio(v) + [k(t,v), k(t,v) = K2 (t,v) +1], v e[0,1/T(3/2)]
Pip(0) = [1,2].

Case 1. A1 € R* and Pjo is w-increasing. Then we obtain the solution Pjo(v) = [P,o(v),

1_)10(‘/)]’ where

Po(v) = @ [T(3/2)21 MV +2v) — 20/ E(Mv + 1) + 2T°(3/2)],
1

N em[l .\ F(;/z) (i - 2r(3/2))}
1
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4

3 2 )‘1
(24hr (3/2) — 20(3/2)2% + 6

(3/2)

T)]o(l/) = [2 +

1

+ 203/t — 8hT (3/2)A%t + 24hr2(3/2))\1«/2>}em

rQ
+[ ()\/ )(24hF (3/2) + 2T (3/2)A% — A}/T(3/2) — 2234/t
1
+8hI(3/2)A1t — 24hT%(3/2)M /1)
(3/2)1/

(-2I'(3/2)32 + 24hT3(3/2) - 2231
1

—24hT%(3/2)M/t - 8hT'(3/2)13¢)

I(3/2)v?
t—3
)\’1

3 4 4
DOV 05 (312) - 4T 312 vE) + ”iﬂ]
1 1

(T(3/2)A7 +12h13(3/2) - 12I"%(3/2)A1 A/t + 4hT(3/2)3t)

From the result of Corollary 3.3, the solution of the given fractional order (3.17) is
Pro(t) = Pro(155) = [Pro(2), Pro(t)], where

1 20/t 1
Pro(t) = E(—Xf’t+ %) + exp( \;%/_) (1 + A—%(Al«/ﬁ—n/Z)),

)

3h AL
X <2+ . |: —712—7171+)fl*+)ff«/ﬂt—ZhnAft+Bhn)\n/nt])

il

toa (3h71«/71t — Mt =223t = 6hm gt — 4h/mAIE?)

1

Pro(t) = exp<

1
35
1
3h A7
5 2 7'[71—)»AIL—k?«/ﬂt+2h7‘[)»%t—3h7‘[)»1\/71t>

4h h
(A2t+3hnt 6h/T Mt + 4hAZEY) + 2(2ﬁt3/2—klt2)+)\—t2].
1

Y :
In our numerical simulations, we use the value of parameters A; =1 and 4 = 0.1. The w-
increasing solution of (3.17) is shown in Figure 1.

Case 2. .; € R™ and Pjp is w-decreasing. Similar to Case 1, from the result of Corollary
3.3, the solution of the given fractional order (3.17) is Pro() = PIO(r 5 ) [Pro(t), Pro(®)],

where

Bpo(t) = exXp ( 2):;%/2)

1[ 3 A7
X <1 t 5 |:—77r2 —n;l + AT+ A3t = 2h A2t + 3hn)»1\/nt:|)
1

1 (3h A3
+ |:—5 <—JT2 + A = A3t + 2kt - 3hnk1«/7tt>
B\ 2 2
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Figure 2 The w-decreasing solution of Example 3.5 in Case 2.

1
+ o7 (Bhm /7t — AN/t — 223t — 6hm it — 4T A E?)
1

1 4h h
. E(A%t +3hmt — 6h/ma " + 4ha3E) + E(zﬁﬁ” —ht?) + A—ltz],

Pro(t) = )%(—A%t + %) + exp(zi}%ﬁ) (2 + ;?(le/ﬁ— 71/2)).

In our numerical simulations, we use the value of parameters A; = -2 and 4 = 0.4. The
w-decreasing solution of (3.17) is shown in Figure 2.
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