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Abstract
In present work, in order to avoid the spread of disease, the impulse control strategy
is implemented to keep the density of infections at a low level. The SIR epidemic
model with resource limitation including a nonlinear impulsive function and a
state-dependent feedback control scheme is proposed and analyzed. Based on the
qualitative properties of the corresponding continuous system, the existence and
stability of positive order-k (k ∈ Z+) periodic solution are investigated. By using the
Poincaré map and the geometric method, some sufficient conditions for the
existence and stability of positive order-1 or order-2 periodic solution are obtained.
Moreover, the sufficient conditions which guarantee the nonexistence of order-k
(k ≥ 3) periodic solution are given. Some numerical simulations are carried out to
illustrate the feasibility of our main results.

Keywords: SIR model; nonlinear state-dependent impulsive function; periodic
solution; orbital stability; chaotic solution

1 Introduction
Infectious diseases have had a tremendous influence on human life and have brought huge
panic and disaster to mankind once out of control from antiquity to the present. Every year
millions of human beings suffer from or die of various infectious diseases. For example,
measles, dengue, tuberculosis, cholera, Ebola and avian influenza have had a tremendous
influence on human health during the last few years. Therefore, epidemiological modeling
of infectious disease transmission has an increasing influence on the theory and practice of
disease management and control. It is well known that one of the most important concerns
in the analysis of mathematical modeling of the spread of infectious diseases is the efficacy
of vaccination programmes. In Central and South America [, ] and UK [], vaccination
strategies have a positive effect on the prevention of diseases such as measles, tetanus,
diphtheria, pertussis, and tuberculosis. Long-term clinical data show that the vaccination
strategies lead to infectious disease eradication if the proportion of the successfully vacci-
nated individuals is larger than a certain critical value, for example, approximately equal to
% for measles. The effectiveness of vaccination has been widely studied and verified for
the influenza vaccine [], the human papilloma virus (HPV) vaccine [], the chicken pox
vaccine [], and others. Generally, there are two types of vaccination strategies: continu-
ous vaccination strategy (CVS) and pulse vaccination strategy (PVS). For certain kinds of
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infectious diseases, PVS is more affordable and easier to implement than CVS. Recently,
PVS has gained prominent achievement as a result of its highly successful application in
the control of poliomyelitis and measles throughout Central and South America. In view-
ing of this, epidemiological models with PVS have been set up and investigated in many
literature works (see, e.g., [–] and the references therein). Particularly, Agur et al. []
first proposed a mathematical model with PVS, which consists of periodical repetitions of
impulsive vaccinations of all the age cohorts in a population, which has been confirmed
as an important and effective strategy for the elimination of infectious diseases.

In a real world application, however, the eradication of a disease is sometimes difficult
both practically and economically in a short time. In order to prevent and control the
spread of an infectious disease, impulsive vaccination and pulse treatment are important
and effective methods. So far, it is necessary to keep the density of infections at a low level
to avoid the spread of the disease. In many practical problems, impulse control strategy
often occurs at state-dependent time, and it is more reasonable to take a strategy of state-
dependent feedback control to model the issues of real world phenomena. Recently, the
state-dependent feedback control, which is modeled by the impulsive semi-dynamic sys-
tems, has become a hot topic and has been applied in other fields and science [–], and
it suggests that the control tactics should only be applied once the states of model reach a
prescribed given threshold.

Following this idea, many epidemic models with state-dependent feedback control (in-
cluding PVS and pulse treatment strategy (PTS)) have been proposed and analyzed by a
number of authors in recent years. The SIR model with state-dependent PVS and PTS has
been studied by Tang et al. [] and later by Nie et al. []. Further, Nie et al. [] proposed
the SIRS model with state-dependent PVS and PTS, and analyzed the existence and stabil-
ity of the periodic solution using the Poincaré map and the method of qualitative analysis.
In these epidemic models with state-dependent pulse control strategies, it is usually as-
sumed that the pulse vaccination rate p of the susceptibles and the pulse treatment rate
q of the infectives are constants, which implies that the medical resources such as drugs,
vaccines, hospital beds are very sufficient for infectious disease. In reality, however, ev-
ery community or country has an appropriate or limited capacity for treatment, especially
for emerging infectious diseases, and so understanding resource limitation is critical to
effective management.

To the best of our knowledge, no work has been done for the effects of resource lim-
itation on the SIR model with state-dependent PTS. In order to investigate the effect of
limited vaccine and treatment availability on the spread of infectious disease, a saturation
phenomenon of limited medical resources is considered. That is, we will study the dy-
namic behavior of the SIR epidemic model with state-dependent nonlinear PTS. This pa-
per is structured as follows. In Section , the SIR epidemic model with resource limitation
including state-dependent feedback control strategies and nonlinear impulsive function
is constructed, some basic definitions, preliminaries and lemmas are given. In Section ,
we discuss the SIR model with the nonlinear impulsive vaccination as state-dependent
feedback control, the existence and stability of positive periodic solution of this model. Fi-
nally, some numerical simulations are given to illustrate our results and suitability of state
feedback control.
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2 Model formulation and preliminaries
Recently, Zhou et al. [] introduced a new continually differentiable treatment function
h(I) = αI/(ω + I) to characterize the saturation phenomenon of the limited medical re-
sources and carefully investigated the dynamics of the following SIR model:

⎧
⎪⎪⎨

⎪⎪⎩

dS(t)
dt = � – βS(t)I(t)

+kI(t) – dS(t),
dI(t)

dt = βS(t)I(t)
+kI(t) – (d + γ + ε)I(t) – αI(t)

ω+I(t) ,
dR(t)

dt = γ I(t) + αI(t)
ω+I(t) – dR(t),

(.)

where S(t), I(t) and R(t) denote the numbers of susceptible, infective and recovered in-
dividuals at time t, respectively. � is the recruitment rate of population, γ is the natural
recovery rate, and ε is the disease-related mortality. The incidence rate βS(t)I(t)/( + kI(t))
of saturated type reflects the ‘psychological’ effect or inhibition effect, α represents the
maximal medical resources supplied per unit time and ω is half-saturation constant. All
parameters shown in model (.) are nonnegative constants.

We assume, throughout this paper, that ε = . That is to say, the disease-related mortality
is so very small that can be ignored. Motivated by the previous works [, , , , ],
we propose a state-dependent nonlinear pulse vaccination for the susceptible at control
threshold value. That is, when the number of the infected individuals reaches the higher
hazardous threshold value RL at time ti(RL) at the ith time, vaccination is taken and the
number of susceptible and recovered individuals turns very suddenly to a great degree
to ( – p(t))S(ti(RL)) and R(ti(RL)) + p(t)S(ti(RL)), respectively, where p(t) ∈ (, ) is the
vaccination rate.

Typically, the previous works always assume that the vaccination rate p(t) is a constant
p ∈ (, ) proportional to the number of susceptibles. But there is a limit to how fast the
medical team can find and handle each susceptible for some emerging infectious diseases,
that is, vaccination is often restricted by limited medical resources. The vaccination rate
p(t) always has some saturation effect and can be expressed as a saturation function as
follows []:

p(t) =
pmaxS(t)
S(t) + θ

,  ≤ pmax < ,

where pmax is the maximum pulse vaccination proportion and θ is the half-saturation con-
stant. Based on model (.) and the assumption ε = , we consider the following model
with the continuous treatment control strategy and the nonlinear impulsive vaccination
as state-dependent feedback control.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = � – βS(t)I(t)

+kI(t) – dS(t)
dI(t)

dt = βS(t)I(t)
+kI(t) – (d + γ )I(t) – αI(t)

ω+I(t)
dR(t)

dt = γ I(t) + αI(t)
ω+I(t) – dR(t)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

I(t) < RL, or

I(t) = RL, S(t) < G(RL),

S(t+) = S(t) – pmaxS(t)
S(t)+θ

I(t+) = I(t)

R(t+) = R(t) + pmaxS(t)
S(t)+θ

⎫
⎪⎪⎬

⎪⎪⎭

I(t) = RL and S(t) > G(RL),

(.)



He et al. Advances in Difference Equations  (2017) 2017:209 Page 4 of 18

Table 1 Parameter definitions, values and source of model (2.2)

Parameter Definition Value Source

� Recruitment rate of the population (year–1) 16 [21]
β Probability of transmission per contact (year–1) 0.002∼0.008 [21]
k The parameter measuring the psychological or

inhibitory effect
0.01 [21]

d Nature death rate of the population (year–1) 0.1 [21]
γ Natural recovery rate of the infective individuals

(year–1)
0.01 [21]

α The maximal medical resources supplied per unite time 6 [21]
ω The half-saturation constant Assumption -
RL, RL′ The number of infectives such that control actions

must be taken in order to avoid economic and social
damages

Assumption -

pmax The maximal vaccination proportion [0, 1) [21, 23]
θ The half-saturation constant Assumption -

where the initial condition (S(), I(), R()) ∈ R

+ = {(x, x, x)|xi ≥ } and I() < RL. Let

G(RL) = ( + kRL)/β(d + γ + α/(ω + RL)), in which G(RL) as a function depends on the
threshold RL, it is determined by the intersection of the horizontal isocline βS/( + kI(t)) –
(d + γ ) – α/(ω + I) =  and the line I(t) = RL, the parameter definitions of model (.) are
summarized in Table .

Let the total population number of model (.) without impulsive effect be N(t) = S(t) +
I(t) + R(t), which satisfies

dN(t)/dt = � – dN(t). (.)

It is clear that N(t) = �/d is a solution of Eq. (.), that is, S(t) + I(t) + R(t) = �/d, and for
any N(t) ≥ , we have

lim
t→∞ N(t) =


d

(
� –

(
� – dN(t)

)
exp

(
–d(t – t)

))
=

�

d
.

Thus, the plane S(t) + I(t) + R(t) = �/d is an invariant manifold of model (.) without
impulsive effect. By the biological background of model (.), we only consider model
(.) in the biological meaning region 	 = {(S, I, R)| ≤ S + I + R ≤ �/d}. Obviously, due
to Lakshmikantham et al. [] and Bainov and Simeonov [], the global existence and
uniqueness of solutions of model (.) are guaranteed by the smoothness properties of
the right sides of model (.).

It is then seen that the initial value problems for models (.) are biologically well posed
in the sense that the trajectories of model (.) with the initial condition (S(t), I(t),
R(t)) ∈R

+
 are positivity preserving.

Lemma . Suppose that (S(t), I(t), R(t)) is a solution of model (.) with the initial con-
dition (S(t), I(t), R(t)) ∈ R


+. Then (S(t), I(t), R(t)) ∈R


+ for all t ≥ .

Proof For any initial value (S(t), I(t), R(t)) ∈R

+, we discuss the following two possibili-

ties given by the number of possible contacts between the solution (S(t), I(t), R(t)) and the
control line I = RL.

(a) The solution intersects with I = RL infinitely many times, at time instances tk ,
k = , , . . . , and tk → ∞. In this case, if the conclusion of Lemma . is false, we
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then obtain that there exists a positive integer n and t∗ ∈ (tn–, tn) such that
min{S(t∗), I(t∗), R(t∗)} = , and S(t) > , I(t) > , R(t) >  for all t ∈ [t, t∗).

The first possibility is that S(t∗) = , I(t∗) > , R(t∗) > . For this case, it follows
from the first and fourth equations of model (.) that

S
(
t∗) >

n–∏

i=

(

 –
pmaxS(ti)
S(ti) + θ

)

S(t) exp

(

–
∫ t∗

t

(
βI(τ )

 + kI(τ ) + d
dτ

))

> ,

which contradicts the fact S(t∗) = .
The second possibility is that S(t∗) > , I(t∗) = , R(t∗) > . For this case, it follows

from the second and fifth equations of model (.) that

I
(
t∗) = I(ti) exp

(

–
∫ t∗

t

(

d + γ + ε +
α

ω + I(τ )

)

dτ

)

> ,

which contradicts the fact I(t∗) = , where I(t) = · · · = I(tn–) = RL, i = , , . . . , n – .
The third possibility is that S(t∗) > , I(t∗) > , R(t∗) = . For this case, it follows

from the third and sixth equations of model (.) that

R
(
t∗) > R(t) exp

(
–d

(
t∗ – t

))
+

n–∑

i=

(
pmaxS(ti)
S(ti) + θ

exp
(
–d

(
t∗ – ti

))
)

> ,

which contradicts R(t∗) = .
(b) The solution intersects with I = RL finitely many times. In this case, since the

endemic equilibrium (S∗, I∗, R∗) is globally asymptotically stable, so S(t) > , I(t) > ,
and R(t) >  for all t ≥ . �

In the following, we start by introducing some definitions related to impulsive semi-
dynamic systems, which are used in this work. We consider the following generalized pla-
nar impulsive semi-dynamic systems with state-dependent feedback control.

⎧
⎨

⎩

dx
dt = f (x, y), dy

dt = g(x, y), (x, y) /∈M,

x+ = x + ξ (x, y), y+ = y + η(x, y), (x, y) ∈M,
(.)

where (x, y) ∈ R
, we denote x+ = x(t+) and y+ = y(t+) for simplicity. f , g , ξ and η are

continuous functions mapping R
 into R, M ⊂ R

 denotes the impulsive set. According
to the denotations in [–], for any point z(x, y) ∈ M, the map or impulsive function
I : R → R

 is defined as I(z) = z+ = (x+, y+) ∈ R
, x+ = x + ξ (x, y), y+ = y + η(x, y), and z+

is called an impulsive point of z. Let N = I(M) be the phase set (i.e., for any z(x, y) ∈ M,
I(z) = z+ = (x+, y+) ∈N ), M∩N = ∅. Model (.) is generally known as a planar impulsive
semi-dynamic model.

Let (X,�,R+) or (X,�) be a semi-dynamic model, where X = R
+ is a metric space, and

R+ is the set of all nonnegative reals. For any z ∈ X, the function �z : R+ → X defined by
�z(t) = �(z, t) is clearly continuous such that �(z, ) = z for all z ∈ X, and �(�(z, t), s) =
�(z, t + s) for all z ∈ X and t, s ∈ R+. The set C+(z) = {�(x, t)|t ∈ R} is called the positive
orbit of Z. For any set M⊂ X, let M+(z) = C+(z)∩M– z, where G(z, t) = {w ∈ X|�(w, t) =
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z} is the attainable set of z at t ∈R+. Based on the above notations, we need the following
definitions and lemma.

Definition . An impulsive semi-dynamic model (X,�;M,I) consists of a continuous
semi-dynamic model (X,�) together with a nonempty closed subset M ( or impulsive set)
of R and a continuous function I : M → X such that the following property holds: No
point z ∈ X is a limit point of M(z); {t|G(z, t) ∩M 
= ∅} is a closed subset of R.

Throughout the paper, we denote the points of discontinuity of �z by z+
n and define

a function � : X → R+ ∪ ∞ for any z ∈ X. If M+(z) = ∅, we set �(z) = ∞; otherwise,
M+(z) 
= ∅, and we set �(z) = s, where �(z, t) /∈M for  < t < s but �(z, s) ∈M.

Definition . A trajectory �z in (X,�,M,I) is said to be periodic of period Tk and order
k if there exist nonnegative integers m ≥  and k ≥  such that k is the smallest integer for
which z+

m = z+
m+k and Tk =

∑m+k–
i=m �(zi) =

∑m+k–
i=m si.

For more details on the concepts and properties of impulsive semi-dynamic model (.),
see [–, ]. For simplicity, we denote a periodic trajectory of period Tk and order-k
by an order-k periodic solution. The local stability of an order-k periodic solution can be
determined by using the following analogue of Poincaré criterion [].

Lemma . (Analogue of Poincaré criterion []) Let ϕ(x, y) be a sufficiently smooth
function with gradϕ(x, y) 
= , and we denote ϕ(x, y) 
=  as (x, y) /∈ M and ϕ(x, y) =  as
(x, y) ∈ M. The order-k periodic solution (φ(t),ψ(t)) of model (.) is orbitally asymptoti-
cally stable and enjoys the property of asymptotic phase if the Floquet multiplier μ satisfies
the condition |μ| < , where

μ =
n∏

k=

�k exp

{∫ T



(
∂f
∂x

(
φ(t),ψ(t)

)
+

∂g
∂y

(
φ(t),ψ(t)

)
)

dt
}

,

�k =
( ∂η

∂y
∂ϕ

∂x – ∂η

∂x
∂ϕ

∂y + ∂ϕ

∂x )f+ + ( ∂ξ

∂x
∂ϕ

∂y – ∂ξ

∂y
∂ϕ

∂x + ∂ϕ

∂y )g+
∂ϕ

∂x f + ∂ϕ

∂y g
,

and f , g , ∂ξ /∂x, ∂ξ /∂y, ∂η/∂x, ∂η/∂y, ∂ϕ/∂x and ∂ϕ/∂y are calculated at the point
(φ(τk),ψ(τk)), f+ = f (φ(τ+

k ),ψ(τ+
k )), g+ = g(φ(τ+

k ),ψ(τ+
k )) and τk (k ∈ N) is the time of the

kth jump,  ≤ k ≤ n, n being the total number of impulsive perturbations in [, T].

It follows from Zhou and Fan [] that the disease-free equilibrium of the form
E = (�/d, , ) is globally asymptotically stable if R < , and the endemic equilibria
E∗(S∗, I∗, R∗) of model (.) are globally asymptotically stable if R >  and α ≤ ω(β +
dk) + ωk(d + γ + ε) + ω(d + αk), where

R =
β�

d(d + γ + α
ω

)
, S∗ =

�( + kI∗)
d + (β + dk)I∗

, I∗ =
–B +

√
B – AC
A

,

R∗ =

d

(

rI∗ +
αI∗

ω + I∗

)
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and

A = (β + dk)(d + γ ),

B = –β� + α(β + dk) + (d + γ )
[
d + ω(β + dk)

]

= d
(

d + γ +
α

ω

)

( – R) + (β + dk)
(
α + ω(d + γ )

)
–

dα

ω
,

C = ωd(d + γ ) + αd – β�ω = ωd
(

d + γ +
α

ω

)

( – R).

For model (.), we assume that the conditions R >  and α ≤ ω(β + dk) +ωk(d +γ ) +
ω(d + αk) hold. That is to say, model (.) without impulsive effects has a unique globally
asymptotically stable endemic equilibrium (S∗, I∗, R∗).

Note that the removed individuals R(t) have no effect on the dynamic behaviors of sus-
ceptibles and infectives of model (.). Therefore, we consider the reduced model

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = � – βS(t)I(t)

+kI(t) – dS(t)
dI(t)

dt = βS(t)I(t)
+kI(t) – (d + γ )I(t) – αI(t)

ω+I(t)

⎫
⎬

⎭

I(t) < RL, or

I(t) = RL, S < G(RL),

S(t+) = S(t) – pmaxS(t)
S(t)+θ

I(t+) = I(t)

⎫
⎬

⎭
I(t) = RL and S > G(RL).

(.)

In model (.), we have the impulsive set M = {(S, I) ∈ R

+|S ≥ G(RL) and I = RL}, and for

any (S, I) ∈M, we have the continuous function I(S, RL) = (S – pmaxS/(S + θ ), RL) ∈R

+. It

follows that the phase set is N = I(M) = {(S+, I+) ∈R

+|G(RL) – pmaxG(RL)/(G(RL) + θ ) <

S+ < G(RL), I+ = RL}. It is clear that the total population size of model (.) tends to a
constant �/d as t tends to infinity, by a biological point of view, we focus on the region
	 = {(S, I)|S > , RL ≥ I > , S + I ≤ �/d} to investigate model (.).

In order to address the dynamic behavior of model (.), the Poincaré map is constructed
by the impulsive points on a phase set. Define two sections as follows:

�pmax =
{

(S, I)| < S < G(RL), I = RL
}

,�RL =
{

(S, I)|S ≥ G(RL), I = RL
}

.

Choose section �pmax as a Poincaré section. Suppose that point P+
n = (S+

n , RL) lies in section
�pmax , and the trajectory �P+

n = {(S(t), I(t)) ∈ 	|G(RL) > S(t+
n ) = S+

n , I(t+
n ) = RL, t ≥ t+

n } initi-
ating from P+

n will reach section �RL at point Pn+ = (Sn+, RL) in a finite time, where Sn+

can be only determined by S+
n , which can be expressed by Sn+ = f (S+

n ). Clearly, a function
f is continuously differentiable according to the Cauchy-Lipschitz theorem, and f is de-
creasing on (, G(RL)) by the geometrical construction of the phase space of model (.).
We assume that pmax ∈ (p∗, ), in which

p∗ = P(RL) =
(

 –
dG(RL)
� – dRL

)(

 +
dθ

� – dRL

)

(.)

depends on the threshold RL as a function P(RL) is a sufficient condition for any point
lying in section �RL to map to section �pmax after once impulsive effect. One time state-
dependent feedback action is implemented at point Pn+ such that it jumps to point P+

n+ =
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(S+
n+, RL) with S+

n+ = ( – pmaxSn+/(Sn+ + θ ))Sn+ on section �pmax , where point P+
n+ is the

impulsive point of Pn+ after one time impulsive effect. Therefore, we defined a Poincaré
map of section �pmax as follows:

S+
n+ = f

(
S+

n
)

+
pmaxf (S+

n )
f (S+

n ) + θ
=: F

(
S+

n , pmax, θ
)
, pmax ∈ (

p∗, 
)
. (.)

It is easy to see that the function F : �pmax → �pmax is monotone decreasing in the section
�pmax . Thus, we will discuss the existence and stability of positive periodic solutions of
model (.) using the Poincaré map (.).

3 Main results
From the assumption conditions of model (.), we know that the endemic equilibria
E∗(S∗, I∗) is a globally asymptotically stable node if R >  (see Figure ). From the vector
field of model (.) without impulsive effect, it is easy to see that the trajectory with the
initial condition (S, I) ∈ �pmax will reach section �RL infinitely many times when RL ≤ I∗.
However, if I∗ < RL, then the trajectory with the initial condition (S, I) ∈ �pmax does not
reach �RL or tend to the endemic equilibrium (S∗, I∗) after reaching �RL finitely many
times. So, next, we will discuss the existence and stability of positive periodic solution of
model (.) for two cases: () RL ≤ I∗; () I∗ < RL, respectively.

3.1 The case of RL ≤ I∗
Theorem . For the case RL ≤ I∗, if pmax ∈ (p∗, ), then model (.) has a positive order-
periodic solution.

Figure 1 The vector field plot of model (2.5) without pulse effects. The equilibrium point E∗(S∗ , I∗) is a
stable node.
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Proof For any pmax ∈ (p∗, ), we can choose small enough positive constants ε and δ such
that

ε + δ <
pmaxG(RL)
G(RL) + θ

. (.)

In view of the vector field of model (.), suppose that the trajectory �P+


starting from
the initial point P+

 (G(RL) – ε, RL) ∈ �pmax will reach section �RL at the point P(G(RL) +
μ, RL) in a finite time. Suppose that μ ≤ δ, then point P maps to point P+

 (G(RL)–ε, RL)
after one time impulsive effect. From the third equation of model (.) and condition (.),
we have

G(RL) – ε =
(

 –
pmax(G(RL) + μ)
G(RL) + μ + θ

)
(
G(RL) + μ

)

< G(RL) + μ –
pmaxG(RL)
G(RL) + θ

< G(RL) + μ – (ε + δ) < G(RL) – ε.

It implies that ε < ε and point P+
 is on the left of point P+

 . Thus, from (.), we have
G(RL) – ε = F(G(RL) – ε, pmax, θ )

F
(
G(RL) – ε, pmax, θ

)
–

(
G(RL) – ε

)
= ε – ε < . (.)

Conversely, μ > δ. There is a positive constant ε∗
 < ε such that the trajectory �P̂+


starting

from the initial point P̂+
 (G(RL)–ε∗

 , RL) will reach section �RL at point P̂(G(RL)+δ, RL) in
a finite time, and then point P̂ maps to point P̂+

 (G(RL) – ε∗
, RL). From the third equation

of model (.) and (.), we have

G(RL) – ε∗
 =

(

 –
pmax(G(RL) + δ)
G(RL) + δ + θ

)
(
G(RL) + δ

)

< G(RL) + δ –
pmaxG(RL)

G(RL) + θ
< G(RL) + δ –

(
ε∗

 + δ
)

< G(RL) – ε∗
 .

It implies that ε∗
 < ε∗

 and point P̂+
 is on the left of point P̂+

 . It follows from (.) that we
have G(RL) – ε∗

 = F(G(RL) – ε∗
 , pmax, θ ) and

F
(
G(RL) – ε∗

 , pmax, θ
)

–
(
G(RL) – ε∗


)

= ε∗
 – ε∗

 < . (.)

On the other hand, for any pmax ∈ (p∗, ), we can choose small enough positive constant
η such that

η <
(

 –
pmaxG(RL)
G(RL) + θ

)

G(RL). (.)

Suppose that the trajectory �Q+


from the initial point Q+
(η, RL) reaches section �RL at

point Q(S, RL) in a finite time, next jumps to point Q(S+
 , RL) on section �pmax due to

the impulsive effects. From the third equation of model (.) and pmax ∈ (p∗, ), we have
η < S+

 < G(RL). It implies that point Q+
 is on the right of point Q+

. Therefore, from (.)
we have S+

 = F(η, pmax, θ ) and

F(η, pmax, θ ) – η = S+
 – η > . (.)
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By (.), (.) and (.), it follows that the Poincaré map (.) has a fixed point, that is,
model (.) has a fixed point, thus, model (.) has a positive order- periodic solution.
This completes the proof of this theorem. �

Next, we state and prove our result on the existence and stability of positive order-k
(k = , ) periodic solutions of model (.).

Theorem . For case RL ≤ I∗, if pmax ∈ (p∗, ), then model (.) has a positive order- or
order- periodic solution, which is orbitally asymptotically stable. Further, model (.) has
no order-k solution (k ≥ , k ∈N).

Proof If RL ≤ I∗, then any trajectory of model (.) initiating from section �pmax will reach
section �RL and experience infinitely many impulses by the geometrical construction of
the phase space of model (.). Under the condition pmax ∈ (p∗, ), for any two points
P+

i (S+
i , RL) and P+

j (S+
j , RL) satisfying  < S+

i < S+
j < G(RL), the trajectories �S+

i
and �S+

j
will

reach section �RL at points Pi+(Si+, RL) and Pj+(Sj+, RL), respectively. Further, the trajec-
tories �S+

i
and �S+

j
are mapped to points Pi+(S+

i+, RL) and Pj+(S+
j+, RL) due to impulsive

effect, respectively. Therefore, if the conditions  < S+
i < S+

j < G(RL) and p∗ < p <  hold,
then it follows from the monotonicity of function F that

 < S+
j+ < S+

i+ < G(RL). (.)

Suppose that the trajectory of model (.) with the initial point P+
 (S+

 , RL) on section
�pmax will reach section �RL at point P(S, RL) in a finite time, and point P is mapped to
point P+

 (S+
 , RL) on section �pmax after once impulsive effects, where S+

 < G(RL) (due to
the fact pmax ∈ (p∗, )). Thus, there exist the following three cases:

(i) If S+
 = S+

 , model (.) has a positive order- periodic solution;
(ii) If S+

 
= S+
 , without loss of generality, suppose that S+

 < S+
 , it follows from (.) that

S+
 < S+

 . Furthermore, if S+
 = S+

 , then model (.) has a positive order- periodic
solution;

(iii) If S+
 
= S+

 
= S+
 
= · · · 
= S+

k (k ≥ ) and S+
 = S+

k , then model (.) has a positive
order-k periodic solution. In fact, this is impossible. If S+

 < S+
 , then from

disjointness of any two trajectories and (.), we have S+
 < S+

 and then S+
 < S+

 < S+


or S+
 < S+

 < S+
 . If S+

 < S+
 , we have S+

 < S+
 and then S+

 < S+
 < S+

 or S+
 < S+

 < S+
 .

Therefore, there are four relations among S+
 , S+

 and S+
 given by

(a) S+
 < S+

 < S+
 , (b) S+

 < S+
 < S+

 ,

(c) S+
 < S+

 < S+
 , (d) S+

 < S+
 < S+

 .

Now, we consider each case, respectively.
(a) If S+

 < S+
 < S+

 , it follows that S+
 < S+

 < S+
 by (.). Repeating the above

process, we have

 < S+
 < S+

 < · · · < S+
k+ < · · · < S+

 < S+
 < G(RL). (.)

Similar to case (a), we have
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(b) If S+
 < S+

 < S+
 , then

 < · · · < S+
k+ < · · · < S+

 < S+
 < S+

 < S+
 < · · · < S+

k < · · · < G(RL). (.)

(c) If S+
 < S+

 < S+
 , then

 < S+
 < S+

 < · · · < S+
k < · · · < S+

 < S+
 < G(RL). (.)

(d) If S+
 < S+

 < S+
 , then

 < · · · < S+
k < · · · < S+

 < S+
 < S+

 < S+
 < · · · < S+

k+ < · · · < G(RL). (.)

If there exists an order-k periodic solution (k ≥ , k ∈ N) in model (.), then S+
 
= S+

 
=
S+

 
= · · · 
= S+
k–, and S+

 = S+
k , which contradicts (.)-(.). So we conclude that model (.)

has no period-k (k ≥ , k ∈N) solution with pmax ∈ (p∗, ).
Further, for k ∈N, the sequences {Sk} and {Sk+} are convergent. Therefore, there exist

S∗
 and S∗

 such that limk→∞ S+
k = S∗

 , limk→∞ S+
k+ = S∗

. Using the Poincaré (.), we have
S∗

 = F(S∗
, pmax, θ ), S∗

 = F(S∗
 , pmax, θ ). Therefore, model (.) has an orbitally asymptoti-

cally stable positive periodic solution. Due to the vector field of (.), the positive periodic
solution is order- in the cases of (a) and (c) and it is an order- periodic solution in the
cases of (b) and (d). �

3.2 The case of I∗ < RL
For I∗ < RL, any trajectory starting from (S, I) ∈ �pmax does not reach �RL or reaches �RL

finitely (or infinitely) many times, which depends on the initial conditions and the control
parameter pmax. From the vector field construction of the phase space of model (.), we
suppose there exists a trajectory �(C, t) starting from the initial point C(SC , RL) ∈ �pmax

such that the line I = RL tangents to this trajectory at point D(G(RL), RL). If the trajectory
of model (.) with the initial condition (S, I) (I < RL) does not reach section �RL, then
model (.) has no periodic solutions. Therefore, we always assume that there exist tra-
jectories of model (.) reaching section �RL infinitely many times. For this reason, the
condition �/d – RL – pmax((�/d – RL)/(�/d – RL + θ )) < SC , that is, p∗∗ < pmax < , where

p∗∗ =
(

 –
dSC

� – dRL

)(

 +
dθ

� – dRL

)

, (.)

in which is a sufficient condition for a trajectory �(C, t) of model (.) from the initial
point C(S, RL) ( < S < SC) intersects with section �RL infinitely many times due to
impulsive effects. However, if  < pmax < p̃∗∗, where

p̃∗∗ =
(

 –
SC

G(RL)

)(

 +
θ

G(RL)

)

, (.)

then the trajectory �(C, t) from the initial point C(S, RL) ( < S < G(RL)) does not
reach �RL or tends to the endemic equilibrium (S∗, I∗) after reaching �RL finitely many
times.
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Theorem . For the case I∗ < RL, if p∗∗ < pmax < , then model (.) has a positive order-
or order- periodic solution, which is orbitally asymptotically stable. Further, if  < pmax <
p̃∗∗, then model (.) has no positive order-k (k ≥ ) periodic solution.

The proof of Theorem . is similar to the proof of Theorem ., we therefore omit it
here.

4 Numerical simulation
In this section, the following numerical results are provided to illustrate the theoretical re-
sults and the feasibility of state-dependent control strategy. Let � = , α = , β = .,
k = ., d = ., ω =  and γ = . by Table . Now we consider the following SIR epi-
demic model with the continuous treatment control strategy and nonlinear impulsive vac-
cination as state-dependent feedback control:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt =  – .S(t)I(t)

+.I(t) – .S(t)
dI(t)

dt = .S(t)I(t)
+.I(t) – (. + .)I(t) – I(t)

+I(t)
dR(t)

dt = .I(t) + I(t)
+I(t) – .R(t)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

I(t) < RL, or

I(t) = RL, S(t) < G(RL),

S(t+) = S(t) – pmaxS(t)
S(t)+θ

I(t+) = I(t)

R(t+) = R(t) + pmaxS(t)
S(t)+θ

⎫
⎪⎪⎬

⎪⎪⎭

I(t) = RL and S(t) > G(RL).

(.)

Firstly, by directly calculating, we have R ≈ . >  and α =  < ω(β + dk) + ωk(d +
γ )+ω(d +αk) ≈ .. It is easy to know that model (.) without pulse effects has a glob-
ally asymptotically stable endemic equilibrium (S∗, I∗, R∗) = (., ., .), which is
illustrated in Figures (a)-(c) by the red lines.

Secondly, we choose the control parameters to be θ = . and RL =  < I∗ = .,
then G(RL) = ( + kRL)/β(d + γ + α/(ω + RL)) ≈ ., it follows from (.) that we get

(a) Time series of S(t)

Figure 2 The trajectory of model (4.1) with/without RL = 20 < I∗ = 27.33 and pmax = 0.4 > p∗ ≈ 0.38.
The initial value is (S0, I0,R0) = (59.34, 20, 62.11).
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(b) Time series of I(t)

(c) Time series of R(t)

(d) Phase portrait and its projection on (S, I)

Figure 2 Continued
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(a) Time series of S(t)

Figure 3 The chaotic solution of model (2.5) with RL = 20 < I∗ = 27.33 and pmax = 0.01 < p∗ = 0.38. The
initial value is (S0, I0,R0) = (87, 20, 50).

p∗ ≈ .. Let pmax = . > p∗, thus from Theorems . and . we know that model
(.) has a positive order- periodic solution, which is shown in Figures (a)-(c) by
the blue lines. Further, the order- periodic solution is orbitally asymptotically stable
and has the asymptotic phase property (see Figure (d)). Figures (a)-(c) show the
control strategy �S(t) = pmaxS(t)/(S(t) + θ ) = .S(t)/(S(t) + .) of state-dependent
pulse vaccination as an effective technique in controlling and preventing of disease. The
phase portrait and time series of a chaotic solution at pmax = . < p∗ are shown in
Figure .

Finally, we choose RL =  > I∗ = ., θ = . and pmax to be ., ., ., ., . and
., respectively. Numerical simulation shows that model (.) has a trajectory �(C, t)
starting from the initial point C(SC , RL) = (., ) which is tangent to the line I = RL =
 at point D(G(RL), RL) = (, ). It follows from (.) and (.) that p∗∗ ≈ . and
p̃∗∗ ≈ .. By Theorem ., it is easy to see that model (.) has an orbitally asymptoti-
cally stable positive order- periodic solution when pmax(= ., ., .) > p∗∗ ≈ ., but
trajectories may be free from pulse effect or experience finitely many impulses and then
tend to the endemic equilibrium (S∗, I∗) when pmax(= ., ., .) < p̃∗∗ ≈ ., which is
shown in Figure .

5 Discussion
In order to control the infected individuals, the SIR epidemic model with resource limita-
tion including nonlinear impulsive function and state-dependent feedback control is stud-
ied both theoretically and numerically. From Theorems . and ., we obtain sufficient
conditions for the existence and stability of positive order- or order- periodic solution.
It is assumed that � = , α = , β = ., k = ., d = ., ω = , γ = ., θ = .,
and we choose the economic threshold RL =  < I∗. It is easy to know that the condi-
tions of Theorems . and . are satisfied, then the solution of model (.) initiating from
(S, I, R) = (., , .) tends to the orbitally asymptotically stable positive order-
periodic solution (see Figure ). However, the numerical simulations show that the dy-
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(b) Time series of I(t)

(c) Time series of R(t)

(d) Phase portrait and its projection on (S, I)

Figure 3 Continued
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(a) Phase portrait

(b) Time series of I

Figure 4 The trajectories of model (4.1) with RL = 28 > I∗ and pmax = 0.2, 0.3, 0.4, 0.62, 0.7, 0.8. The
initial value is (S0, I0) = (65, 12).

namic behavior of model (.) will become more complex if the conditions of Theorem .
are unsatisfied (see Figure ). Further, we choose the economic threshold RL =  > I∗.
From Theorem ., the solution of model (.) initiating from (S, I) = (, ) tends to a
stable positive order- periodic solution when pmax > p∗∗. On the other hand, the solution
of model (.) initiating from (S, I) = (, ) tends to the endemic equilibrium (S∗, I∗)
when pmax < p̃∗∗(see Figure ). Our main results imply that we can choose proper control
parameters to maintain the density of infections at a low level for preventing the spread
of the disease. At the same time, some numerical simulations also show that model (.)
has richer dynamic behaviors because of the effects of state-dependent impulse control
strategies.
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