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Abstract
In this paper, we study a boundary value problem for second-order nonlinear Hahn
integro-difference equations with nonlocal integral boundary conditions. Our
problem contains two Hahn difference operators and a Hahn integral. The existence
and uniqueness of solutions is obtained by using the Banach fixed point theorem,
and the existence of at least one solution is established by using the Leray-Schauder
nonlinear alternative and Krasnoselskii’s fixed point theorem. Illustrative examples are
also presented to show the applicability of our results.
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1 Introduction
A quantum calculus substitute the classical derivative by a difference operator, which al-
lows one to deal with sets of non-differentiable functions. There are many different types
of quantum difference operators such as h-calculus, q-calculus, Hahn’s calculus, forward
quantum calculus and backward quantum calculus. These operators are also found in
many applications of mathematical areas such as orthogonal polynomials, basic hyper-
geometric functions, combinatorics, the calculus of variations and the theory of relativity.
Some recent results in quantum calculus can be found in [–] and the references cited
therein.

Hahn [] introduced his difference operator Dq,ω (see Definition .) where q ∈ (, ) and
ω >  are fixed, which unifies (in the limit) the two best-known and most-used quantum
difference operators: the Jackson q-difference derivative Dq, where q ∈ (, ) (cf. [–]);
and the forward difference Dω where ω >  (cf. [, , ]). The Hahn difference operator
is a successful tool for constructing families of orthogonal polynomials and investigating
some approximation problems (cf. [–]).
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The right inverse of the Hahn difference operator was introduced by Aldwoah [, ]
who defined the right inverse of Dq,ω in the terms of both the Jackson q-integral containing
the right inverse of Dq and the Nörlund sum involving the right inverse of �ω .

Malinowska and Torres [, ] introduced the Hahn quantum variational calculus,
while Malinowska and Martins [] studied the generalized transversality conditions for
the Hahn quantum variational calculus. Hamza et al. [, ] studied the theory of lin-
ear Hahn difference equations, and investigated the existence and uniqueness results of
the initial value problems with Hahn difference equations using the method of successive
approximations.

Recently, Sitthiwirattham [] initiated the study of boundary value problems for Hahn
difference equations by considering the boundary value problem consisting of the nonlin-
ear Hahn difference equation supplemented with nonlocal three-point boundary condi-
tions of the form:

D
q,ωx(t) + f

(
t, x(t), Dp,θ x(pt + θ )

)
= , t ∈ [ω, T]q,ω,

x(ω) = ϕ(x),

x(T) = λx(η), η ∈ (ω, T)q,ω,

(.)

where  < q < ,  < ω < T , ω := ω
–q ,  ≤ λ < T–ω

η–ω
, p = qm, m ∈ N, θ = ω( –p

–q ), f :
[ω, T]q,ω × R × R → R is a given function, and ϕ : C([ω, T]q,ω,R) → R is a given func-
tional. He proved existence results for (.) by using the Banach and Krasnoselskii fixed
point theorems and also gave some numerical examples.

In this paper, motivated by the above papers, we continue the study of boundary value
problems for Hahn difference equations by considering the nonlinear boundary value
problem for Hahn integro-difference equations with nonlocal integral boundary condi-
tions of the form

D
q,ωx(t) = f

(
t, x(t), Dp,θ x(pt + θ ),Ψp,θ x(pt + θ )

)
, t ∈ [ω, T]q,ω,

x(ω) = x(T),

x(η) = μ

∫ T

ω

g(s)x(s) dq,ωs, η ∈ (ω, T)q,ω,

(.)

where  < q < ,  < ω < T , ω := ω
–q , μ

∫ T
ω

g(r) dq,ωr �= , μ ∈ R, p = qm, m ∈ N, θ = ω( –p
–q ),

f ∈ C([ω, T]q,ω × R × R × R,R), and g ∈ C([ω, T]q,ω,R+) are given functions, and for
ϕ ∈ C([ω, T]q,ω × [ω, T]q,ω, [,∞))

Ψp,θ x(t) :=
∫ t

ω

ϕ(t, ps + θ )x(ps + θ ) dp,θ s. (.)

Existence and uniqueness results are proved by using fixed point theorems. Also many
special cases and examples are presented.

The paper is organized as follows: In Section , we briefly recall some definitions and
lemmas that are used in this research. In Section , we prove an existence and uniqueness
result by using the Banach fixed point theorem and two existence result via the Leray-
Schauder nonlinear alternative and Krasnoselskii’s fixed point theorem, respectively.
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2 Preliminaries
In the following, there are notations, definitions, and lemmas which are used in proving
the main results.

Definition . ([]) For  < q < , ω >  and f defined on an interval I ⊆ R containing
ω := ω

–q , the Hahn difference of f is defined by

Dq,ωf (t) =
f (qt + ω) – f (t)

t(q – ) + ω
for t �= ω,

and Dq,ωf (ω) = f ′(ω), provided that f is differentiable at ω. We call Dq,ωf the q, ω-
derivative of f , and say that f is q, ω-differentiable on I .

This operator unifies and generalizes two well-known difference operators. The first is
Jackson q-difference operator defined by

Dq,f (t) =

⎧
⎨

⎩

f (t)–f (qt)
t(–q) , t �= ,

f ′(), t = ,
(.)

provident that f ′() exists. Here f is supposed to be defined on a q-geometric set A ⊂ R,
for which qt ∈ A whenever t ∈ A.

The second operator is the forward difference operator

D,ωf (t) =
f (t + ω) – f (t)

ω
, (.)

where ω >  is fixed.
Letting a, b ∈ I ⊆ R with a < ω < b and [k]q = –qk

–q , k ∈ N := N ∪ {}, we define the q,
ω-interval by

[a, b]q,ω :=
{

qka + ω[k]q : k ∈N
} ∪ {

qkb + ω[k]q : k ∈ N
} ∪ {ω}

= [a,ω]q,ω ∪ [ω, b]q,ω

= (a, b)q,ω ∪ {a, b} = [a, b)q,ω ∪ {b} = (a, b]q,ω ∪ {a}.

Example . The interval [ 
 , ] 

 , can be expressed by

[



, 
]


 ,

=
{




,



,



,



,
,


,
,
,

, . . .
}

∪
{

, , ,



,



,



, . . .
}

∪ {}.

An essential function which plays an important role in Hahn’s calculus is h(t) = qt + ω.
This function is normally taken to be defined on an interval I , which contains the number
ω = ω

–q . Note that h is a contraction, h(I) ⊆ I , h(t) < t for t > ω, h(t) > t for t < ω, and
h(ω) = ω. One can see that the kth-order iteration of h(t) is given by hk(t) = qkt + ω[k]q,
t ∈ I . Observe that, for each s ∈ [a, b]q,ω , the sequence {qks + ω[k]q}∞k= is uniformly con-
vergent to ω.
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If f is q, ω-differentiable n times on q, ω-interval Iq,ω , we define the higher-order deriva-
tives by

Dn
q,ωf (s) := Dq,ωDn–

q,ω f (s),

where D
q,ωf (s) := f (s), s ∈ Iq,ω ⊂R.

Next, we introduce the right inverse of the operator Dq,ω , the so-called q, ω-integral
operator.

Definition . ([]) Let I be any closed interval of R containing a, b and ω. Assuming
that f : I →R is a given function, we define the q, ω-integral of f from a to b by

∫ b

a
f (t) dq,ωt :=

∫ b

ω

f (t) dq,ωt –
∫ a

ω

f (t) dq,ωt,

where

∫ t

ω

f (s) dq,ωs = Iq,ωf (t) =
[
t( – q) – ω

] ∞∑

k=

qkf
(
tqk + ω[k]q

)
, x ∈ I,

is the convergent series at x = a and x = b. f is called q, ω-integrable on [a, b] and the sum
to the right hand side of the above equation will be called the Jackson-Nörlund sum.

We note that the actual domain of the function f is [a, b]q,ω ⊂ I .
The following lemma is the fundamental theorem of Hahn calculus.

Lemma . ([]) Let f : I →R be continuous at ω. Define

F(x) :=
∫ x

ω

f (t) dq,ωt, x ∈ I,

then F is continuous at ω. Furthermore, Dq,ω F(x) exists for every x ∈ I and

Dq,ωF(x) = f (x).

Conversely,

∫ b

a
Dq,ωF(t) dq,ωt = F(b) – F(a) for all a, b ∈ I.

Next, we give some auxiliary lemmas for simplifying calculations.

Lemma . ([]) Let  < q < , ω >  and x : I →R be continuous at ω. Then

∫ t

ω

∫ r

ω

x(s) dq,ωs dq,ωr =
∫ t

ω

∫ t

qs+ω

x(s) dq,ωr dq,ωs.

Remark . Observe that
∫ t

ω

∫ t

qs+ω

x(s) dq,ωr dq,ωs =
∫ t

ω

(
t – (qs + ω)

)
x(s) dq,ωs.
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Lemma . ([]) Let  < q <  and ω > , then

∫ t

ω

dq,ωs = t – ω and
∫ t

ω

[
t – (qs + ω)

]
dq,ωs =

(t – ω)

 + q
.

Lemma . Let  < q <  and ω > , then the following equation holds:

∫ t

ω

· · ·
∫ t

ω︸ ︷︷ ︸
n times

dq,ωs · · · dq,ωr =
(t – ω)n

[n]q!
, (.)

where [n]q! =
∏n

k=
–qk

–q .

Proof Mathematical induction will be used in our proof as follows. For n = , we have

∫ t

ω

dq,ωs =
[
t( – q) – ω

] ∞∑

k=

qk = (t – ω),

which means that equation (.) is true for n = .
Suppose that equation (.) holds for n = k. Hence, for n = k + , we have

∫ t

ω

· · ·
∫ t

ω︸ ︷︷ ︸
k+ times

dq,ωs · · · dq,ωr =
∫ t

ω

(r – ω)k

[k]q!
dq,ωr

=
[t( – q) – ω]

[k]q!

∞∑

k=

qk(tqk + ω[k]q – ω
)k

=
( – q)(t – ω)

[k]q!

∞∑

k=

qk(tqk – ωqk)k

=
( – q)(t – ω)

[k]q!

∞∑

k=

qkqk
(t – ω)k

=
( – q)(t – ω)k+

[k]q!( – qk+)

=
(t – ω)k+

[k + ]q!
.

Thus, equation (.) holds for n = k + . By the principle of induction, equation (.) is true
for all n ∈N. �

The following lemma deals with the linear variant of problem (.) and gives a presen-
tation of the solution.

Lemma . Let μ
∫ T
ω

g(r) dq,ωr �=  and h ∈ C([ω, T]q,ω,R) be a given function. Then the
function x is a solution of the problem

D
q,ωx(t) = h(t), t ∈ [ω, T]q,ω, (.)

x(ω) = x(T), x(η) = μIq,ω(gx)(T), η ∈ (ω, T)q,ω, (.)
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if and only if

x(t) =
∫ t

ω

[
t – (qs + ω)

]
h(s) dq,ωs –

(t – ω)
T – ω

∫ T

ω

[
T – (qs + ω)

]
h(s) dq,ωs

+

Ω

[
μ

∫ T

ω

∫ r

ω

g(r)
[
r – (qs + ω)

]
h(s) dq,ωs dq,ωr

–
∫ η

ω

[
η – (qs + ω)

]
h(s) dq,ωs +


T – ω

∫ T

ω

[
T – (qs + ω)

]
h(s) dq,ωs

×
(

η – ω – μ

∫ T

ω

g(r)(r – ω) dq,ωr
)]

, (.)

where

Ω =  – μ

∫ T

ω

g(r) dq,ωr. (.)

Proof By Lemma . and Remark ., a general solution for (.) can be written as

x(t) =
∫ t

ω

∫ r

ω

h(s) dq,ωs dq,ωr + C(t – ω) + C

=
∫ t

ω

∫ t

qs+ω

h(s) dq,ωr dq,ωs + C(t – ω) + C

=
∫ t

ω

[
t – (qs + ω)

]
h(s) dq,ωs + C(t – ω) + C, (.)

for t ∈ [ω, T]q,ω . Taking the q, ω-integral for (.), we obtain, for t ∈ [ω, T]q,ω ,

Iq,ωx(t) =
∫ t

ω

∫ r

ω

[
r – (qs + ω)

]
h(s) dq,ωs dq,ωr + C

∫ t

ω

(r – ω) dq,ωr

+ C

∫ t

ω

dq,ωr. (.)

From the boundary conditions of (.), we obtain

C = –


T – ω

∫ T

ω

[
T – (qs + ω)

]
h(s) dq,ωs, (.)

C =

Ω

[
μ

∫ T

ω

∫ r

ω

g(r)
[
r – (qs + ω)

]
h(s) dq,ωs dq,ωr –

∫ η

ω

[
η – (qs + ω)

]
h(s) dq,ωs

–
μ

T – ω

∫ T

ω

[
T – (qs + ω)

]
h(s) dq,ωs

∫ T

ω

g(r)(r – ω) dq,ωs

+
η – ω

T – ω

∫ T

ω

[
T – (qs + ω)

]
h(s) dq,ωs

]
, (.)

where Ω is defined as (.). Substituting the constants C, C into (.), we obtain (.).
On the other hand, by taking the second-order q, ω-derivative to (.), we have (.). It

is easy to check that equation (.) satisfies (.). This completes the proof. �
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3 Existence and uniqueness results
In this section, we present the existence and uniqueness of solutions for problem (.). Let

X =
{

x|x ∈ C
(
[ω, T]q,ω,R

)
and Dp,θ x ∈ C

(
[ω, T]q,ω,R

)}

be the Banach space of all continuous functions x : [ω, T]q,ω → R with the norm defined
by

‖x‖X = ‖x‖ + ‖Dp,θ x‖,

where ‖x‖ = max{|x(t)| : t ∈ [ω, T]q,ω} and ‖Dp,θ x‖ = max{|Dp,θ x(pt + θ )| : t ∈ [ω, T]q,ω}.
We define an operator F : X → X by

(Fx)(t)

=
∫ t

ω

[
t – (qs + ω)

]
f
(
s, x(s), Dp,θ x(ps + θ ),Ψp,θ x(ps + θ )

)
dq,ωs

–
(t – ω)
T – ω

∫ T

ω

[
T – (qs + ω)

]
f
(
s, x(s), Dp,θ x(ps + θ ),Ψp,θ x(ps + θ )

)
dq,ωs

+

Ω

[
μ

∫ T

ω

∫ r

ω

g(r)
[
r – (qs + ω)

]
f
(
s, x(s), Dp,θ x(ps + θ ),Ψp,θ x(ps + θ )

)
dq,ωs dq,ωr

–
∫ η

ω

[
η – (qs + ω)

]
f
(
s, x(s), Dp,θ x(ps + θ ),Ψp,θ x(ps + θ )

)
dq,ωs

+


T – ω

∫ T

ω

[
T – (qs + ω)

]
f
(
s, x(s), Dp,θx(ps + θ ),Ψp,θ x(ps + θ )

)
dq,ωs

×
(

η – ω – μ

∫ T

ω

g(r)(r – ω) dq,ωr
)]

, (.)

where Ω �=  is defined by (.), p = qm, m ∈N and θ = ω( –p
–q ).

Obviously, problem (.) has solutions if and only if the operator F has fixed points.

3.1 Existence and uniqueness result via Banach’s fixed point theorem
Our first result concerns existence and uniqueness of solutions of problem (.) and is
based on Banach’s fixed point theorem.

Theorem . Let

ϕ = max
{
ϕ(t, ps + θ ) : (t, ps + θ ) ∈ [ω, T]q,ω × [ω, T]q,ω

}
. (.)

Assume that:

(H) there exist functions hi ∈ C([ω, T]q,ω,R+), i = , ,  such that

∣∣f (t, x, x, x) – f (t, y, y, y)
∣∣ ≤ h(t)|x – y| + h(t)|x – y| + h(t)|x – y|

for each t ∈ [ω, T]q,ω and xi, yi, zi ∈R, i = , , ;
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(H) for each t ∈ [ω, T]q,ω ,  < g(t) < N ;
(H) S := Φ(Φ + Φ) < ,

where

Φ = ‖h‖ + ‖h‖ + ‖h‖ϕ(T – ω),

Φ =
(T – ω)

 + q
+


( + q)|Ω|

[ |μ|N(T – ω)( + q + q)
( + q)( + q + q)

+ (η – ω)(T + η – ω)
]

,

Φ =
(T – ω)( + p + p)

 + q
.

(.)

Then problem (.) has a unique solution on [ω, T]q,ω .

Proof Denote f̂x(t) := f (t, x(t), Dp,θ x(pt + θ ),Ψp,θ x(pt + θ )). Then we have

∣∣f̂x(t) – f̂y(t)
∣∣ ≤ h(t)

∣∣x(t) – y(t)
∣∣ + h(t)

∣∣Dp,θ x(pt + θ ) – Dp,θ y(pt + θ )
∣∣

+ h(t)
∣∣Ψp,θ x(pt + θ ) – Ψp,θ y(pt + θ )

∣∣

≤ ‖h‖‖x – y‖ + ‖h‖‖Dp,θ x – Dp,θ y‖ + ‖h‖ϕ(T – ω)‖x – y‖
≤ ‖h‖‖x – y‖X + ‖h‖‖x – y‖X + ‖h‖ϕ(T – ω)‖x – y‖X

=
(‖h‖ + ‖h‖ + ‖h‖ϕ(T – ω)

)‖x – y‖X .

Using Lemma ., for each t ∈ [ω, T]q,ω and x, y ∈ X we have
∣∣(Fx)(t) – (Fy)(t)

∣∣

≤
∫ t

ω

[
t – (qs + ω)

]∣∣f̂x(t) – f̂y(t)
∣∣dq,ωs +

(t – ω)
T – ω

∫ T

ω

[
T – (qs + ω)

]∣∣f̂x(t) – f̂y(t)
∣∣dq,ωs

+


|Ω|
[∣∣
∣∣μ

∫ T

ω

∫ r

ω

g(r)
[
r – (qs + ω)

]∣∣f̂x(t) – f̂y(t)
∣
∣dq,ωs dq,ωr

–
∫ η

ω

[
η – (qs + ω)

]∣∣f̂x(t) – f̂y(t)
∣
∣dq,ωs

∣∣
∣∣

+


T – ω

∫ T

ω

[
T – (qs + ω)

]∣∣f̂x(t) – f̂y(t)
∣∣dq,ωs

∣
∣∣∣η – ω – μ

∫ T

ω

g(r)(r – ω) dq,ωr
∣
∣∣∣

]

≤
∫ T

ω

[
T – (qs + ω)

]∣∣f̂x(t) – f̂y(t)
∣∣dq,ωs +

∫ T

ω

[
T – (qs + ω)

]∣∣f̂x(t) – f̂y(t)
∣∣dq,ωs

+


|Ω|
[
|μ|N

∫ T

ω

∫ r

ω

[
r – (qs + ω)

]∣∣f̂x(t) – f̂y(t)
∣
∣dq,ωs dq,ωr

+
∫ η

ω

[
η – (qs + ω)

]∣∣f̂x(t) – f̂y(t)
∣∣dq,ωs

+


T – ω

∫ T

ω

[
T – (qs + ω)

]∣∣f̂x(t) – f̂y(t)
∣∣dq,ωs

(
(η – ω)

+ |μ|N
∫ T

ω

(r – ω) dq,ωr
)]
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≤
{

(T – ω)

 + q
+


|Ω|

[ |μ|N(T – ω)

( + q)( + q + q)
+

(η – ω)

 + q

+
T – ω

 + q

(
(η – ω) +

|μ|N(T – ω)

 + q

)]}

× (‖h‖ + ‖h‖ + ‖h‖ϕ(T – ω)
)‖x – y‖X

≤
{

(T – ω)

 + q
+


( + q)|Ω|

[ |μ|N(T – ω)( + q + q)
( + q)( + q + q)

+ (η – ω)(T + η – ω)
]}

(‖h‖ + ‖h‖ + ‖h‖ϕ(T – ω)
)‖x – y‖X

= ΦΦ‖x – y‖X .

Taking the p, θ -derivative for (.) where p = qm, m ∈N and θ = ω( –p
–q ), we obtain

∣∣(Dp,θFx)(pt + θ ) – (Dp,θFy)(pt + θ )
∣∣

≤
∣
∣∣
∣


[–(pt + θ )( – p) + θ ]

{(∫ p(pt+θ )+θ

ω

[
p(pt + θ ) + θ – (qs + ω)

]∣∣f̂x(t) – f̂y(t)
∣∣dq,ωs

–
∫ pt+θ

ω

[
(pt + θ ) – (qs + ω)

]∣∣f̂x(t) – f̂y(t)
∣∣dq,ωs

)
+

(pt + θ )( – p) + θ

T – ω

×
∫ T

ω

[
T – (qs + ω)

]∣∣f̂x(t) – f̂y(t)
∣∣dq,ωs

}∣∣∣
∣

≤
{


p( – p)(t – ω)

∣
∣∣
∣

∫ pt+θ

ω

[
(pt + θ ) – (qs + ω)

]
dq,ωs

–
∫ pt+(p+)θ

ω

[
pt + (p + )θ – (qs + ω)

]
dq,ωs

∣∣
∣∣

+


T – ω

∫ T

ω

[
T – (qs + ω)

]
dq,ωs

}

× (‖h‖ + ‖h‖ + ‖h‖ϕ(T – ω)
)‖x – y‖X

≤
{

(pt + θ – ω) – (pt + (p + )θ – ω)

p( – p)(t – ω)( + q)
+

T – ω

 + q

}

× (‖h‖ + ‖h‖ + ‖h‖ϕ(T – ω)
)‖x – y‖X

≤ (T – ω)( + p + p)
 + q

(‖h‖ + ‖h‖ + ‖h‖ϕ(T – ω)
)‖x – y‖X

= ΦΦ‖x – y‖X .

Therefore

‖Fx – Fy‖X ≤ Φ(Φ + Φ)‖x – y‖X .

This implies, by (H), that F is a contraction. Therefore, by Banach’s fixed point theorem,
F has a unique fixed point, which is the unique solution of problem (.) on [ω, T]q,ω .
The proof is completed. �
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Corollary . If hi = L, i = , ,  with L < 
[+ϕ(T–ω)](Φ+Φ) in Theorem ., then problem

(.) has a unique solution on [ω, T]q,ω .

Example . Consider the following boundary value problem for second-order Hahn
integro-difference equation:

⎧
⎨

⎩
D

/,/x(t) = f (t, x(t), Dp,θ x(pt + θ ),Ψp,θ x(pt + θ )),

x() = x(), x(,/) = (/)
∫ 

 ecos(πs)x(s) d/,/s,
(.)

where

f
(
t, x(t), Dp,θ x(pt + θ ),Ψp,θ x(pt + θ )

)

=


( + t)( + |x(t)|)
[
e– sin(π t)(x + |x|) + e– cos(π t)|D/,/x|

+ e–t |Ψ/,/x|] (.)

and

Ψ/,/x(t) =
∫ t



e–((/)s+/–t)


x
(
(/)s + /

)
d/,/s.

Here q = /, ω = /, ω = , p = /, m = , θ = /, T = , η = ,/, μ =
/, g(t) = ecos(π t), ϕ(t, ps + θ ) = e–((/)s+/–t)

 . By direct computation, we find that

∣
∣f (t, x, Dp,θ x,Ψp,θ x) – f (t, y, Dp,θ y,Ψp,θ y)

∣
∣

≤ e– sin(π t)

 + t ‖x – y‖ +
e– cos(π t)

 + t ‖Dp,θ x – Dp,θ y‖ +
e–t

 + t ‖Ψp,θ x – Ψp,θ y‖,

ϕ = /, and (H) is satisfied with h(t) = e– sin(π t)

+t , h(t) = e– cos(π t)

+t , h(t) = e–t

+t . So,
Φ = .. From  < g(t) < e, (H) is satisfied with N = e. By the given data we find
Φ = ., Φ = .. Therefore, we can compute that

S = Φ(Φ + Φ) = ..

Hence, by Theorem ., problem (.) with (.) has a unique solution on [, ]/,/.

3.2 Existence result via Leray-Schauder’s nonlinear alternative
Lemma . (Nonlinear alternative for single valued maps []) Let E be a Banach space,
C a closed, convex subset of E, U an open subset of C and  ∈ U . Suppose that F : U → C is
a continuous, compact (that is, F(U) is a relatively compact subset of C) map. Then either

(i) F has a fixed point in U , or
(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (, ) with u = λF(u).

Theorem . Let f : [ω, T]q,ω × R × R × R → R be a continuous function. In addition,
we assume that:
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(H) there exist a function m ∈ C([ω, T]q,ω,R), and continuous nondecreasing functions
ψi : R+ →R

+, i = , ,  such that

∣
∣f (t, x, y, z)

∣
∣ ≤ m(t)

(
ψ

(|x|) + ψ
(|y|) + ψ

(|z|)),

∀(t, x, y, z) ∈ [ω, T]q,ω ×R×R×R;
(H) there exists a constant M >  such that

M
(ψ(M) + ψ(M) + ψ(ϕ(T – ω)M))‖m‖(Φ + Φ)

> ,

where ϕ is defined by (.) and Φ, Φ are defined by (.).
Then the boundary value problem (.) has at least one solution on [ω, T]q,ω .

Proof Consider the operator F : X → X defined by (.).
Firstly, we show that the operatorF maps bounded sets into bounded sets in the space X.

Let Br = {x ∈ X : ‖x‖X ≤ r}, r > . For any x ∈ Br , putting

f̂x(t) := f
(
t, x(t), Dp,θ x(pt + θ ),Ψp,θ x(pt + θ )

)
,

and using the inequalities

∣
∣f̂x(t)

∣
∣ ≤ m(t)

(
ψ

(∣∣x(t)
∣
∣) + ψ

(∣∣Dp,θ x(pt + θ )
∣
∣) + ψ

(∣∣Ψp,θ x(pt + θ )
∣
∣))

≤ m(t)
(
ψ

(‖x‖) + ψ
(‖Dp,θ x‖) + ψ

(
ϕ(T – ω)‖x‖))

≤ ‖m‖(ψ
(‖x‖X

)
+ ψ

(‖x‖X
)

+ ψ
(
ϕ(T – ω)‖x‖X

))

≤ ‖m‖(ψ(r) + ψ(r) + ψ
(
ϕ(T – ω)r

))
,

we have

∣
∣(Fx)(t)

∣
∣

≤
∫ t

ω

[
t – (qs + ω)

]∣∣f̂x(t)
∣
∣dq,ωs +

(t – ω)
T – ω

∫ T

ω

[
T – (qs + ω)

]∣∣f̂x(t)
∣
∣dq,ωs

+


|Ω|
[∣
∣∣
∣μ

∫ T

ω

∫ r

ω

g(r)
[
r – (qs + ω)

]∣∣f̂x(t)
∣∣dq,ωs dq,ωr

–
∫ η

ω

[
η – (qs + ω)

]∣∣f̂x(t)
∣∣dq,ωs

∣
∣∣
∣

+


T – ω

∫ T

ω

[
T – (qs + ω)

]∣∣f̂x(t)
∣
∣dq,ωs

∣∣
∣∣η – ω – μ

∫ T

ω

g(r)(r – ω) dq,ωr
∣∣
∣∣

]

≤
∫ T

ω

[
T – (qs + ω)

]∣∣f̂x(t)
∣∣dq,ωs +

∫ T

ω

[
T – (qs + ω)

]∣∣f̂x(t)
∣∣dq,ωs

+


|Ω|
[
|μ|N

∫ T

ω

∫ r

ω

[
r – (qs + ω)

]∣∣f̂x(t)
∣∣dq,ωs dq,ωr +

∫ η

ω

[
η – (qs + ω)

]∣∣f̂x(t)
∣∣dq,ωs

+


T – ω

∫ T

ω

[
T – (qs + ω)

]∣∣f̂x(t)
∣
∣dq,ωs

(
(η – ω) + |μ|N

∫ T

ω

(r – ω) dq,ωr
)]
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≤
{

(T – ω)

 + q
+


|Ω|

[ |μ|N(T – ω)

( + q)( + q + q)
+

(η – ω)

 + q
+

T – ω

 + q

×
(

(η – ω) +
|μ|N(T – ω)

 + q

)]}
‖m‖(ψ(r) + ψ(r) + ψ

(
ϕ(T – ω)r

))

≤
{

(T – ω)

 + q
+


( + q)|Ω|

[ |μ|N(T – ω)( + q + q)
( + q)( + q + q)

+ (η – ω)(T + η – ω)
]}

‖m‖(ψ(r) + ψ(r) + ψ
(
ϕ(T – ω)r

))
.

Taking the p, θ -derivative for (.) where p = qm, m ∈N and θ = ω( –p
–q ), we obtain

∣∣(Dp,θFx)(pt + θ )
∣∣

≤
∣
∣∣
∣


[–(pt + θ )( – p) + θ ]

{(∫ p(pt+θ )+θ

ω

[
p(pt + θ ) + θ – (qs + ω)

]∣∣f̂x(t)
∣∣dq,ωs

–
∫ pt+θ

ω

[
(pt + θ ) – (qs + ω)

]∣∣f̂x(t)
∣∣dq,ωs

)

+
(pt + θ )( – p) + θ

T – ω

∫ T

ω

[
T – (qs + ω)

]∣∣f̂x(t)
∣∣dq,ωs

}∣
∣∣
∣

≤
{

(pt + θ – ω) – (pt + (p + )θ – ω)

p( – p)(t – ω)( + q)
+

T – ω

 + q

}

× ‖m‖(ψ(r) + ψ(r) + ψ
(
ϕ(T – ω)r

))

≤
{

( + p + p)(T – ω)
 + q

}
‖m‖(ψ(r) + ψ(r) + ψ

(
ϕ(T – ω)r

))
.

Consequently

‖Fx‖X ≤ ‖m‖(ψ(r) + ψ(r) + ψ
(
ϕ(T – ω)r

))
(Φ + Φ).

Next, we shall show that F : Br → Br is equicontinuous. For any t, t ∈ [ω, T]q,ω , t < t.
Then we have

∣∣(Fx)(t) – (Fx)(t)
∣∣

≤
∫ t

ω

[
t – (qs + ω)

]∣∣f̂x(s)
∣∣dq,ωs –

∫ t

ω

[
t – (qs + ω)

]∣∣f̂x(s)
∣∣dq,ωs

+
|t – t|
T – ω

∫ T

ω

[
T – (qs + ω)

]∣∣f̂x(s)
∣
∣dq,ωs

≤
∫ t

ω

[t – t]
∣
∣f̂x(s)

∣
∣dq,ωs +

∫ t

t

[
t – (qs + ω)

]∣∣f̂x(s)
∣
∣dq,ωs

+
|t – t|
T – ω

∫ T

ω

[
T – (qs + ω)

]∣∣f̂x(s)
∣∣dq,ωs

≤
(∫ t

ω

[t – t] dq,ωs +
∫ t

t

[
t – (qs + ω)

]
dq,ωs +

|t – t|(T – ω)
 + q

)

× ‖m‖(ψ(r) + ψ(r) + ψ
(
ϕ(T – ω)r

))
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and

∣∣(Dp,θFx)(pt + θ ) – (Dp,θFx)(pt + θ )
∣∣

≤
∣∣∣
∣


[–(pt + θ )( – p) + θ ]

{(∫ p(pt+θ )+θ

ω

[
p(pt + θ ) + θ – (qs + ω)

]
dq,ωs

–
∫ pt+θ

ω

[
(pt + θ ) – (qs + ω)

]
dq,ωs

)

+
(pt + θ )( – p) + θ

T – ω

∫ T

ω

[
T – (qs + ω)

]
dq,ωs

}

–


[–(pt + θ )( – p) + θ ]

{(∫ p(pt+θ )+θ

ω

[
p(pt + θ ) + θ – (qs + ω)

]
dq,ωs

–
∫ pt+θ

ω

[
(pt + θ ) – (qs + ω)

]
dq,ωs

)

+
(pt + θ )( – p) + θ

T – ω

∫ T

ω

[
T – (qs + ω)

]
dq,ωs

}∣
∣∣
∣

× ‖m‖(ψ(r) + ψ(r) + ψ
(
ϕ(T – ω)r

))

≤
{

(pt + θ – ω) – (pt + (p + )θ – ω)

p( – p)(t – ω)( + q)

–
(pt + θ – ω) – (pt + (p + )θ – ω)

p( – p)(t – ω)( + q)

}

× ‖m‖(ψ(r) + ψ(r) + ψ
(
ϕ(T – ω)r

))

≤
{

p( + p)(t – t)
 + q

}
‖m‖(ψ(r) + ψ(r) + ψ

(
ϕ(T – ω)r

))
.

Hence

max
x∈B̄r

∣∣(Fx)(t) – (Fx)(t)
∣∣ + max

x∈B̄r

∣∣Dp,θ (Fx)(pt + θ ) – Dp,θ (Fx)(pt + θ )
∣∣ → ,

as t → t and the limit is independent of x ∈ B̄r . Therefore the operator F : Br → Br

is equicontinuous and uniformly bounded. The Arzelá-Ascoli theorem implies that F is
completely continuous.

The result will follow from the Leray-Schauder nonlinear alternative (Lemma .) once
we have proved the boundedness of the set of all solutions to equations x = λFx for λ ∈
(, ).

Let x be a solution. Then, for t ∈ [ω, T]q,ω , and using the computations in proving that
F is bounded, for λ ∈ (, ), let x = λFx. Then we have

‖x‖X ≤ (
ψ

(‖x‖X
)

+ ψ
(‖x‖X

)
+ ψ

(
ϕ(T – ω)‖x‖X

))‖m‖(Φ + Φ),

or

‖x‖X

(ψ(‖x‖X) + ψ(‖x‖X) + ψ(ϕ(T – ω)‖x‖X))‖m‖(Φ + Φ)
≤ .
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In view of (H), there exists M such that ‖x‖X �= M. Let us set

U =
{

x ∈ C
(
[ω, T]q,ω,R

)
: ‖x‖X < M

}
.

Note that the operator F : U → C([ω, T]q,ω,R) is continuous and completely continu-
ous. From the choice of U , there is no x ∈ ∂U such that x = λFx for some λ ∈ (, ). Con-
sequently, by the nonlinear alternative of Leray-Schauder type (Lemma .), we deduce
that F has a fixed point x ∈ U which is a solution of problem (.). This completes the
proof. �

Corollary . Suppose that a continuous function f satisfies |f (t, x, y, z)| ≤ K(|x|+ |y|+ |z|),
K ≥ . If K[ + ϕ(T – ω)](Φ + Φ) < , then problem (.) has at least one solution on
[ω, T]q,ω .

Example . Consider the following boundary value problem for second-order Hahn
integro-difference equation:

⎧
⎨

⎩
D

/,/x(t) = f (t, x(t), Dp,θ x(pt + θ ),Ψp,θ x(pt + θ )),

x() = x(), x(,/) = (/)
∫ 

 ecos(πs)x(s) d/,/s,
(.)

where

f
(
t, x(t), Dp,θ x(pt + θ ),Ψp,θ x(pt + θ )

)

=


(t + )

[



e–|x| sin |x| +

|D/,/x|
( + |D/,/x|) +

|Ψ/,/x|
( + |Ψ/,/x|)

+ 
]

(.)

and

Ψ/,/x(t) =
∫ t



e–((/)s+/–t)


x
(
(/)s + /

)
d/,/s.

Here q = /, ω = /, ω = , p = /, m = , θ = /, T = , η = ,/, μ = /,
g(t) = ecos(π t), ϕ(t, ps + θ ) = e–((/)s+/–t)

 . Since

∣∣f (t, x, Dp,θ x,Ψp,θ x)
∣∣

≤ 
(t + )

[



|x| +




|D/,/x| +



|Ψ/,/x| + 

]
,

ϕ = /, (H) is satisfied with m(t) = 
(t+) , ψ(|x|) = 

 |x|, ψ(|D/,/x|) =


 |D/,/x| + , ψ(|Ψ/,/x|) = 
 |Ψ/,/x| + . In addition, we see that

 < g(t) < e, then (H) is satisfied with N = e. From the above information, we find that
Φ = ., Φ = .. Therefore, there exists a constant M > . satisfy-
ing (H). Hence, by Theorem ., problem (.) with (.) has at least one solution on
[, ]/,/.
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3.3 Existence result via Krasnoselskii’s fixed point theorem
The final existence result is based on Krasnoselskii’s fixed point theorem.

Lemma . (Krasnoselskii’s fixed point theorem []) Let S be a closed, convex and
nonempty subset of a Banach space X. Let A, B be the operators such that (a) Ax + By ∈ S
whenever x, y ∈ S; (b) A is compact and continuous; (c) B is a contraction mapping. Then
there exists z ∈ S such that z = Az + Bz.

Theorem . Assume that (H) and (H) hold. In addition we assume that:

(H) |f (t, x, y, z)| ≤ μ(t), for each t ∈ [ω, T]q,ω , x, y, z ∈R and μ ∈ C([ω, T],R+).

Then problem (.) has at least one solution on [ω, T]q,ω , provided

T – ω

 + q
( + T – ω)Φ < , (.)

where Φ is defined by (.).

Proof Consider the operator F : X → X defined by (.) as

(Fx)(t) = (Fx)(t) + (Fx)(t), t ∈ [ω, T]q,ω, (.)

where

(Fx)(t) = –
(t – ω)
T – ω

∫ T

ω

[
T – (qs + ω)

]
f̂x(s) dq,ωs

and

(Fx)(t)

=
∫ t

ω

[
t – (qs + ω)

]
f̂x(s) dq,ωs

+

Ω

[
μ

∫ T

ω

∫ r

ω

g(r)
[
r – (qs + ω)

]
f̂x(s) dq,ωs dq,ωr –

∫ η

ω

[
η – (qs + ω)

]
f̂x(s) dq,ωs

+


T – ω

∫ T

ω

[
T – (qs + ω)

]
f̂x(s) dq,ωs

(
η – ω – μ

∫ T

ω

g(r)(r – ω) dq,ωr
)]

.

Setting max{μ(t) : t ∈ [ω, T]q,ω} = ‖μ‖ and choosing ρ ≥ ‖μ‖(Φ + Φ) we consider
Bρ = {x ∈ C([ω, T]q,ω,R) : ‖x‖X ≤ ρ}. For any x, y ∈ Bρ we have

∣∣(Fx)(t) + (Fy)(t)
∣∣

≤
∫ t

ω

[
t – (qs + ω)

]∣∣f̂y(t)
∣∣dq,ωs +

(t – ω)
T – ω

∫ T

ω

[
T – (qs + ω)

]∣∣f̂x(t)
∣∣dq,ωs

+


|Ω|
[∣∣
∣∣μ

∫ T

ω

∫ r

ω

g(r)
[
r – (qs + ω)

]∣∣f̂y(t)
∣
∣dq,ωs dq,ωr

–
∫ η

ω

[
η – (qs + ω)

]∣∣f̂y(t)
∣
∣dq,ωs

∣∣
∣∣
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+


T – ω

∫ T

ω

[
T – (qs + ω)

]∣∣f̂y(t)
∣∣dq,ωs

∣
∣∣∣η – ω – μ

∫ T

ω

g(r)(r – ω) dq,ωr
∣
∣∣∣

]

≤
∫ T

ω

[
T – (qs + ω)

]∣∣f̂y(t)
∣∣dq,ωs +

∫ T

ω

[
T – (qs + ω)

]∣∣f̂x(t)
∣∣dq,ωs

+


|Ω|
[
|μ|N

∫ T

ω

∫ r

ω

[
r – (qs + ω)

]∣∣f̂y(t)
∣
∣dq,ωs dq,ωr +

∫ η

ω

[
η – (qs + ω)

]∣∣f̂y(t)
∣
∣dq,ωs

+


T – ω

∫ T

ω

[
T – (qs + ω)

]∣∣f̂y(t)
∣∣dq,ωs

(
(η – ω) + |μ|N

∫ T

ω

(r – ω) dq,ωr
)]

≤ ‖μ‖
{

(T – ω)

 + q
+


|Ω|

[ |μ|N(T – ω)

( + q)( + q + q)
+

(η – ω)

 + q

+
T – ω

 + q

(
(η – ω) +

|μ|N(T – ω)

 + q

)]}
.

Taking the p, θ -derivative for (.) where p = qm, m ∈N and θ = ω( –p
–q ), we obtain

∣
∣(Dp,θFx)(pt + θ ) + (Dp,θFy)(pt + θ )

∣
∣

≤
∣∣
∣∣


[–(pt + θ )( – p) + θ ]

{(∫ p(pt+θ )+θ

ω

[
p(pt + θ ) + θ – (qs + ω)

]∣∣f̂y(t)
∣
∣dq,ωs

–
∫ pt+θ

ω

[
(pt + θ ) – (qs + ω)

]∣∣f̂y(t)
∣
∣dq,ωs

)

+
(pt + θ )( – p) + θ

T – ω

∫ T

ω

[
T – (qs + ω)

]∣∣f̂x(t)
∣
∣dq,ωs

}∣∣
∣∣

≤ ‖μ‖
{

( + p + p)(T – ω)
 + q

}
.

Consequently

‖Fx + Fy‖X ≤ ‖μ‖(Φ + Φ) ≤ ρ,

which shows that Fx + Fy ∈ Bρ .
It is easy to prove that

‖Fx –Fy‖ ≤ (T – ω)

 + q
Φ‖x – y‖X , ‖Dp,θFx – Dp,θFy‖ ≤ T – ω

 + q
Φ‖x – y‖X ,

and consequently

‖Fx – Fy‖X ≤ T – ω

 + q
( + T – ω)Φ‖x – y‖X ,

which implies, by (.), that F is a contraction mapping.
Continuity of f implies that the operator F is continuous. Also, F is uniformly

bounded on Bρ and equicontinuous, as proved in Theorem .. So F is relatively compact
on Bρ . Hence, by the Arzelá-Ascoli theorem, F is compact on Bρ . Thus all the assump-
tions of Lemma . are satisfied. So the conclusion of Lemma . implies that problem
(.) has at least one solution on [ω, T]q,ω . �
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Corollary . Suppose that a continuous function f satisfies (H) with hi = L, i = , , ,
and |f (t, x, y, z)| ≤ K , K > . If T–ω

+q ( + T – ω)( + ϕ(T – ω))L <  then problem (.) has
at least one solution on [ω, T]q,ω .

Example . Consider the boundary value problem for second-order Hahn integro-
difference equation in Example . with

f
(
t, x(t), Dp,θ x(pt + θ ),Ψp,θ x(pt + θ )

)

=


( + t)( + |x(t)|)
[
e– sin(π t)(x + |x|) + e– cos(π t)|D/,/x|

+ e–t |Ψ/,/x|]. (.)

Now, we see that

∣∣f (t, x, Dp,θ x,Ψp,θ x) – f (t, y, Dp,θ y,Ψp,θ y)
∣∣

≤ e– sin(π t)

 + t ‖x – y‖ +
e– cos(π t)

 + t ‖Dp,θ x – Dp,θ y‖ +
e–t

 + t ‖Ψp,θ x – Ψp,θ y‖.

Then (H) is satisfied with h(t) = e– sin(π t)

+t , h(t) = e– cos(π t)

+t , h(t) = e–t

+t . Therefore, we
can find that Φ = ., and

S = Φ(Φ + Φ) = . > .

Thus, Theorem . cannot be applied in this case. However, (H) is satisfied with μ(t) =


+t , by |f (t, x, Dp,θ x,Ψp,θ x)| ≤ 
+t . Indeed, we find that

T – ω

( + q)
( + T – ω)Φ = . < .

Then, by using Theorem ., problem (.) with (.) has at least one solution on
[/, ]/,/.
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