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Abstract

Ebola virus infection is a severe infectious disease with the highest case fatality rate
which has become the global public health treat now. What makes the disease the
worst of all is no specific effective treatment available, its dynamics is not much
researched and understood. In this article a new mathematical model incorporating
both vaccination and quarantine to study the dynamics of Ebola epidemic has been
developed and comprehensively analyzed using fractional derivative in the sense of
the Caputo derivative of order & € (0, 1]. The existence as well as nonnegativity of the
solution to the model is also verified and the basic reproduction number is calculated.
Besides, stability conditions are also checked and finally simulation is done using both
the Euler method and one of the top ten most influential algorithms known as
Markov Chain Monte Carlo (MCMC) method. Different rates of vaccination to predict
the effect of vaccination on the infected individual over time and that of quarantine
are discussed. The results show that quarantine and vaccination are very effective
ways to control Ebola epidemic. From our study it was also seen that there is less
possibility of an individual for getting Ebola virus for the second time if they survived
his/her first infection. Last but not least, real data has been fitted to the model,
showing that it can be used to predict the dynamic of Ebola epidemic.

MSC: Primary 37N25; secondary 92D30

Keywords: mathematical modeling; Caputo derivative; stability; epidemic model;
numerical simulation

1 Introduction

Ebola is a severe and often deadly illness killing between 50% and 90% of those infected
with the virus [1-3] named after a river in the Democratic Republic of Congo (formerly
Zaire) where it was first identified in 1976 with a high case fatality rate. The disease first
came into the lime light in 1976 in Zaire and Sudan. It is a disease of humans and other pri-
mates caused by an Ebola virus. Symptoms start two days to three weeks after contacting
the virus with a fever, sore throat, muscle pain and headaches [4-8]. Typically, vomiting,
diarrhea and rash flow, along with decreased functioning of the liver and kidneys. Around
this time, the affected people may begin to bleed within the body and externally. The virus
may be acquired upon contact with blood or bodily fluids of an infected people or animal.
Spreading through the air has not been documented in the natural environment. Fruit bats
are believed to be a carrier and may spread the virus without being affected [9-15]. Once
human infection occurs, the disease may spread among people, as well. Male survivors
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may be able to transmit the disease via semen for nearly two months. To make the diag-
nosis, typically other diseases with similar symptoms such as malaria, cholera and other
viral hemorrhagic fevers are first excluded. To confirm the diagnosis, blood samples are
tested for viral antibodies, viral RNA, or the virus itself. What makes the disease the worst
of all is the absence of specific effective treatment. Efforts to help those who are infected
are supportive and include giving either oral rehydration therapy (slightly sweet and salty
water to drink) or intravenous. As the effective measures for controlling Ebola epidemic
still lack, it needs more attention by medical staff, epidemiologists, mathematicians and
other stakeholders.

Mathematical modeling is one of the most important tools in analyzing the epidemio-
logical characteristics of an infectious disease and can provide some useful insights into
the dynamics of the disease. Various models have been used to study different aspects of
Ebola epidemic.

Chowell et al. constructed a mathematical model for Ebola virus disease transmission
(Congo 1995 and Uganda 2000) and fitted it to historical data in estimation of R, [16]. Al-
thaus presented a SEIR mathematical model and fitted the model to the reported data of
infected cases and deaths for Ebola virus disease in Guinea, Sierra Leone and Liberia [17].
The latest study by Rachah and Torres recommends inclusion of intervention factors like
quarantine procedure in the mathematical model to treat the infected individuals and in-
vestigate the effect of vaccination on Ebola virus disease [18].

Besides, according to the World Health Organization (WHO) report 2016, an experi-
mental Ebola vaccine and quarantine was highly protective against the deadly Ebola virus
in a major trial [19].

In this work, our goal is to develop a new mathematical model to study the effect of
both vaccination and quarantine on the spread of Ebola virus as per the recommenda-
tion from World Health Organization (WHO) using both classical and fractional-order
SIRD Ebola epidemic models. Our model differs from other mathematical models that
have been used to study the Ebola epidemics [9, 16-18, 20, 21] in that it incorporates both
vaccination and quarantine interventions. In addition, our work differs in that it uses one
of the top ten most influential algorithms known as Markov Chain Monte Carlo algorithm
to simulate the process as the spread of Ebola virus is a random process. To the best of our
knowledge, this is the first integrated simulation method used beside the Euler method
for this kind of infectious disease of humans. In the Euler method, the parameters are re-
garded constant, which may not be true in the practical case. To eliminate such defects,
we used the Monte Carlo method which enabled to observe the reality in a better way and
see how the Ebola virus is transmitted in crowd more accurately. In other words, the states
(susceptible, infected, recovered/removed, death) at time £ + 1 depend only on the state at
time ¢ (that means our physical state is Markov process). Hence, the Monte Carlo method
is more sensible way to reflect the reality.

The text is organized as follows. In this section we have provided background infor-
mation about Ebola disease; in Section 2, we give the definition of the Caputo fractional
derivative of order «; in Section 3, we develop a basic mathematical model to describe the
dynamics of the Ebola virus and its extension using Caputo fractional order; in Section 4,
we find parameters with statistical data based on WHO; Section 5 deals with the basic
properties of the model; in Section 6 we show the existence of the disease-free equilib-
rium for the model, derive the basic reproduction number and prove stability conditions.
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The parameters in Section 4 are used to simulate the basic model in Section 7 using both
the Euler method and the Monte Carlo method. Finally, a conclusion and future work are

presented.

2 Fractional-order model
In this section we discuss the definition of Caputo derivative and present the fractional-
order SIRD model with vaccination and quarantine interventions in the sense of the Ca-

puto derivative of order o € (0,1] in the next section.

Definition 2.1 The fractional integral of order « > 0 of a function g : R* — R is defined

by I“g(¢) = ﬁ fot (t — x)*Lg(x) dx, where I'(-) is a gamma function.

Definition 2.2 The Caputo fractional derivative of order ¢ >0, n —1<ao <n, n € Nis

defined as D%g(¢) = m’l_u) fot (t_gx(’;% g(x) dx, where the function g(¢) has absolutely con-

tinuous derivatives up to order (n — 1).

3 Mathematical model formulation and description

A compartmental model with a constant population was used to describe the natural his-
tory and epidemiology of Ebola. Briefly, the population is divided into four compartments:
susceptible individuals (S) may become infected (1) after the contact with Ebola-infected
individuals who are capable of infecting others including nurses, doctors etc. at hospitals
and with a chance of infecting others before being recovered/removed from the disease
(R) or die of Ebola and then join (D).

The susceptible population is increased by the susceptibility of individuals (rate of loss
of infection acquired immunity) into the population at the rate y. This population will
be decreased if it acquires infection after the contact with an infected non-quarantined
individual at the rate 8 = pc, where p is the probability of successfully getting Ebola after
the contact with an Ebola-infected individual and c is the per-capita contact rate. As there
is a proved possibility of treatment of Ebola by vaccination [19, 22, 23], the susceptible
individuals are further decreased at the rate v because of vaccination.

The population of infected individuals is generated by the infection of susceptible in-
dividuals at the rate 8. This population is decreased by recovering from Ebola disease at
the rate of o7 and «,, where o; is the recovery rate of an infected quarantined individual
and «; is the recovery rate of an infected non-quarantined individual. This population is
further decreased by death due to Ebola at a rate §; and §,, where §; is the death rate of an
infected quarantined individual and §, is the death rate of an infected non-quarantined
individual due to Ebola. Here it is assumed that «; is greater than o, and 4; is less than &,
which is biologically reasonable.

The population of recovered infected individuals is generated by those recovered from
Ebola and those individuals from susceptible because of vaccination at the rate of v and
decreased by individuals that lost immunity and rejoined the susceptible group at the rate
of y.

Finally, the population of individuals who deceased is generated by individuals who are
killed by Ebola. The compartmental flow of this model is given in Figure 1 below. Besides,

the system of ordinary differential equations describing this model is given below and
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Figure 1 Compartmental flow of a mathematical model for
Ebola epidemics.

parameters are defined in Section 4.
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In this section we discuss the extension of the classical model above and study using Ca-

puto fractional derivatives, which has an advantage over the classical integer order mod-

els due to its memory effect property and its accuracy in solutions of real world problems.

Now, by replacing integer-order derivatives of the above system with fractional derivatives

of order « € (0,1] in the sense of Caputo fractional derivatives, we consider the fractional-

order SIRD model with vaccination and quarantine as follows:

1-¢g)SI
D*S(t) = yR - pU-q)SI
B -q)SI

N
Di{R(t) =a1gl + aa(1—q)] + vS— ¥R,

DiI(t) = —a1ql —ay(1—q)I - 811 - 851,

DYD(t) = 8,1 + 8, 1.

(3.7)

(3.8)

3.9)

(3.10)

This type of mathematical formulation has been considered by many researchers [24—27].

Clearly, there is a mismatch of model dimensions in the fractional-order model above.

However, this drawback of fractionalization has been addressed by Diethelm [28]. Fol-

lowing the method by Diethelm [28], our system can be written as follows:

B (1-q*)SI
A Y
N

B*(1-q*)SI
N
DYR(t) =y q*T + o (1-q*)] +v*S - y°R,

DES(8) = y“R

DYI(t) = —afq®l — a5 (1-q*) - 831 - 6851,

DeD(t) = 51 + 81.

(3.11)

(3.12)

(3.13)

(3.14)
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Parameter

Average value

Total number of population (N)

Contact rate (B)

Rate of quarantining (q)

Rate of loss of infection acquired immunity (y)

Rate from S to R (vaccination rate) (v)

Recovery rate, quarantined individual (o)

Recovery rate, non-quarantined individual (o)
Death rate by Ebola, quarantined individual (81)
Death rate by Ebola, non-quarantined individual (§;)

10,000 people/day
variable day™'

0.3 day™

0.25 day™'

0.15 day™

0.4 day™

0.25 day™

0.3 day™

0.75 day™

(Source: World Health Organization, WHO, Ebola 2014 report.)

As the population is closed, D(t) = N(t) — S(t) — I(¢£) — R(¢). Hence, we can consider only

the first three equations of our system above in our analysis.

4 Model parameters
See Table 1.

5 Basic properties

Since the model monitors changes in the human population, all the variables and param-

eters are assumed to be positive for all £ >0.

The model is therefore analyzed in a suitable feasible region D = {S(¢),1(¢), R(¢), D(¢) €

R%}, which is positively invariant for system (3.11) to (3.14) above.

Proof Assume the initial conditions S(0) > 0, 1(0) > 0, R(0) > 0 and D(0) > 0.

The second equation of our model can be written as

Dy < B0 St
N

by -[0=8
N

Rearranging, we get

B*1-4")S

DEI(E) - [ N

—afq®l — a5 (1—q*) - 831 - 851,

- —as(1-q%) - &7 —85}1'

ot —ag(1- %) -5 a5 |1 <o

(5.1)

(5.2)

(5.3)

This is a linear first-order equation in /, and its solution is I(¢) = 1(0) exp( fot —A(z) dz) where
Az) = W —oyq* —ay(1—g*)— 8¢ — 85, which implies I(t) > 0 for all £ > 0.

To show the nonnegativity of the remaining variables, consider the subsystem

pra-qst

DUS(t) = y*R — S,
7S =y N 14

DYR(t) = o q*T + o5 (1 - g*)] +v*S — y°R,

DOD(t) = 841 + 831

(5.4)
(5.5)

(5.6)
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which can be rewritten in a matrix form % = MY (¢t) + H(t), where

S(t)
Y& =|R@ |, (5.7)
D(¢)
ﬂ(lj\—[q)f y 0
M = v -y 0 (5.8)
0 0
and
0
Ht)=| gl +ar(1-g)I |. (5.9)
811 + 521

Clearly, M is a Metzler matrix in a view of already established nonnegativity of the pa-
rameter I. Thus, the equation d;—y) = MY (t) + B(¢) is a monotone system [29]. Hence,

D = {S(t),1(t),R(t), D(t) € R*} is positively invariant for system (3.11) to (3.14). O

6 Analysis of the model

6.1 Existence and stability of disease-free equilibrium point

At the disease-free equilibrium state, we have absence of infection. Thus, all the Ebola-
infected classes will be zero, and the entire population will comprise of only Ebola-free,
susceptible individuals. A disease-free equilibrium state of the model above is given by
Ey = (8*,I*, R*, D*). Equating the model to zero and solving, we get Ey = (§*,1*,R*,D*) =
(So,0, 5SO,N -So— %So).

Theorem 6.1 If

(1 — g*)S,
Ro=—— A% 6.1)
N(osg® +ay (1 —g%) + 8¢ +65)

then the disease-free equilibrium of our system is locally asymptotically stable.

Proof According to Theorem 6.1, to prove the stability of the disease-free equilibrium, it
suffices to show that all the eigenvalues of the Jacobian matrix of our system evaluated at
the disease-free equilibrium have negative real parts. This Jacobian matrix is derived as

follows: As our population is closed, let X = (1%, R*)T, then ‘Z—)t(a = f(x) — v(x), where

B(1-¢*)sI
f(x)“=< 0 ) (6.2)

and

V)" = ( o gl + ar (1 — g*) + 8%1 + 851 ) ‘ 63)

YR—afq*l —as(1—qg*) —v*S
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The Jacobian matrices of f(x) and v(x) evaluated at the disease-free equilibrium E, are

B(1-q%)So 0
Df(Ey) =F* = N 6.4
f (Eo) 0 0 (6.4)
and
o o (] — 5% 4+ 8¢ 0
Du(Eg) = ve = (44 T2 (=) %0 +35 ). (6.5)
-ay'q” —ay(1-q%) 14
The Jacobian matrix is therefore given by
lga(l—qa)so_ Xt (1 — g%) — 5% — §% 0
Fovy=( ~ oA == 0 (6.6)
ayq” +ay(1-4°) -y
The eigenvalues of this matrix are as follows:
)‘-1 = _yla’
So
A=—|ofq” —ar(1-q%) -8 +85 - B (4" _l)ﬁ <0 forRy<1l
Therefore, for Ry <1, the disease-free equilibrium is locally asymptotically stable. O

Theorem 6.2 For system (3.11) to (3.14), the disease-free equilibrium is globally asymptot-
ically stable if Ry < 1.

Proof First, let us find Jacobian matrices (of order 3) evaluated at the disease-free equilib-

rium (F’) and (V). They are given below:

B (1-9%)(So) 0 0
N
Df(E))=F%=|a%q" +an(1-¢g%) 0 0 6.7)
0 0 0
and
ofq* +af(l—g*)+8¢+85 0 O
DW(Ey) = V' = 0 ve o]. (6.8)
-8 — 85 0 0

To prove, the comparison theorem was used. The rate of change of the variables (/, R, D)

of the system above can be re-written as follows:

dr¢ I B*(1-4")So 0 0 I

ke | (F-V)|R|-(1- S g ~YSs o [ R (6.9)
i 5 5 S e
D D 0 0 o/ \b
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where (F'®) and (V'*) are Jacobian matrices (of order 3) evaluated at the disease-free equi-

librium. Clearly,

are I

dta N

‘N <F-V)|R]. (6.10)
dD%

b D

Since the eigenvalues of the matrix (F"* — V'*) have negative real parts (this comes from
the stability results in Lemma 1 in [30, 31], then system (3.11) to (3.14) is stable whenever
Ry <1.So (I,R,D) — (0, %SO,N—S - %So) and § — Sy as t — oo. By the comparison the-
orem [2, 32] (S,1,R,D) — E as t — oco. Therefore, Ej is globally asymptotically stable. [J

7 Numerical simulation
7.1 Numerical simulation using the Euler method
7.1.1 Experiment 1
To approximate the solutions of the model built above, we give some simulations using
the parameter values of Table 1 in Section 4 above using the Euler method. The result is
given in Figure 2.

From Figure 2 we see that the population of susceptible individuals immediately begins
to drop because of the high degree of how infectious the Ebola virus is. Consequently, the

population of the dead people starts rising.

7.1.2 Experiment 2
See Figure 3.

7.1.3 Experiment 3
See Figure 4.

7.2 Simulation using the Monte Carlo method

Monte Carlo simulations are used to model the probability of different outcomes in a
process that cannot easily be predicted due the intervention of random variables. As the
spread of Ebola virus is a random process, the Monte Carlo algorithm is used to simulate

the Markov Chain process of which the transfer matrix changes over time. In a Markov

Figure 2 Simulation result using the Euler Ebola Epidemics

method (¢ =1).
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Figure 3 Simulation result using the Euler 500 Ebola Epidemics
method (a = 090) Susceptible
450 Infected
Recovered
400 Died i
350
300
S
E 20 ﬁ
=3
& 200 /
150 /
100 7
50 /
0
0 5 10 15
time
Figure 4 Simulation result using the Euler 500 Ebola Epidemics
method (C{ = 085) Susceptible
450 Infected
Recovered
400 Died i
350
300
5
E 20
=3
& 200
150
100
50
0
0 5 10 15
time

Chain process the physical state at time ¢ + 1 depends only on the state at time ¢. In other

words, for random variables {x;}, t = 0,1,2,3,...
P(X; = jlxo = o, %1 = i1, ., %1 = ig1) = Pl = jlae = ig). (7.1)

Define the state matrix as X(£) = (S(¢),1(¢), R(¢), D(t)) to represent the compartments in a
population. Then, the initial state matrix X(0) is obtained as X(0) = (1 — Iy, 15,0, 0). Ac-
cording to Markov Chain theory, the transition matrix can be given as p(t) = {P(i,])}ax4,
where P(i,j) is the transition probability from state i to state j for i, j an element of {1, 2, 3,
4},

Variables S 1 R D
S P(L1) PA,2) PA,3) PQ,4)
I P(2,1) P2,2) P2,3) P24 |. (7.2)
R P3,1) P(3,2) PG3,3) P3,4)
D P(4,1) P(4,2) P(4,3) P(4,4)

Besides, P(1,4) = P(2,1) = P(3,2) = P(3,4) = P(4,1) = P(4,2) = P(4,3) = 0 as there is no
transition and P(1,1) + P(1,2) + P(1,3) = P(2,2) + P(2,3) + P(2,4) = P(3,1) + P(3,3) =
P(4,4) = 1. Finally, the state matrix is given by

X(t) =x0) ] [P®.

t=1

Page 9 of 14
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Ebola Epidemics

Figure 5 Simulation result using the Monte Carlo 2500
method.
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Figure 6 Effect of the rate of infected quarantine
on infected population.

Ebola epidemics

Quarantine rate, g=0.15
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Quarantine rate, q=0.55 ||

w
=]
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o

Ebola infected Population
N
L53)

5

time

In Experiment 1, we regard the constant parameters and ignored the influence of la-
tent period. To eliminate this defect, the Monte Carlo method is used. Figure 5 shows the
Monte Carlo simulation of the process under the conditions given above over time.

7.2.1 Experiment 4

From Figure 5 we clearly see that the number of Ebola-infected individuals increases and
then decreases. At the same time the population of those who die by Ebola rises swiftly and
reaches the peak showing the biological reality that Ebola is fatal. The model is more re-
alistic to show the situation. Therefore, the medical, health departments and other stake-
holders should focus on this moment. Moreover, the population of the susceptible also
decrease at this time as more people get infected showing that the spread of Ebola is high

unless controlled.

7.2.2 Experiment 5
Here the experiment deals with the relation between quarantine and the population of
Ebola-infected individuals.

From Figure 6 we see the effect of the rate of infected quarantine on the Ebola-infected
population. It is clearly seen that when the rate of infected quarantine increases, the pop-
ulation of Ebola-infected individuals decreases.

7.2.3 Experiment 6
When vaccination rate y = 0 (without vaccination), the result is given in Figure 7.



Tulu et al. Advances in Difference Equations (2017) 2017:178 Page 11 of 14

Ebola Epidemics

Figure 7 Markov Chain Monte Carlo simulation 2500
when vaccination rate v = 0 (without Susceptible
. . Infected
vaccination). Recoverd
2000 - Died H

1500

Population

1000

500

Ebola Epidemics

Figure 8 Markov Chain Monte Carlo simulation 2500
when vaccination rate v = 0.25.
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Infected

Recoverd
20001 Died I

1500
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Ebola Epidemics

Figure 9 Markov Chain Monte Carlo simulation 2500
when vaccination rate v = 0.45.
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1500
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1000
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7.2.4 Experiment7
(Figure 8 shows simulation result when vaccination rate is increased to v = 0.25.)

7.2.5 Experiment 8
In this experiment (Figure 9) the vaccination rate is more increased than in the previous
two experiments conducted.

From Figures 7, 8 and 9, we see the effect of the rate of vaccination on the Ebola-infected
population for v =0, v = 0.25 and v = 0.45. When v changes from 0 to 0.45, the number of
Ebola-infected individuals reduces from 1,150 to 779. It is clearly seen that when the rate

of vaccination increases, the population of Ebola-infected individuals decreases.
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Figure 10 Ebola-infected I(t) versus the real data 255 10 Ebola epidemics
of confirmed Ebola cases in Liberia, 2014. ' ‘ ' ——r— : {
(Real data source: WHO report of 2014 Ebola 3 © _Infected Real(confirmed) WHO Data)

outbreak in Liberia from July 14 to October 12,2014,

Nurmber of cases(Population)

o
n

o

7.2.6 Experiment 9
Real data from WHO is fitted to the Ebola infected I(¢) of the model (see Figure 10).

8 Conclusion

Overall, the dynamical behavior of the formulated Ebola epidemic model is investigated,
which plays a vital role in controlling the spread of Ebola virus. The classical SIRD model
with vaccination and quarantine interventions is extended to a system of fractional-order
derivatives in the sense of the Caputo derivative of order « € (0,1] because of its accuracy
in solutions of real world problems. Our new model has the details about all compart-
ments, and we found it fits well the data of confirmed cases provided by WHO for the
Ebola outbreak in West Africa. The parameter values used are all the latest values. To se-
cure more realistic approach, we used two different simulation methods, i.e., the Euler
and Monte Carlo methods. As the spread of Ebola virus is a random process, the Monte
Carlo algorithm is used to simulate the Markov Chain process of which the transfer ma-
trix changes over time. From the point of view of our result of Markov Chain Monte Carlo
simulation, we claim that there is less possibility of an individual getting Ebola virus for the
second time if they survived the first infection. None of the previous research discovered
weather a person can re-catch Ebola or not if they survived the first case. Moreover, from
our experimental results, we also see that Ebola is really fatal and spreads swiftly, which
means a regulation that reflects the reality very well is obtained and the model works better
and more efficiently for the Ebola outbreak in West Africa.

Once again, from our experimental results we see that though Ebola spreads swiftly, it
can be controlled upon increasing vaccination. Vaccination is a very efficient method in
reducing the number of Ebola-infected individuals in a short period of time and increases
the number of recovered individuals. Increasing the rate of infected quarantine is also
another efficient method to control the Ebola epidemic as seen from our study. Hence,
vaccination and isolation of the Ebola patient and providing great treatment are crucial
measures to control the Ebola epidemics. Besides, as the cost of vaccination might be high
for Ebola-infected countries, we recommend an optimal control to reduce the cost and
number of infected individuals. Moreover, in order to prevent Ebola epidemics, through
the analysis of the model, the government must strictly manage the policy on Ebola and
carry it out. This in turn helps health campaigning and raising health literacy, which plays
a vital role in controlling a quick spread of the disease. We finally strongly believe that our
study will play its own role in the current effort of controlling Ebola.
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