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Abstract

This paper aims to study an unsteady electric field-driven and pulsatile
pressure-driven flow of a Newtonian fluid in an elliptic cylindrical microchannel with
Navier boundary wall slip. The governing equations of the slip flow and distributions
of electric potential and charge densities are the modified Navier-Stokes equations,
the Poisson equation and the Nernst-Planck equations, respectively. Analytical and
numerical analyses based on the Mathieu and modified Mathieu equations are
performed to investigate the interplaying effects of pulsatile pressure gradients and
the slip lengths on the electroosmotic flow.

Keywords: microchannel flow; elliptic cross-section; Navier-Stokes equations;
pulsatile pressure gradient; elctroosmosis; electric potential

1 Introduction

Over the past decades, a fluid flow manipulation under a very small scale known as mi-
crofluidics has become an active field of scientific research due to the emergence of their
several applications, for example, lab-on-the-chips, computer chips, medical diagnostic
devices, and drug delivery systems [1-5]. Taking the advantage of a small scale system,
a microfluidic application not only reduces the requirement for the samples, but also in-
creases the efficiency and speed of the reaction. As a consequence, the microflow char-
acteristics have been widely studied in both experimental and analytical ways in order to
develop various system controls and device designs [6—10]. One particular technique to
precisely manipulate a flow in a microscale is the use of a pressure force combined with the
well-known electrokinetic force, namely, electroosmosis. Electroosmosis phenomenon re-
lies on the formation of the electrical double layer (EDL) generated by two parallel layers
of charged ions: the first layer, the layer of ions on the inner wall surface due to the chem-
ical reaction between the fluid and the channel wall; the second layer, the layer of counter
ions in the fluid attracted to the first layer by the Coulomb force. The movement of the
ions in the second layer, induced by the application of an external electric field, will lead
to the motion of the entire fluid caused by the drag force [11].
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Fluid flow problems have been carried out traditionally under the no-slip boundary con-
dition [12-14], which dictates that the velocity, relative to the wall channel, of the fluid ad-
jacent to the wall is zero. However, in microfluidics, the appearance of the fluid slip at the
wall interface has been widely reported, and its influence has been investigated [15-17].
For this reason, the velocity slip condition turns into an important factor to achieve the
realistic microflow behavior.

In the literature, an analytic solution of an electroosmotic flow in microchannels has
been studied under a constant pressure gradient. Goswami and Chakraborty [10] inves-
tigated the semi-analytic solution of a steady electroosmotic flow with the interfacial slip
condition in microchannels of various complex cross-sectional shapes under the constant
pressure gradient assumption. Na et al. [18], Chinyoka and Makinde [19], and Reshad et
al. [20] found the analytic solution of transient electroosmotic and pressure-driven flows
with a constant pressure gradient through a microannulus, a slip microchannel, and rect-
angular microchannels, respectively. However, some microfluidic systems are driven by a
pulsatile pressure gradient due to the nature of some systems such as blood flow or the
integrated micropump of displacement type. Moreover, a report of Bandopadhyay and
Chakraborty [21] on the investigation of electroosmotic flow in a slip microchannel shows
that the overestimation result can be obtained under the avoidance of a pulsating pressure
gradient. As a result, a microfluidic investigation combined with a pulsating pressure gra-
dient is a key to keeping the problem suitable in many situations. Recently, the solution of
combined pulsating pressure gradient and electroosmotic flow was found by Chakraborty
et al. [22], but the pressure gradient was simplified to just a sinusoidal function.

Due to the fact that the geometry in many microfluidic devices and some systems such
as a blood vessel is of a circular or elliptic cross-section, the use of elliptic geometry takes
an advantage of embodying the solution for circular geometry and making the problem
tractable for any eccentricity.

According to the aforementioned arguments, we here derive the solution of com-
bined pulsatile pressure-driven and electroosmotic flow through an elliptic cylindrical
microchannel under the Navier slip condition to describe the flow behavior in a more
realistic situation than the previous works. The pressure gradient term in Navier-Stokes
equations is precisely expanded by the Fourier series. Moreover, an influence of a pulsatile
pressure gradient, the number of the Fourier expansion terms for the pressure gradient,
and a slip length are investigated on the volumetric flow rate which plays a more important

role in the flow control in microfluidic devices compared to the velocity profile.

2 Preliminaries
In this section, we introduce the elliptic cylindrical coordinates, the Mathieu and modified

Mathieu functions which are used throughout this paper.

2.1 Elliptic cylindrical coordinate system
Considering an elliptic cylindrical geometry having two foci on x-axis at ¥ = £¢ of the

Cartesian coordinate system (x,y, z), we define the elliptic cylindrical coordinates (&, ,z)
by

x =ccoshé& cos, y=csinhésiny, and z=z,
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where 0 < & <00, 0 <15 <27, and —00 < z < 00. The coordinates & and n respectively
correspond to the confocal elliptic cylinder and the asymptotic angle of the confocal hy-
perbolic cylinder with the identities
2 2 2 2
x x
5+ y 5— =1 and J
c2cosh”é  ¢%sinh” &

- =1.
c2cos’n  2sin’p

The scale factors are

hs = h, = cyJcosh’ £ —cos?n and K, =1,

and the Laplacian is

o 1 ( PEED ) ok
= —t— )+ —.
c2(cosh® & —cos?n) \ 02 an2)  9z2

2.2 Mathieu functions
The solutions of the 2-dimensional wave equation in the elliptical coordinates,

1 PwW W 5

3 T t—— |t k"W =0, (1)
c?(cosh® & —cos?n) \ 0§ an

were introduced by the French mathematician, Emile Léonard Mathieu, in 1868 as the
eigensolutions of the Mathieu differential equations to determine the motion of an elliptic
stretched membrane [23]. The method splits equation (1) into two ordinary differential
equations with the separation constant  as follows:

2

Z’T(j +(a—2qcos2n)G =0, (2)
d’F

d_éz —(a—2gcosh2&)F =0, (3)

where g = k2c/4 > 0. Equations (2) and (3) are respectively named the Mathieu and mod-
ified Mathieu equations, and their solutions corresponding to special values of the sep-
aration constant (characteristic numbers) are called the Mathieu and modified Mathieu
functions. These characteristic numbers are the functions of ¢g. Hence, the solutions of
equation (1), in an elliptic geometry, can be written as a linear combination of the peri-
odic Mathieu functions of n and the modified Mathieu functions of &:

oo

WEn) =Y [CimCemE q) cem(n,q) + ComFen(€, q) cem(n, q)

m=1

+ Sim Sem(€,q) e (0, q) + Sam Gem(€, q) sem(n, )] (4)

where ce,,(1,9), se,,(n, q) are the periodic Mathieu functions; Ce,,(n, ), Se,,(1, q) are the
periodic modified Mathieu functions; and Fe,,(n, q), Ge,,(n, q) are the non-periodic mod-
ified Mathieu functions. The formulas of Mathieu and modified Mathieu equations can
be found in [24].
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3 Mathematical modeling

In this section, we construct the fundamental equation of the problem. The govern-
ing equations of a transient electroosmotic flow for an incompressible Newtonian fluid
through an elliptical tube, with the z-axis being the channel-length direction, are the con-
tinuity equation and the incompressible Navier-Stokes equations as given below:

V.v=0, (5)
v 2
5 +(v-V)v ) ==Vp+ uVv+Fy, (6)

where v = (v¢,v,,v,) and p are respectively the velocity and the density of fluid, p is the
pressure, and u is the viscosity. The electrokinetic body force Fe is defined by Fex = o E,
where E is the external electric field and p, is the ionic charge density given by the Poisson
equation

_Pe

V3 (€, ) = 7)

where ¢ is the permittivity of the fluid and  is the potential inside the channel. In this
study, we focus on a fully developed flow along the z-axial direction, i.e., v = (0,0,v,),
Vp =(0,0,0p/dz), E = (0,0, E). Then the continuity equation (5) now becomes dv,/9z = 0,
which gives rise to v, = u(&,n,t), and the incompressible Navier-Stokes equations (6) can
be reduced to the form

E ] 19
V2 (u-Zy) L2220 ®
% ot ,uaz

where dp/0z depends only on ¢. Letting U = u — (¢Eu™")v, we express equation (8) as

1 (321,1 82L1> ,08L1 1ap
cos?n)

Sl B 9
c2(cosh? & — 082 9n? w ot oz ©)

As mentioned before, in this study, we consider a time periodic function of the pressure
gradient driving the flow. To be precise, dp/dz is time periodic and can be expressed by

—(t) ag + Z a, cos(nwt) + by sin(nwt)| = Re <Zc e”‘“’t) (10)

n=1

where the complex constants ¢, are defined by ¢y = a¢ and ¢, = a,, — b,i, a,, b, are real,
and o is the frequency. As equation (9) is linear, we can use the superposition principle
for the solution, i.e., if U, is a solution of equation (9) for dp/dz = ¢, exp(inwt), then the
complete solution of equation (9) for dp/dz = Re(}_,- chexplinwt)) is U =Y - Re(U,,).

For the electrical double layer field acting only in the direction perpendicular to the
boundary, the boundary conditions for the potential distribution y are as follows: (i) ¥ is
constant on the boundary and (ii) dvy/9n = 0 at the center of the channel. Consider that
fluid flow and the potential distribution are symmetric about x- and y-axes, the boundary
conditions in elliptic cylindrical coordinates are given by

9 9 au
9 60,00 = 2V (6,00=0  implying that “2(€,0,4) = 0, (11a)
an an an
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d a

% <E, %, t> 815 <§, > ) =0 implying that (“g‘, -, > =0, (11b)
d ou

G0 a‘g O.m)=0  implying that 7 (0,1,5) =0, (110)

with the Navier slip condition of a non-movement channel

/

cy/cosh? & — cos? p 35

and the constant zeta potential ¢ at the wall

u(&o,n,t) + (SO’ nt) = (11d)

v (6o,m) = ¢, (11e)

where [ is the slip length, & = In((1 + ~/1 —€2)e™!) is the boundary interface, and & is the
eccentricity of the ellipse.

4 Solution of the boundary value problem

In this section, we construct the solution of transient combined pulsatile pressure-driven
and electroosmotic flow for an incompressible Newtonian fluid through an elliptical tube.
Hereafter, the symbol ' denotes the differentiation with respect to §&. To determine the
velocity u(&, n, t), we solve

1 (azun azun> 0y S o
+ = Zelet,
c2(cosh? & —cos2n) \ 92 on? w ot

Letting U, = f, exp(inwt), where f, = f,(£, ), we use the identities cosh? £ = (1 + cosh2&)/2
and cos? 7 = (1 + cos 27)/2 to arrive at

2 %f, 9%, inwp Ch
> fz + f2 - f = —. (12)
c?(cosh2& —cos2n) \ 9& an u

For constant pressure (# = 0), equation (12) becomes

52 52
f;) + i = ﬁ( osh2& — cos2n). 13)
o0& amr  2u
The non-homogeneous equation (13) can be solved by the eigenfunction expansion with
the boundary conditions (11a)-(11c), and thus the solution f; is in the form

fo(&,m)=Ao + ZAM cosh(2mé&) cos(2mn) + co(cosh2& + cos2n),

m=1

where A,,, are constants to be determined and ¢y = ¢oc®(8) ™
For the pulsatile pressure gradient (n > 1), we let f, = W,(&,n) — ¢4, where ¢, =
cu(inwp)™, and then write equation (12) for W, as

2 1w, 9°w, inwp
5+ 5 ) = W, =0. (14)
c(cosh2& —cos2n) \ 9¢ an u
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Equation (14) is now in the form of the 2-dimensional wave equation in elliptic coordi-
nates, and hence, the solutions W, are in the form of the Mathieu and modified Mathieu
equations as we mention in Section 2.2 for g = —is,, = —inwpc*{4p) . In this study, we as-
sume that U is symmetrical about x- and y-axes. Since the symmetry is governed by the
function of n and only cey,, (1, g) are symmetrical about the both axes, the solutions in the
form of equation (4) can be simplified to

o]

Wn(ér 77) = Z[Bgm CeZm(sx _isn) + Cgm FeZm(éﬁ _isn)] Ce2m(nx _isn):

m=0

where B}, and C},, are constant. Because Fe),, (0, —is,) # 0, the constants C}, must be zero
to satisfy the boundary condition (11c). Hence, the solutions W), can be reduced to

Wo(&,n) = Y BS,, Cean(E, —isy) ceom(n, —isy).
m=0
From the superposition principle, the flow velocity u is in the form
eE >
ulg,m) = v+ > Re(Uy)
n=0

= %w +fo+ Y Re([W, —E,Je™")

n=1
eE Ay — _
= ;W + e + ZAZ"‘ cosh(2mé&) cos(2mn) + ¢y [cosh(2.§) + cos(Zn)]
m=1
+ Z Z Re([B},, Ceam(E, —isn) ceam(n, —isy) — cq|e""). (15)
n=1 m=0

To find constants A,,, and B}, , we substitute # from equation (15) into the Navier slip
boundary condition (11d) using the value of ¥ in equation (1le). By equating the terms
having the same exponential, we then have

W

eE
0= ;[C +g(77:l) as

(so,m] gl

+ Z[Azm (cosh(2mé&) + 2mg(n, [) sinh(2m&,)) cos(2mn)]

m

+Co [cosh(2$o) +cos(2n) +2g(n, 1) sinh(2.§0)], (16)

o]

—_

and for n > 1,
0= ZBZM [Ceam (€0, —isn) + g(n, 1) Cely,, (0, —isn) | ceam(n, —isn) — Cu» 17)
m=0

where g(n,1) = Ic " (cosh? & — cos?n)™V2. For [ = 0, i.e., g(n,1) = 0, the constants A,,, and
B}, can be derived by using the orthogonality of the trigonometric functions and the



Chuchard et al. Advances in Difference Equations (2017) 2017:160 Page 7 of 13

Mathieu functions, respectively:

f()z;z [eEC/u + co[cosh(2&g) + cos(2n)]] cos(2mn) dn

A2m = 27 )
Jo " cosh(2mé,) cos?(2mn) dn as)
18
no_ f027r En Ce2m(n’ _isn) d’?
2m —

2 . . ‘
o Ceam(Eo,—isy) ce3,, (n, —isy) dn

For /> 0, let k be a non-negative integer. Multiplying equations (16) and (17) by cos(2kn)
and ceqk(n, —isy,) respectively and integrating from 0 to 277 with respect to 1, we then have

the following system of equations:

oo o0
> MipmAym=Ni and Y O} ,Bj, =P, 19)
m=0 m=0
where

2w
My = / [cosh(ZmSO) +g(n,0)2m sinh(2m§0)] cos(2mn) cos(2kn) dn,
0
2w
Ni = / [Eo [cosh(ZSO) +cos(2n) +2g(n, 1) sinh(2n0)] + \IJ(n,Z)] cos(2kn) dn,
0
2
b= [ 60D cennn—is,) cen-is,)
0
2
2= [ Gceutnis)dn
0
with

W(n, 1) = eECpt + g(n, )Y’ (50, ),
G(’I: l) = CeZm(SO: _isn) +g(77’ l) Ce/zm(é:Or —iS,,).

Equations (19) represent the infinite system of linear equations which can be used to com-
pute the approximate values of A,,, and B}, by reducing it to a system with finite terms
of n,mand k, ie,n=0,1,2,...,N;m=0,1,2...,Mand k=0,1,2,...,K for suitable fixed
positive numbers N, M, and K.

The solutions U, until now, contain the unknown potential ¥. In order to find ¥ (&, ),
we assume that the influence of the convection is negligible and the electrolyte is symmet-
ric. Hence, the ionic charge density can be expressed using the Boltzmann distribution of

the number density of positive and negative ions as

Pe = ez,(n, —n_) = ez,ng sinh ey , (20)
kg T

where n. is the number density of the positive and negative ions, ¢ is the permittivity of
the fluid, n is the ionic concentration at the bulk, e is the elementary charge of a proton,

z, is the valence of ions, kp is the Boltzmann constant, and T is the fluid temperature.
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Combining equations (7) and (20), we calculate v through the Poisson-Boltzmann equa-
tion

9 _ P _ 2npez, . ez,
Ve (€, n) = el smh(kBT). (21)

In the case of a low value of zeta potential, the Poisson-Boltzmann equation (21) is reduced

to the Debye-Hiickel approximation

! R AN
¢*(cosh*§ — cos” ) (a_sz ' 8—772) =0 (22)

where k = (2npez?/kpT)"? is the reciprocal of the EDL thickness. As in the case of W,
the potential v in equation (22) can be obtained in a similar way. Using the boundary
conditions (11a)-(11c) and (11e), we then have

Y(E ) =Y D CennEs ~q) ceam(n;—q),

m=0

where g = k%c?/4 and

_ fOZﬂ ; . CeZm(n¢ _Q) d’l
ST Ceam(o, —q) cedu(n, —q) dn

As the fluid velocity is now known, the volumetric flow rate can be calculated through
the formula

2 &
Q) = / f ’ a2 (coshzé - cos? n)u(f;', n,t)dé dn.
o Jo

According to this formula, the numerical results of volumetric flow rate will be presented
in the next section.

5 Numerical results and discussions

In this section, we show some numerical results of velocity profile under the oscillating
pressure gradient and the electrokinetic force through an elliptical cylindrical channel at
various times during a wave cycle. The presented results are achieved using the formula in
equation (15) where the coefficients A,,,, B}, are defined by equation (18) for the no-slip
condition (/ = 0) and equation (19) with the appropriate numbers M = K = 6 for the slip
condition (/ > 0). The solution in equation (15) is more general than the one in [7]; in other
words, when the external electric field is zero and the pressure gradient does not oscillate
(dpldz = cp), our solution reduces to

ulE,n) = % + ZAM cosh(2mé&) cos(2mn) + ¢y [cosh(2$) + cos(2n)]

m=1

which is exactly the one presented in [7].
The comparative results of volumetric flow rate on various numbers of the Fourier ex-
pansion terms, N + 1, for the pressure gradient defined in equation (10) and on various
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Figure 1 Four pressure gradient waveforms
dp/dz =Re (322, cne™™") when N =0 (dotted
line), N =1 (solid line), N = 2 (dashed line), and
N = 3 (dash-dotted line).

dpldz [Pa m'l]
v B B %

l

N

)
)

_2.4_

22z
Jlw
W - O

-2.67 T T T T T T T
0 0.1 02 03 04 05 0.6 0.7 0.8
Time [s]

slip lengths [ are presented. Moreover, an influence of oscillating term in a pressure gra-
dient expression on electroosmotic flows with various external electric fields are investi-
gated.

In this section, we use the fluid properties as appeared in Li’s work [11]. The fluid is
aqueous KCI solution (1:1 electrolyte) with the properties prescribed in parameters as
follows: p = 1.00 x 103 kgm?; 11 = 0.90 x 103 kgm™s7}; ¢ = 6.95 x 107 CVIm;
¢ =249 x 1072 V; and « = 4 x 10* m™L. The channel is the rigid tube of elliptic cross-
section having the focus length ¢ = 90 xm and the eccentricity e = 0.60. The waveform of
pressure gradient as shown in Figure 1 is determined by setting the parameters ¢y = -2,
c1 = 0.25 +0.38i, ¢; = —0.19 + 0.03i, ¢c5 = —0.04 + 0.01i, and w = 277(0.8)~". Since the elec-
troosmotic force in this study is considered to be positive, the negative pressure gradient
force will reinforce the electroosmotic flow.

As the velocity u in equation (15) does not depend on z, the velocity profiles of mixed
electroosmotic pressure-driven flow through the elliptical cylindrical channel are pro-
jected to the elliptic cross-section presented in Figure 2. The results are plotted using
N =3,/=1pum, and E =500 Vm™! at nine different times ¢ = 0,0.15,0.35,0.45,0.5,0.55,
0.65,0.75,and 0.8 s. The result shows the relation of flow to an oscillatory pressure gradi-
ent. The graph of velocity represents the forward flow with speed of 17.5 um s~ as a result
of the positive electrokinetic force combined with the positive pressure force (negative
pressure gradient). For 0.15 < ¢t < 0.35 s, the amplitude of the (negative) pressure gradient
increases as time increases. This results in the increased pressure force, which causes an
increase in the flow speed. At ¢ = 0.35 s, as the (negative) pressure gradient decreases to the
nadir (maximum amplitude), the forward speed reaches 20 ums™. For 0.45 <t < 0.65 s,
the amplitude of the (negative) pressure gradient decreases as time increases. This means
that the pressure force decreases. As a result, the velocity combined with the pressure
force drops. At ¢ = 0.65 s, the velocity reduces to 15 ums™ because the (negative) pres-
sure gradient increases to the peak (minimum amplitude). For 0.75 < ¢ < 0.8 s, the velocity
increases as the amplitude of pressure gradient increases. At ¢ = 0.8 s, the end of pressure
gradient wave, the velocity profile is similar to the one at £ =0 s.

Figure 3 shows the variation in the ratio of volumetric flow rates corresponding to the
oscillatory pressure gradient Qp, and the constant one Q, with various external electric
fields E = 0,500,1,000, and 5,000 Vm™ using / =1 um. An expression based on 1-term
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Figure 2 Velocity profiles with various times t = 0,0.15,0.35,0.45,0.5,0.55,0.65,0.75,and 0.8 s for
I=1pum,and E=500Vm™",

and 4-term of the Fourier expansion for the pressure gradient (N = 0 and N = 3) is used in
the case of Qc, and Qpp, respectively. It can be seen that the ratio Q,p/Qcp is in a wave
form and its amplitude decreases with an increase of E from 0 to 1,000 Vm™; when
E =5,000 Vm™, the ratio Qp,/Qcp tends to a constant at 1. This physically means that,
for E = 0, the flow is driven only by the pressure force. In this case, the result shows an ex-
treme difference of the volumetric flow rate with and without considering the oscillating
term of the pressure gradient. For 500 < E <1,000 Vm™, the flow is driven by both the
pressure gradient and the electroosmotic force. In this case, the effect of the oscillating
term still significantly affects the volumetric flow rate. For E = 5,000 Vm™, the electroos-
motic force becomes dominant. In this case, there is a slight difference between the flow
rates Qpp and Qcp. As a consequence, the pressure gradient force is practically negligi-
ble when E is very high. This investigation indicates an influence of the pulsatile pressure
gradient on the electroosmotic flow rate with various external electric fields. The result

shows that the oscillatory pressure gradient plays a crucial role in the control of the flow
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Figure 3 Variation in the ratio of volumetric flow

. . 3T E=0  Vur
rate corresponding to the oscillatory pressure — F=500 V!
gradient Qpp, and the constant one Qp with 121 E=1000V m™
various external electric fields E = 0,500, 1,000, ' . |= = E=5000 V!

and 5,000Vm~" forN=3and /=1 um.
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Figure 4 Variation of volumetric flow ratewith . [77
various numbers of the Fourier expansion terms —
of the pressure gradient using N=0,1,2,and 3 0.651
for/=1pumand E=500Vm'.

W= O

z2zzz

0.50

0 01 02 03 04 05 0.6 07 08
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in the microchannel of elliptic cross-section when the flow is evidently driven by both the
pulsatile pressure gradient and the electrokinetic force.

Figure 4 shows the variation of volumetric flow rate corresponding to various numbers
of the Fourier expansion terms of the pressure gradient using N = 0,1,2,and 3 for/ =1 um
and E =500 Vm~. It can be seen that the flow rate has a constant value of 0.58 um?s™
when N = 0 (constant pressure gradient). The reasons for this occurrence are that the
interpolation using only the first term of the Fourier series for the pulsatile pressure gra-
dient represents just the mean pressure gradient, and the electroosmotic force is a con-
stant. When N > 1, our results, related to the oscillation of the pressure gradient, develop
traveling wave of fluid flow. For N = 1, the flow rate is in a sinusoidal form as a result of
the sinusoidal interpolation of the pressure gradient. In the cases of N = 2 and 3, the flow
rates appear to be similar and much closer together, but different from the flow rate when
N =1. This investigation indicates the significance of using the higher Fourier expansion
term for pressure gradient to manipulate the flow rate. However, when a pressure gradient
is approximated well enough, the numerical result of flow rate is precise and reliable.

Regarding the appearance of fluid slip in a microchannel, the variation of volumetric

flow rate with various slip lengths / = 0,1,2,3,4,and 5 um is presented in Figure 5 using
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Figure 5 Variation of volumetric flow rate with 0.9
various slip lengths /=0, 1,2,3,4,and 5 um for
N=3and E=500Vm™.

0.4+ T T T T T T T |
0 01 02 03 04 05 06 0.7 0.8
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4-terms Fourier expansion (N = 3) of the pressure gradient and E = 500 Vm™. The re-
sult shows that, for the particular value of the flow parameters used in this section, the
volumetric flow rate with 1 pm slip length increases compared with the no-slip flow rate.
This result is consistent with the experiment in [16] and the numerical result obtained
from the analytical solution of a circular microchannel [6]. In fact, both claimed results
imply that the velocity increases on the entire velocity profile when the slip condition is
taken into consideration. A velocity increase will directly result in an increase in the flow
rate. However, it can be seen that the flow rate of / =1 um is only 5% difference in value
compared to the one of no-slip condition. It may be concluded that when the slip length
is less than 1 um, the slip condition can be omitted to reduce the computational cost. Fig-
ure 5 also shows that the flow rate gradually increases as the slip length increases. The flow
rate increases to approximately 10%, 15%, 20%, and 25% higher when / = 2,3,4, and 5 pum,
respectively. This result agrees well with the one obtained in [25], which presents the ve-
locity shift constantly upwards as the slip length increases. For the flow with higher slip
length, the slip condition should be considered in the mathematical model to bring a more
accurate result.

6 Conclusions

The primary objectives of the present work were twofold. One was to find the solution
of an unsteady pulsatile pressure-driven electroosmotic flow through an elliptic cylindri-
cal microchannel with the Navier slip condition. The solution was solved with the use
of the Mathieu and modified Mathieu functions. The other was to investigate our nu-
merical results to develop a better understanding of the underlying physical processes in
microfluidics. In particular, we compared the volumetric flow rate corresponding to the
oscillatory and the constant pressure gradient, the volumetric flow rate with the number
of the Fourier expansion terms for the pressure gradient, and the volumetric flow rate
with the slip length. We found that when the flow was clearly driven by a combination of
pressure and electrokinetic forces, the oscillatory behavior of pulsatile pressure became
crucial especially when external electric field was low. The volumetric flow rate is more
accurate as we use a higher number of terms in the Fourier expansion for pressure gradi-
ent. Moreover, an increment in slip lengths gives rise to an increment in volumetric flow

rate in a proportional way.
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