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Abstract
In this paper, we apply the fractional calculus and a suitable fixed point theorem with
the measure of noncompactness to give the sufficient conditions of the
controllability for a new class of fractional neutral integro-differential evolution
systems with infinite delay and nonlocal conditions. The results are obtained here
under some weakly noncompactness conditions. Thus they improve and generalize
many well-known results. At the end of this paper, two examples are given to explain
our abstract conclusions.
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1 Introduction
In the last two decades, the theory of fractional differential equations have become an ac-
tive area of investigation due to their applications in many fields such as viscoelasticity,
electrochemistry, control, porous media, electromagnetic, etc. (see [–]). For more de-
tails of fractional calculus theory, one can see the monographs of Kilbas et al. [], Miller
and Ross [], Podlubny [], Baleanu []. In order to discuss the fractional systems in the ab-
stract spaces, the first important step is how to define the new concept of a mild solution.
A pioneering work has been reported by El-Borai [] and Zhou and Jiao [, ]. Integro-
differential equations can be used to describe a lot of natural phenomena arising in many
fields such as electronics, fluid dynamics, biological models and chemical kinetics. Most
of these phenomena cannot be described through classical differential equations. That is
why in recent years they have attracted more and more attention of many mathematicians,
physicists, and engineers. Some topics for this kind of equations, such as existence and reg-
ularity, stability and control problems, have been investigated by many mathematicians;
see [–] for example.

Recently, fractional calculus opened new perspectives in control theory. Many funda-
mental problems of control theory, such as pole assignment, stabilization and optimal
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control may be solved under the assumption that the system is controllable. The concept
of controllability was firstly introduced by Kalman in  and a systematic study was
started after that. Most of the results in the existing literature are derived for finite di-
mensional systems. It should be pointed out that many unsolved problems still exist as
far as controllability of infinite dimensional systems are concerned. In the case of infinite
dimensional systems two basic concepts of controllability must be discriminated, which
are exact and approximate controllability. Exact controllability enables one to steer the
system to an arbitrary final state, while approximate controllability means that the system
can be steered to an arbitrary small neighborhood of the final state. That is to say that
exact controllability always implies approximate controllability. The converse statement
is generally false. However, in the case of finite dimensional systems they coincide. There
have been some results as regards the controllability of systems represented by nonlin-
ear evolution equations in infinite dimensional spaces [–]. But when the semigroup
is compact and other hypotheses are demanded, the application of exact controllability
result is just restricted to the finite dimensional space []. As described in some papers,
the nonlocal conditions may be connected with better effect in physical science than the
classical initial conditions, since nonlocal conditions are normally more exact for physical
estimations than the classical initial conditions. The study of abstract Cauchy problems
with nonlocal initial conditions was initiated and proofs were given by Byszewski; see [,
]. Since the appearance of these two papers, several papers have addressed the issue of
qualitative problems for various types of nonlinear differential equations with nonlocal
conditions. We can refer to [, , , –, ]. On the other hand, neutral differential
equations with infinite delay arise in many areas of applied mathematics and for this rea-
son these equations have received much attention in the last decades; see [, , , ,
, ].

Very recently, Wang and Zhou [] gave some conditions ensuring the complete con-
trollability of fractional evolution systems without supposing the compactness of charac-
teristic solution operators. Ravichandran and Baleanu [] investigated the controllability
of fractional functional integro-differential systems with an infinite delay in Banach spaces
by means of fixed point theorem and phase space theory. Liang and Yang [] presented
weakly controllable conditions for the fractional evolution system with nonlocal initial
conditions.

Inspired by these facts and [, , , ], in this manuscript we consider the controllabil-
ity for a new class of fractional neutral integro-differential evolution systems with infinite
delay and nonlocal initial conditions,

{
CDq[x(t) – g(t, xt)] + A[x(t) – g(t, xt)] = f (t, xt ,�x(t)) + Bu(t), t ∈ [, a],
x() =

∑n
i= cix(ti) + g(, x), x = ϕ ∈ Bl , t ∈ (–∞, ],

()

where CDq is the Caputo fractional derivative of order  < q < , ci (i = , . . . , n) are given
constants and  < t < t < · · · < tn ≤ a. J = [, a]. –A : D(A) ⊂ E → E is the infinitesimal
generator of a C-semigroup T(t) (t ≥ ) of uniformly bounded linear operator in a Ba-
nach space E, for T(t) (t ≥ ), there exists a constant N ≥  such that ‖T(t)‖ ≤ N for
all t ≥ . The control function u is given in L(J , U), U is a Banach spaces. B is a linear
bounded operator from U to E. g , f are given functions and satisfy some conditions that
will be specified later. The time history xt : (–∞, ] → E given by xt(τ ) = x(t +τ ) belongs to
some abstract phase space Bl defined axiomatically. �x(t) =

∫ t
 ϒ(t, s)x(s) ds, is a Volterra
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integral operator with integral kernel ϒ ∈ C(
, R+), 
 = {(t, s) :  ≤ s ≤ t ≤ a}. We always
suppose that ϒ∗ = supt∈J

∫ t
 ϒ(t, s) ds.

By using a concrete type of nonlocal function in our present manuscript, we eliminate
the compactness of nonlocal function, only suppose that ci (i = , , . . . , n) satisfy the con-
dition (H) (see Section ). And we omit the assumptions for compactness of the C-
semigroup T(t) (t ≥ ). Furthermore, we concentrate on a new class of neutral nonlocal
control systems with infinite delay and establish sufficient conditions for the controlla-
bility of the system () by relying on a measure of noncompactness and the Mönch fixed
point theorem in addition to new phase space axioms. When g(t, xt) ≡  and τ = , then
system () is degenerated to the case of [].

The rest of this work is arranged as follows. In Section , some notations and preparation
results are presented. In Section , by the Mönch fixed point theorem, we prove the exact
controllability of fractional neutral integro-differential evolution equations with nonlocal
conditions and infinite delay. In Section , two examples are given to explain our abstract
conclusions.

2 Preliminaries and lemmas
In this section, we mention notations, definitions, lemmas and preliminary facts needed
to obtain our main results.

We assume that (E,‖ · ‖) is a Banach space. Denote C(J , E) for the Banach space of
continuous functions from J into E with the norm ‖x‖ = supt∈J |x(t)|, x ∈ C(J , E). Lp(J , E)
( ≤ p < ∞) denotes the Banach space of measurable functions x : J → E which are
Bochner integrable normed by ‖x‖p = (

∫ a
 ‖x(t)‖p dt)


p , x ∈ Lp(J , E).

We now define the phase space Bl . Assume that l : (–∞, ] → (, +∞) is a continu-
ous function with l =

∫ 
–∞ l(t) dt < +∞. The Banach space (Bl ,‖ · ‖Bl

) induced by the
function l(t) is defined as follows.

Bl =
{
ϕ : (–∞, ] → E : ϕ is a bounded and measurable function on [–δ, ]

and
∫ 

–∞
l(t) sup

t≤τ≤

∣∣ϕ(τ )
∣∣dt < +∞

}

endowed with the norm ‖ϕ‖Bl
:=

∫ 
–∞ l(t) supt≤τ≤ |ϕ(τ )|dt.

Now we consider the space

Bla =

{
x : (–∞, a] → E : x|J ∈ C(J , E), and x = ϕ ∈ Bl

such that x() =
n∑

i=

cix(ti) + g(, x)

}
.

Let ‖ · ‖a be a seminorm in the space Bla defined by

‖x‖a = ‖ϕ‖Bl
+ sup

{∥∥x(t)
∥∥ : t ∈ [, a]

}
, x ∈ Bla .

Lemma . ([, ]) Assume x ∈ Bla , then, for t ∈ J , xt ∈ Bl . Moreover,

l
∣∣x(t)

∣∣ ≤ ‖xt‖Bl
≤ ‖ϕ‖Bl

+ l sup
s∈[,t]

∣∣x(s)
∣∣.
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Definition . ([]) The fractional integral of order γ with the lower limit  for a function
f is written as

Iγ f (t) =


�(γ )

∫ t



f (s)
(t – s)–γ

ds, t > ,γ > ,

provided the right-hand side is pointwise defined on [,∞), where � is the gamma func-
tion.

Definition . ([]) Riemann-Liouville derivative of order γ with the lower limit  for a
function f : [,∞) → R can be defined as

R–LDγ f (t) =


�(n – γ )
dn

dtn

∫ t



f (s)
(t – s)γ +–n ds, t > ,  ≤ n –  < γ < n.

Definition . ([]) The Caputo derivative of order γ for a function f : [,∞) → R can
be denoted by

CDγ f (t) = R–LDγ

(
f (t) –

n–∑
k=

tk

k!
f (k)()

)
, t > ,  ≤ n –  < γ < n.

Remark .
(i) If f (t) ∈ Cn[,∞) then

CDγ f (t) =


�(n – γ )

∫ t



f (n)(s)
(t – s)γ +–n ds = In–γ f (n)(t), t > ,  ≤ n –  < γ < n;

(ii) the Caputo derivative of a constant is equal to zero;
(iii) if f is an abstract function with values in E, then the integrals which are presented

in Definitions . and . are taken in Bochner’s sense.

For any x ∈ E, define two operators {� (t)}t≥ and {ν(t)}t≥ by

� (t)x =
∫ ∞


πq(ϑ)T

(
tqϑ

)
x dϑ ,

ν(t)x = q
∫ ∞


ϑπq(ϑ)T

(
tqϑ

)
x dϑ ,  < q < ,

where

πq(ϑ) =

q
ϑ

–– 
q �q

(
ϑ

– 
q
)
,

�q(ϑ) =

π

∞∑
n=

(–)n–ϑ–qn– �(nq + )
n!

sin(nπq), ϑ ∈ (,∞).

πq is a probability density function defined on (,∞), which satisfies πq(ϑ) ≥  for all
ϑ ∈ (,∞) and

∫ ∞
 πq(ϑ) dϑ = . Moreover, the operators {� (t)}t≥ and {ν(t)}t≥ have the

following properties.
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Lemma . ([]) The operators � (t) and ν(t) satisfy:
(i) For any fixed t ≥  and any x ∈ E, the following inequalities hold.

∥∥� (t)x
∥∥ ≤ N‖x‖,

∥∥ν(t)x
∥∥ ≤ N

�(q)
‖x‖.

(ii) The operators � (t) and ν(t) are strongly continuous for all t ≥ .
(iii) If T(t) (t ≥ ) is an equicontinuous semigroup, then � (t) and ν(t) are

equicontinuous in E for t > .

Definition . ([]) Let E be a Banach space and 
E ⊂ E be bounded. The Hausdorff
measure of noncompactness is the map χ : 
E → [,∞) defined by

χ (�) = inf{ε >  : � has a finite ε-net in 
E}.

We need to use the following basic properties of MNC χ ; see [, ]. For all bounded
subsets �, �, � of E, we have

(i) � ⊂ � ⇒ χ (�) ≤ χ (�);
(ii) χ (� + �) ≤ χ (�) + χ (�), where � + � = {x + y : x ∈ �, y ∈ �};

(iii) χ (� ∪ �) ≤ max{χ (�),χ (�)};
(iv) χ (σ�) ≤ |σ |χ (�) for any σ ∈ R;
(v) χ ({e} ∪ �) = χ (�) for any e ∈ E;

(vi) χ (�) =  ⇔ � is relatively compact in E.

Lemma . ([]) For any G ⊂ C(J , E) and t ∈ J , define G(t) = {u(t) ∈ E : u ∈ G}. If G is
bounded and equicontinuous, then χ (G(t)) is continuous on J and χ (G) = maxt∈J χ (G(t)).

Lemma . ([]) Let {ϕn}∞n= be a sequence of Bochner integrable functions from J into E.
If there exists ϕ ∈ L(J , R+) such that ‖ϕn(t)‖ ≤ ϕ(t) a.e. t ∈ J , n = , , . . . , then G(t) =
χ ({ϕn(t)}∞n=) belongs to L(J , R+) and satisfies

χ

({∫
J
ϕn(t) dt : n ∈ N

})
≤ 

∫
J
χ

(
G(t)

)
dt.

Lemma . ([]) Assume that p, p ≥ , and 
p

+ 
p

= . If m ∈ Lp (J , R), m ∈ Lp (J , R),
then, for mm ∈ L(J , R), one has

‖mm‖LJ ≤ ‖m‖Lp J‖m‖Lp J .

Lemma . ([]) Let D be a convex, closed set in a Banach space E with  ∈ D. Suppose
there is a continuous map � : D → D with the following property: for W ⊂ D is countable
and W ⊂ c̄o({} ∪ �(W )) imply that W is relatively compact. Then � has at least a fixed
point in D.

3 Controllability results
First, we discuss the following neutral evolution equation with nonlocal conditions:{

CDq[x(t) – g(t, xt)] + A[x(t) – g(t, xt)] = h(t), t ∈ J ,
x() =

∑n
i= cix(ti) + g(, x), x = ϕ ∈ Bl , t ∈ (–∞, ],

()

where h ∈ C((–∞, a], E).
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According to Definitions ., . and ., it is appropriate to change the system () into
the equivalent integral equation

x(t) = x() – g(, x) + g(t, xt)

+


�(q)

∫ t


(t – s)q–{–A

[
x(s) – g(s, xs)

]
+ h(s)

}
ds, t ∈ J , ()

provided that the integral in () exists.
Before giving the definition of mild solution of the system (), we first prove the following

lemmas.

Lemma . If the integral equation () holds, then we have

x(t) = � (t)
[
x() – g(, x)

]
+ g(t, xt) +

∫ t


(t – s)q–ν(t – s)h(s) ds, t ∈ J ,

where � and ν are defined as previously.

Proof Let λ > . Applying the Laplace transform

S(λ) =
∫ ∞


e–λsx(s) ds, Y (λ) =

∫ ∞


e–λsg(s, xs) ds, Z(λ) =

∫ ∞


e–λsh(s) ds,

to (), we get

S(λ) =

λ

[
x() – g(, x)

]
+ Y (λ) –


λq AS(λ) +


λq AY (λ) +


λq Z(λ)

= λq–(λqI + A
)–[x() – g(, x)

]
+ Y (λ) +

(
λqI + A

)–Z(λ)

= λq–
∫ ∞


e–λqsT(s)

[
x() – g(, x)

]
ds +

∫ ∞


e–λsg(s, xs) ds

+
∫ ∞


e–λqsT(s)Z(λ) ds, ()

provided that the integral () exists, where I is the identity operator defined on E.
Let

�q(ϑ) =
q

ϑq+ πq
(
ϑ–q) ()

whose Laplace transform is given by

∫ ∞


e–λϑ�q(ϑ) dϑ = e–λq

, q ∈ (, ). ()

Using (), we have

λq–
∫ ∞


e–λqsT(s)

[
x() – g(, x)

]
ds

=
∫ ∞


q(λt)q–e–(λt)q

T
(
tq)[x() – g(, x)

]
dt
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=
∫ ∞


–


λ

d
dt

[
e–(λt)q]

T
(
tq)[x() – g(, x)

]
dt

=
∫ ∞



∫ ∞


ϑ�q(ϑ)e–λtϑT

(
tq)[x() – g(, x)

]
dϑ dt

=
∫ ∞


e–λt

{∫ ∞


�q(ϑ)T

(
tq

ϑq

)[
x() – g(, x)

]
dϑ

}
dt

=
∫ ∞


e–λt

∫ ∞


πq(ϑ)T

(
tqϑ

)[
x() – g(, x)

]
dϑ dt ()

and

∫ ∞


e–λqsT(s)Z(λ) ds

=
∫ ∞



∫ ∞


qtq–e–(λt)q

T
(
tq)e–λsh(s) ds

=
∫ ∞



∫ ∞



∫ ∞


q�q(ϑ)e–(λtϑ)T

(
tq)e–λstq–h(s) dϑ ds dt

=
∫ ∞



∫ ∞



∫ ∞


q�q(ϑ)e–λ(t+s)T

(
tq

ϑq

)
tq–

ϑq h(s) dϑ ds dt

=
∫ ∞


e–λt

[
q
∫ t



∫ ∞


�q(ϑ)T

(
(t – s)q

ϑq

)
(t – s)q

ϑq h(s) dϑ ds
]

dt

=
∫ ∞


e–λt

[
q
∫ t



∫ ∞


ϑ(t – s)q–πq(ϑ)T

(
(t – s)qϑ

)
h(s) dϑ ds

]
dt. ()

According to (), (), () and using the Laplace inverse transform, we obtain

x(t) = � (t)
[
x() – g(, x)

]
+ g(t, xt) +

∫ t


(t – s)q–ν(t – s)h(s) ds, t ∈ J .

This completes the proof. �

Suppose that there exists the bounded operator K : E → E given by

K :=

[
I –

n∑
i=

ci� (ti)

]–

. ()

By means of [] we can present the sufficient conditions for the existence and bounded-
ness of the operator K .

Lemma . The operator K defined in () exists and is bounded if the following condition
holds:

(H) there are real numbers ci such that

n∑
i=

|ci| <

N

. ()
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Proof From the hypothesis (H), we have
∥∥∥∥∥

n∑
i=

ci� (ti)

∥∥∥∥∥ ≤
n∑

i=

|ci| ·
∥∥� (ti)

∥∥ < .

By the operator spectrum theorem, the operator K = [I –
∑n

i= ci� (ti)]– exists and is
bounded. In addition, by the Neumann expression, we get

‖K‖ ≤
∞∑

n=

∥∥∥∥∥
n∑

i=

ci� (ti)

∥∥∥∥∥
n

=


 – ‖∑n
i= ci� (ti)‖ ≤ 

 – N
∑n

i= |ci| . ()
�

Using Lemmas ., ., we give the following definition of a mild solution of the neutral
system () with nonlocal conditions.

Definition . A function x : (–∞, a] → E satisfies the conditions:
(i)

x(t) =
n∑

i=

ci� (t)Kg(ti, xti ) + g(t, xt) +
n∑

i=

ci� (t)KH(ti) + H(t), t ∈ J , ()

where K = [I –
∑n

i= ci� (ti)]–; H(t) =
∫ t

 (t – s)q–ν(t – s)h(s) ds;
(ii) x = ϕ(t) ∈ Bl s.t. x() =

∑n
i= cix(ti) + g(, x), t ∈ (–∞, ].

This is called a mild solution of the nonlocal Cauchy problem ().

Remark . Due to Lemma ., a mild solution to fractional evolution equation () with
the initial condition is

x(t) = � (t)
[
x() – g(, x)

]
+ g(t, xt) +

∫ t


(t – s)q–ν(t – s)h(s) ds, t ∈ J .

Specially,

x(ti) = � (ti)x() – � (ti)g(, x) + g(ti, xti ) +
∫ ti


(ti – s)q–ν(ti – s)h(s) ds. ()

Using () and (), we get

x() – g(, x) =
n∑

i=

ci� (ti)x() –
n∑

i=

ci� (ti)g(, x) +
n∑

i=

cig(ti, xti )

+
n∑

i=

ci

∫ ti


(ti – s)q–ν(ti – s)h(s) ds.

Since I –
∑n

i= ci� (ti) exists, there exists a bounded inverse operator which is denoted by
K , so that x() = g(, x) +

∑n
i= ciKg(ti, xti ) +

∑n
i= ciK

∫ ti
 (ti – s)q–ν(ti – s)h(s) ds. And hence

x(t) =
n∑

i=

ci� (t)Kg(ti, xti ) + g(t, xt) +
n∑

i=

ci� (t)KH(ti) + H(t), t ∈ J ,

it is exactly ().
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Similarly, we present the following definition.

Definition . A function x : (–∞, a] → E is called a mild solution of the nonlocal control
system (), if x = ϕ ∈ Bl s.t. x() =

∑n
i= cix(ti) + g(, x), and, for any u ∈ L(J , U), the

integral equation

x(t) =
n∑

i=

ci� (t)K
∫ ti


(ti – s)q–ν(ti – s)

[
Bu(s) + f

(
s, xs,�x(s)

)]
ds

+
n∑

i=

ci� (t)Kg(ti, xti ) +
∫ t


(t – s)q–ν(t – s)

[
Bu(s) + f

(
s, xs,�x(s)

)]
ds

+ g(t, xt), t ∈ J ,

is satisfied.

To present and prove the main results of this paper, we list the following hypotheses:
(H) –A generates an equicontinuous semigroup T(t) (t ≥ ) of uniformly bounded

linear operators in E.
(H) () The linear operator � : L(J , U) → E defined by

�u = � (a)
n∑

i=

ciK
∫ ti


(ti – s)q–ν(ti – s)Bu(s) ds

+
∫ a


(a – s)q–ν(a – s)Bu(s) ds

is reversible, the inverse operator is denoted by �– and takes values in
L(J , U) ker�, and there exist two constants N > , N >  such that ‖B‖ ≤ N,
‖�–‖ ≤ N;

() there exist a constant q ∈ (, q) and ξ ∈ L


q (J , R+) such that

χ
(�–(W )(t)

) ≤ ξ(t)χ (W ), t ∈ J ,

for any countable subset W ⊂ E.
(H) The function f : J ×Bl × E → E satisfies:

() The function f (t, ·, ·) is continuous for each t ∈ J , and the function f (·,ϕ, x) is
strongly measurable for any (ϕ, x) ∈ Bl × E;

() for any countable sets V ⊂ Bl , W ⊂ E, there exist a constant q ∈ (, q) and
ξ ∈ L


q (J , R+) such that

χ
(
f (t, V, W)

) ≤ ξ(t)
(

sup
–∞<τ≤

χ
(
V(τ )

)
+ χ (W)

)
, t ∈ J ;

() for any r > , there exist a constant q ∈ (, q) and Sr ∈ L


q (J , R+) such that, for
any (ϕ, y) ∈ Bl × E,

sup
{∥∥f (t,ϕ, y)

∥∥ : ‖ϕ‖Bl
≤ r′,‖y‖ ≤ ϒ∗r

} ≤ Sr(t), t ∈ J ,

where Sr satisfies lim infr→+∞ 
r ‖Sr‖

L


q
= γ < ∞.
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(H) () The function g : J ×Bl → E is continuous, there exists x = ϕ s.t.
x() =

∑n
i= cix(ti) + g(, x), t ∈ (–∞, ] and there exist nonnegative constants

H, H, H,  < β <  such that, for any t ∈ J , z, y ∈ Bl , g(·, ·) satisfies the
inequality

∥∥g(t, z)
∥∥ ≤ H

(
 + ‖z‖Bl

)
,

and the Lipschitz condition

∥∥g(t, z) – g(t, y)
∥∥ ≤ H‖z – y‖Bl

+ H|t – t|;

() for any countable subset W ⊂ Bl , there exists a nonnegative bounded
function ξ such that

χ
(
g(t, W)

) ≤ ξ(t) sup
–∞<τ≤

χ
(
W(τ )

)
, t ∈ J ,

where supt∈[,a] ξ(t) = κ .
By the hypothesis (H)(), for any x ∈ E, we define a feedback control function u(t) :=

u(t; x) as follows:

u(t; x) = �–

[
x – � (a)

n∑
i=

ciK
∫ ti


(ti – s)q–ν(ti – s)f

(
s, xs,�x(s)

)
ds – g(a, xa)

– � (a)
n∑

i=

ciKg(ti, xti ) –
∫ a


(a – s)q–ν(a – s)f

(
s, xs,�x(s)

)
ds

]
(t), t ∈ J .

For convenience, let us take the following notations:

P(t; x) = Bu(t; x) + f
(
t, xt ,�x(t)

)
; P̃(x) =

n∑
i=

ciK
∫ ti


(ti – s)q–ν(ti – s)P(s; x) ds;

and

di =
aq–qi

(bi + )–qi
, bi =

q – 
 – qi

, i = , , .

We consider the operator � : Bla → Bla defined by

(�x)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(t), t ∈ (–∞, ],∑n
i= ci� (t)Kg(ti, xti ) + g(t, xt)
+

∑n
i= ci� (t)K

∫ ti
 (ti – s)q–ν(ti – s)Bu(s) ds

+
∫ t

 (t – s)q–ν(t – s)Bu(s) ds
+

∑n
i= ci� (t)K

∫ ti
 (ti – s)q–ν(ti – s)f (s, xs,�x(s)) ds

+
∫ t

 (t – s)q–ν(t – s)f (s, xs,�x(s)) ds, t ∈ J ,

where x = ϕ ∈ Bl satisfying x() =
∑n

i= cix(ti) + g(,ϕ).
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For ϕ ∈ Bl , we define ϕ̃ by

ϕ̃(t) =

{
ϕ(t), t ∈ (–∞, ],
, t ∈ J ,

then ϕ̃ ∈ Bla . Set x(t) = z(t) + ϕ̃(t), –∞ < t ≤ a. It is easy to see that x satisfies z = ,
t ∈ (–∞, ] and

z(t) =
n∑

i=

ci� (t)Kg(ti, zti + ϕ̃ti ) + g(t, zt + ϕ̃t)

+
n∑

i=

ci� (t)K
∫ ti


(ti – s)q–ν(ti – s)f

(
s, zs + ϕ̃s,�x(s)

)
ds

+
∫ t


(t – s)q–ν(t – s)f

(
s, zs + ϕ̃s,�x(s)

)
ds

+
n∑

i=

ci� (t)K
∫ ti


(ti – s)q–ν(ti – s)Bu(s) ds

+
∫ t


(t – s)q–ν(t – s)Bu(s) ds.

Let B
la = {z ∈ Bla : z =  ∈ Bl}. For any z ∈ B

la

‖z‖a = ‖z‖Bl
+ sup

{∥∥z(t)
∥∥ :  ≤ t ≤ a

}
= sup

{∥∥z(t)
∥∥ :  ≤ t ≤ a

}
,

thus (B
la ,‖ ·‖a) is a Banach space. Set Br = {z ∈ B

la : ‖z‖a ≤ r} for some r > , then Br ⊆ B
la

is uniformly bounded, and for z ∈ Br , from Lemma ., we have

‖zt + ϕ̃t‖Bl
≤ ‖zt‖Bl

+ ‖ϕ̃t‖Bl
≤ lr + ‖ϕ‖Bl

= r′.

Define �̃ : B
la → B

la by

(�̃z)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

, t ∈ (–∞, ],∑n
i= ci� (t)Kg(ti, zti + ϕ̃ti ) + g(t, zt + ϕ̃t)
+

∑n
i= ci� (t)K

∫ ti
 (ti – s)q–ν(ti – s)f (s, zs + ϕ̃s,�x(s)) ds

+
∫ t

 (t – s)q–ν(t – s)f (s, zs + ϕ̃s,�x(s)) ds
+

∑n
i= ci� (t)K

∫ ti
 (ti – s)q–ν(ti – s)Bu(s) ds

+
∫ t

 (t – s)q–ν(t – s)Bu(s) ds, t ∈ J .

Clearly, the operator � to have a fixed point is equivalent to �̃ having one.
In view of Lemmas ., . and Definition ., we obtain the following lemmas, which

will be useful in the proofs of the main results.

Lemma . Under the hypotheses (H)(), (H)() and (H)(), for any z ∈ Br , we have

∥∥P(t; z)
∥∥ ≤ NN‖x‖ + Nu

[
d‖Sr‖

L


q
+

�(q)
N

H
(
 + r′)] + Sr(t), t ∈ J ,
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∥∥P̃(z)
∥∥ ≤ aq

q

n∑
i=

|ci|Nu

[
‖x‖ +

H( + r′)
 – N

∑n
i= |ci|

]
+

Nd
∑n

i= |ci|
�(q)( – N

∑n
i= |ci|)

·
(

Nuaq

q
+ 

)
‖Sr‖

L


q
.

Here Nu = NNN
�(q)(–N

∑n
i= |ci|) .

Proof By Lemmas ., . and Definition ., for any t ∈ J and z ∈ Br , it is easy to get

∥∥Bu(t; z)
∥∥ ≤ NN

{
‖x‖ +

∥∥∥∥∥� (a)
n∑

i=

ciKg(ti, zti + ϕ̃ti )

∥∥∥∥∥ +
∥∥g(a, za + ϕ̃a)

∥∥

+

∥∥∥∥∥� (a)
n∑

i=

ciK
∫ ti


(ti – s)q–ν(ti – s)f

(
s, zs + ϕ̃s,�x(s)

)
ds

∥∥∥∥∥
+

∥∥∥∥
∫ a


(a – s)q–ν(a – s)f

(
s, zs + ϕ̃s,�x(s)

)
ds

∥∥∥∥
}

≤ NN‖x‖ +
NNN

∑n
i= |ci|

 – N
∑n

i= |ci|
N

�(q)

∫ ti


(ti – s)q–Sr(s) ds

+
NNN

�(q)

∫ a


(a – s)q–Sr(s) ds

+
NNN

∑n
i= |ci|

 – N
∑n

i= |ci| H
(
 + r′) + NNH

(
 + r′)

≤ NN‖x‖ + Nu

[
d‖Sr‖

L


q
+

�(q)H( + r′)
N

]
,

and

∥∥P(t; z)
∥∥ ≤ NN‖x‖ + Nu

[
d‖Sr‖

L


q
+

�(q)H( + r′)
N

]
+ Sr(t).

Further, we obtain

∥∥P̃(z)
∥∥ ≤ N

∑n
i= |ci|

�(q)( – N
∑n

i= |ci|)
∫ ti


(ti – s)q–∥∥P(s; z)

∥∥ds

≤ N
∑n

i= |ci|
�(q)( – N

∑n
i= |ci|)

∫ ti


(ti – s)q–

{
NN‖x‖

+ Nu

[
d‖Sr‖

L


q
+

�(q)H( + r′)
N

]
+ Sr(s)

}
ds

≤ aq

q

n∑
i=

|ci|Nu

[
‖x‖ +

H( + r′)
 – N

∑n
i= |ci|

]

+
Nd

∑n
i= |ci|

�(q)( – N
∑n

i= |ci|)
(

Nuaq

q
+ 

)
‖Sr‖

L


q
.

This completes the proof. �
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For the operator �̃ , we can obtain the following conclusion using Lemma ..

Lemma . Let hypotheses (H)(), (H)(), () and (H)() hold. Then the operator �̃ :
B

la → B
la is continuous provided that

Nγ d + �(q)Hl

�(q)( – N
∑n

i= |ci|)
(

Nuaq

q
+ 

)
< . ()

Proof Firstly we show that �̃(Br) ⊂ Br for some r > . If this was not true, there would
exist z ∈ Br and tr ∈ J such that ‖�̃(z)(tr)‖ > r. From Lemmas . and ., we have

r <
∥∥(�̃z)(tr)

∥∥
≤ ∥∥� (tr)P̃(z)

∥∥ +
∥∥∥∥

∫ tr


(tr – s)q–ν(tr – s)P(s; z) ds

∥∥∥∥
+

∥∥∥∥∥� (tr)
n∑

i=

ciKg(ti, zti + ϕ̃ti )

∥∥∥∥∥ +
∥∥g(tr , ztr + ϕ̃tr )

∥∥

≤ ∥∥� (tr)P̃(z)
∥∥ +

N
�(q)

∫ tr


(tr – s)q–

{
NN‖x‖

+ Nu

[
d‖Sr‖

L


q
+

�(q)H( + r′)
N

]
+ Sr(s)

}
ds +

H( + r′)
 – N

∑n
i= |ci|

≤ ∥∥� (tr)P̃(z)
∥∥ +

NNNaq

�(q + )
‖x‖ +

Nd

�(q)

(
Nuaq

q
+ 

)
‖Sr‖

L


q
+ H

(
 + r′)Nuaq

q

+
H( + r′)

 – N
∑n

i= |ci|

≤ NNNaq‖x‖
�(q + )( – N

∑n
i= |ci|) +

Nd

�(q)( – N
∑n

i= |ci|)
(

Nuaq

q
+ 

)
‖Sr‖

L


q

+
H( + r′)

 – N
∑n

i= |ci|
(

Nuaq

q
+ 

)
.

Dividing both sides by r and taking the lower limit as r → +∞, we have

 ≤ Nγ d + �(q)Hl

�(q)( – N
∑n

i= |ci|)
(

Nuaq

q
+ 

)
,

which is contrary to inequality (). And thus �̃(Br) ⊂ Br for some r > .
Next, we show that �̃ : Br → Br is continuous. So we take {z(n)}n∈N ⊂ Br and z(n) → z ∈

Br as n → ∞. Let Fn(s) = f (s, z(n)
s + ϕ̃s,�z(n)(s)) and F (s) = f (s, zs + ϕ̃s,�z(s)). By (H)(),

(H)(), (), (H)() and the Lebesgue dominated convergence theorem, for any t ∈ J , we
get

∫ t


(t – s)q–∥∥F(n)(s) – F (s)

∥∥ds →  (n → +∞),
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and

∥∥u
(
t; z(n)) – u(t; z)

∥∥ ≤ NN
∑n

i= |ci|
�(q)( – N

∑n
i= |ci|)

∫ ti


(ti – s)q–∥∥Fn(s) – F (s)

∥∥ds

+
NN

�(q)

∫ a


(a – s)q–∥∥Fn(s) – F (s)

∥∥ds + NH
∥∥z(n) – z

∥∥
+

NN
∑n

i= |ci|
 – N

∑n
i= |ci|H

∥∥z(n) – z
∥∥ →  (n → +∞).

Therefore,

∥∥P(
t; z(n)) – P(t; z)

∥∥ ≤ N
∥∥u

(
t; z(n)) – u(t; z)

∥∥ +
∥∥Fn(t) – F (t)

∥∥
→  (n → +∞),

∥∥P̃(
z(n)) – P̃(z)

∥∥ ≤ N
∑n

i= |ci|
�(q)( – N

∑n
i= |ci|)

∫ ti


(ti – s)q–∥∥P(

s; z(n)) – P(s; z)
∥∥ds

→  (n → +∞).

Finally, we have

∥∥(
�̃z(n))(t) – (�̃z)(t)

∥∥ ≤ N
∥∥P̃(

z(n)) – P̃(z)
∥∥

+
N

�(q)

∫ t


(t – s)q–∥∥P(

s; z(n)) – P(s; z)
∥∥ds

+
N

∑n
i= |ci|

 – N
∑n

i= |ci|
∥∥g

(
ti; z(n)

ti

)
– g(ti; zti )

∥∥
+

∥∥g
(
t; z(n)

t
)

– g(t; zt)
∥∥

≤ N
∥∥P̃(

z(n)) – P̃(z)
∥∥

+
N

�(q)

∫ t


(t – s)q–∥∥P(

s; z(n)) – P(s; z)
∥∥ds

+
HN

∑n
i= |ci|

 – N
∑n

i= |ci|
∥∥z(n) – z

∥∥
+ H

∥∥z(n) – z
∥∥ →  (n → +∞).

Hence the given operator �̃ : Br → Br is continuous. And the proof is completed. �

Now, we present and prove the controllability conclusions for the fractional neutral con-
trol system () with infinite delay and nonlocal conditions.

Theorem . If the hypotheses (H)-(H) are satisfied, then the fractional neutral nonlo-
cal system () with the initial problem x() =

∑n
i= cix(ti) + g(, x), x = ϕ ∈ Bl is control-

lable on J provided that () and

α =
NN( + ϒ∗)

∑n
i= |ci| + �(q)κ

�(q)( – N
∑n

i= |ci|) (NN + ) < , ()

where N = d‖ξ‖
L


q

; N = d‖ξ‖
L


q

; N = NN
�(q)(–N

∑n
i= |ci|) .
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Proof We have proved �̃ : Br → Br is continuous in Lemma .. Furthermore, we prove
that �̃(Br) is equicontinuous on J . Indeed, let z ∈ �̃(Br) and  ≤ t′ < t′′ ≤ a. and take the
following notations:

I =
∥∥�

(
t′′)P̃(z) – �

(
t′)P̃(z)

∥∥,

I =
∥∥∥∥

∫ t′



[(
t′′ – s

)q– –
(
t′ – s

)q–]
ν
(
t′′ – s

)
P(s; z) ds

∥∥∥∥,

I =
∥∥∥∥

∫ t′



(
t′ – s

)q–[
ν
(
t′′ – s

)
– ν

(
t′ – s

)]
P(s; z) ds

∥∥∥∥,

I =
∥∥∥∥

∫ t′′

t′

(
t′′ – s

)q–
ν
(
t′′ – s

)
P(s; z) ds

∥∥∥∥,

I =

∥∥∥∥∥�
(
t′′) n∑

i=

ciKg(ti, zti + ϕ̃ti ) – �
(
t′) n∑

i=

ciKg(ti, zti + ϕ̃ti )

∥∥∥∥∥,

I =
∥∥g

(
t′′, zt′′ + ϕ̃t′′

)
– g

(
t′, zt′ + ϕ̃t′

)∥∥.

So we can write

∥∥(
�̃(z)

(
t′′)) –

(
�̃(z)

(
t′))∥∥ ≤ I + I + I + I + I + I.

Obviously, we have

I ≤ H( + r′)
∑n

i= |ci|
 – N

∑n
i= |ci|

∥∥�
(
t′′) – �

(
t′)∥∥.

The hypothesis (H) can ensure I →  and I →  as t′′ – t′ → . Using Lemmas . and
., we can obtain

I ≤
[

N
�(q)

(
NN‖x‖ + Nud‖Sr‖

L


q

)
+ NuH

(
 + r′)]∫ t′



∣∣(t′′ – s
)q– –

(
t′ – s

)q–∣∣ds

+
N‖Sr‖

L


q

�(q)

(∫ t′



∣∣(t′′ – s
)q– –

(
t′ – s

)q–∣∣ 
–q ds

)–q

,

I ≤
[

N
�(q + )

(
NN‖x‖ + Nud‖Sr‖

L


q

)
+

NuH( + r′)
q

](
t′′ – t′)q

+
N‖Sr‖

L


q

�(q)(b + )–q

(
t′′ – t′)q–q ,

which indicates that I →  and I →  as t′′ – t′ → . If t′ ≡ ,  < t′′ ≤ a, it is obvious
that I ≡ . For t′ >  and δ ( < δ < t′) small enough, we obtain

I ≤
∥∥∥∥

∫ t′–δ



(
t′ – s

)q–[
ν
(
t′′ – s

)
– ν

(
t′ – s

)]
P(s; z) ds

∥∥∥∥
+

∥∥∥∥
∫ t′

t′–δ

(
t′ – s

)q–[
ν
(
t′′ – s

)
– ν

(
t′ – s

)]
P(s; z) ds

∥∥∥∥
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≤
{ [NN‖x‖ + Nud‖Sr‖

L


q
+ �(q)

N NuH( + r′)]((t′)q – δq)

q

+
‖Sr‖

L


q
((t′)q–q – δq–q )

(b + )–q

}

· sup
s∈[,t′–δ]

∥∥ν
(
t′′ – s

)
– ν

(
t′ – s

)∥∥ +
N‖Sr‖

L


q
δq–q

�(q)(b + )–q

+
N[NN‖x‖ + Nud‖Sr‖

L


q
+ �(q)

N NuH( + r′)]δq

�(q + )
.

It follows from the assumption (H) that I →  as t′′ – t′ →  and δ → . From (H)(),
we obtain

I ≤ H
(‖zt′′ – zt′ ‖ + ‖ϕt′′ – ϕt′ ‖

)
+ H

∣∣t′′ – t′∣∣.
Since z ∈ Br , we get I →  as t′′ – t′ → . Thus �̃(Br) is equicontinuous on (–∞, a].

Next we will verify that �̃ satisfies Mönch’s condition. Assume that D ⊂ Br is countable
and D ⊂ c̄o({} ∪ �̃(D)), we show that χ (D) = .

It follows from (H)(), (H)() and (H)() that

χ
(
Bu(s; W )

) ≤
[

NN
(
 + ϒ∗) +

Nκ

 – N
∑n

i= |ci|
]
ξ(s)χ (W ),

χ
(
P(s; W )

) ≤
[

NN
(
 + ϒ∗) +

Nκ

 – N
∑n

i= |ci|
]
ξ(s)χ (W ) +

(
 + ϒ∗)ξ(s)χ (W ),

and

χ
(
P̃(W )

) ≤
[

NN( + ϒ∗)
∑n

i= |ci|
�(q)( – N

∑n
i= |ci|) (NN + ) +

NN
∑n

i= |ci|κ
 – N

∑n
i= |ci|

]
χ (W ),

for s ∈ [, t], t ∈ J . Furthermore, we obtain

χ
(
�̃(W )(t)

) ≤ Nχ
(
P̃(W )

)
+

N
�(q)

∫ t


(t – s)q–χ

(
P(s; W )

)
ds +

κ

 – N
∑n

i= |ci|χ (w)

≤ NN( + ϒ∗)
∑n

i= |ci| + �(q)κ
�(q)( – N

∑n
i= |ci|) (NN + )χ (W ) = αχ (W ).

Combining the equicontinuity and boundedness of �̃(W ), we obtain

χ
(
�̃(W )

)
= max

t∈J
χ

(
�̃(W )(t)

) ≤ αχ (W ).

Hence,

χ (W ) ≤ χ
(
c̄o

({} ∪ �̃(W )
)) ≤ χ

(
�̃(W )

) ≤ αχ (W ).

From the inequality () α < , we have χ (W ) = . That is, W is relatively compact. There-
fore using Lemma ., �̃ has at least one fixed point z in Br . Then x = z+ ϕ̃ is a mild solution



Du et al. Advances in Difference Equations  (2017) 2017:139 Page 17 of 22

of the system () and satisfies x(a) = x. Thus, the fractional neutral nonlocal system () is
controllable on J . The proof is completed. �

Corollary . The hypothesis (H)() can be replaced by
(H) ()′ For each r > , there exist a constant q ∈ (, q) and S̄ ∈ L


q (J , R+) such that

sup
{∥∥f (t,ϕ, x)

∥∥ : ‖ϕ‖Bl
≤ r′,‖y‖ ≤ ϒ∗r

} ≤ S̄(t), t ∈ J ,

where ϕ ∈ Bl s.t. x() =
∑n

i= cix(ti)+g(, x). (H)(), () are not changed. Thus
assume the hypotheses (H)-(H)(), (), ()′ and (H) hold, () and () are
established, the system () is also controllable on J .

Proof The proof is similar to Theorem .. �

4 Applications
Example . Consider the following fractional neutral evolution equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂



∂t



[x(t,υ) – t
∫ 

–∞ ζ (τ ) |x(t+τ ,υ)|
+|x(t+τ ,υ)| dτ ]

= ∂
∂t [x(t,υ) – t

∫ 
–∞ ζ (τ ) |x(t+τ ,υ)|

+|x(t+τ ,υ)| dτ ]

+ e–t

+et [x(t + τ ,υ) +
∫ t

 (t – s)x(s,υ) ds] + λρ(t,υ),  ≤ t ≤ a,  ≤ υ ≤ ,
x(t, ) – t

∫ 
–∞ ζ (τ ) |x(t+τ ,)|

+|x(t+τ ,)| dτ = ,  ≤ t ≤ a,
x(t, ) – t

∫ 
–∞ ζ (τ ) |x(t+τ ,)|

+|x(t+τ ,)| dτ = ,  ≤ t ≤ a,
x(,υ) =

∑n
i= arctan 

i x(i,υ),  ≤ υ ≤ ,

()

where λ >  and  < n < a. ρ : [, a] × (, ) → (, ), ζ : (–∞, ] → R and x : (–∞, ] ×
(, ) → R are continuous functions, and

∫ 
–∞ |ζ (τ )|dτ < ∞.

Let E = U =: C([, ]) and A be defined by

{
D(A) = {w ∈ E : w′ ∈ E, w() = w() = },
Aw = –w′, w ∈ D(A).

As is well known, –A generates an equicontinuous semigroup T(t) (t ≥ ) in E and it
satisfies

T(t)w(s) = w(t + s),

for w ∈ E. Thus T(t) (t ≥ ) is not compact in E and sup≤t≤a ‖T(t)‖ ≤ . Take

x(t)(υ) = x(t,υ),

D

 x(t)(υ) =

∂



∂t 


x(t,υ),

g(t, xt)(υ) = t
∫ 

–∞
ζ (τ )

|xt(τ )(υ)|
 + |xt(τ )(υ)| dτ ,

f
(
t, xt ,�x(t)

)
(υ) =

e–t

 + et

[
x(t + τ ,υ) +

∫ t


(t – s)x(s,υ) ds

]
,
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u(t)υ = ρ(t,υ),

ci = arctan


i , ti = i, i = , , . . . , n.

Define the norm by

‖y‖Bl
=

∫ 

–∞
l(s)‖ϕ‖[s,] ds, y ∈ Bl .

Then, for any x ∈ Br , t ∈ J , we obtain

∥∥f
(
t, xt ,�x(t)

)
(z)

∥∥ ≤ e–t

 + et

[∥∥x(t + τ , z)
∥∥ +

∫ t



∥∥(t – s)x(s, z)
∥∥ds

]

≤ ( + a)e–tr′

( + et)

≤ ( + a)r′


.

Thus, the hypothesis (H) holds for β = +a

 and ξ(t) = 
 for all t ∈ J . By

n∑
i=

|ci| ≤
∞∑
i=

arctan


i =
π


< ,

we verify that the hypothesis (H) holds.
For t, t′, t′′ ∈ [, a], z, y ∈ Br , we have

∥∥g(t, z)
∥∥ =

∥∥∥∥t
∫ 

–∞
ζ (τ )

|z(τ )(υ)|
 + |z(τ )(υ)| dτ

∥∥∥∥ ≤ a
∫ 

–∞

∣∣ζ (τ )
∣∣∥∥ +

∣∣z(τ )(υ)
∣∣∥∥dτ

≤ H
(
 + r′),

∥∥g
(
t′, z

)
– g

(
t′′, y

)∥∥ ≤ ∣∣t′ – t′′∣∣ ∫ 

–∞

∥∥∥∥ζ (τ )
|z(τ )(υ)|

 + |z(τ )(υ)|
∥∥∥∥dτ

+ t′′
∫ 

–∞

∥∥∥∥ζ (τ )
[ |z(τ )(υ)|

 + |z(τ )(υ)| –
|y(τ )(υ)|

 + |y(τ )(υ)|
]∥∥∥∥dτ

≤ ∣∣t′ – t′′∣∣ ∫ 

–∞

∣∣ζ (τ )
∣∣dτ + a

∫ 

–∞

∣∣ζ (τ )
∣∣dτ‖z – y‖

= H‖z – y‖ + H
∣∣t′ – t′′∣∣,

∥∥g(t, z) – g(t, y)
∥∥ ≤ t

∫ 

–∞

∥∥∥∥ζ (τ )
[ |z(τ )(υ)|

 + |z(τ )(υ)| –
|y(τ )(υ)|

 + |y(τ )(υ)|
]∥∥∥∥dτ

≤ t
∫ 

–∞

∣∣ζ (τ )
∣∣dτ‖z – y‖,

where H = H = a
∫ 

–∞ |ζ (τ )|dτ , H =
∫ 

–∞ |ζ (τ )|dτ . Therefore, for any countable set W ⊂
Br , we obtain

χ
(
g(t, W )

) ≤ t
∫ 

–∞

∣∣ζ (τ )
∣∣dτ sup

–∞<τ≤
χ

(
W (τ )

)
,

where ξ(t) = t
∫ 

–∞ |ζ (τ )|dτ .
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For υ ∈ (, ), the operator � is defined by

(�(t)
)
(υ) = � (a)

[
I –

n∑
i=

arctan


i � (i)

]– n∑
i=

arctan


i

∫ i


(i – s)– 



· ν(i – s)λρ(s,υ) ds +
∫ a


(a – s)– 

 ν(a – s)λρ(s,υ) ds,

where {� (t)}(t≥) and {ν(t)}(t≥) satisfy

� (t)w(s) =
∫ ∞





ϑ– 

 � 


(
–ϑ– 


)
w

(
t


 ϑ + s

)
dϑ ,

ν(t)w(s) =



∫ ∞





ϑ– 

 � 


(
–ϑ– 


)
w

(
t


 ϑ + s

)
dϑ ,

and � 


is given by � 


= 
π

∑∞
n=(–)n–ϑ– 

 n– �( 
 n+)
n! sin( nπ

 ), ϑ ∈ (,∞). If we let � satisfy
the hypothesis (H), from Theorem ., we see that the system () is controllable on [, a]
provided that () and ().

Example . To illustrate the application of the theory we consider another partial
integro-differential equation, with fractional derivative of the form

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂



∂t



[x(t,υ) –
∫ t

–∞ e(s–t)(x(s,υ)) ds]

= ∂
∂t [x(t,υ) –

∫ t
–∞ e(s–t)(x(s,υ)) ds] +

∫ t
–∞ H(t,υ, s – t)Q(x(s,υ)) ds

+
∫ t

 ϒ(s, t)e–x(s,υ) ds + λρ(t,υ),  ≤ t ≤ a,  ≤ υ ≤ ,
x(t, ) = x(t, ) = ,  ≤ t ≤ a,
x(,υ) =

∑n
i= arctan 

i x(i,υ),  ≤ υ ≤ ,

()

where ϕ ∈ Bl , λ > ,  < n < a and ρ : [, a] × (, ) → (, ).
Let E = U =: L([, ]) and let A : D(A) ⊂ E → E be defined by Aw = –w′, w ∈ D(A),

where D(A) = {w ∈ E : w′ ∈ E, w() = w() = }. It is well known that –A is an infinitesimal
generator of a semigroup T(t) (t ≥ ) in E and is given by T(t)w(s) = w(t + s) for w ∈ E.
Thus T(t) (t ≥ ) is not compact in E with χ (T(t)D) ≤ χ (D) where χ is the Hausdorff
MNC and there exists a N such that sup≤t≤a ‖T(t)‖ ≤ N . Moreover, t → w(t 

 ϑ + s)x is
equicontinuous for t >  and ϑ ∈ (–∞, ).

Let l(s) = es, s < , then l =
∫ 

–∞ l(s) ds = , and we define

‖ϕ‖Bl
=

∫ 

–∞
l(s) sup

τ∈[s,]

∥∥ϕ(τ )
∥∥ds.

Let x : (–∞, a] → R be such that x ∈ Bl . For t ∈ [, a], we have

‖xt‖Bl
=

∫ 

–∞
l(s) sup

τ∈[s,]

∥∥xt(τ )
∥∥ds ≤ sup

s∈[,t]

∣∣x(s)
∣∣ + ‖x‖Bl

< ∞.

Hence xt ∈ Bl . Now we prove that

‖xt‖Bl
≤ K(t) sup

s∈[,t]

∣∣x(s)
∣∣ + M(t)‖x‖Bl

,

where K(t) ≡ M(t) ≡ , H = .
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For τ + t ≤ , we derive

∣∣xt(τ )
∣∣ =

∣∣x(t + τ )
∣∣ ≤ sup

{∣∣x(s)
∣∣ : –∞ < s ≤ 

}
.

If τ + t ≥ , then we get

∣∣xt(τ )
∣∣ ≤ sup

{∣∣x(s)
∣∣ :  ≤ s ≤ 

}
.

Thus for all τ + t ∈ (–∞, a], we obtain

∣∣xt(τ )
∣∣ ≤ sup

{∣∣x(s)
∣∣ : –∞ < s ≤ 

}
+ sup

{∣∣x(s)
∣∣ :  ≤ s ≤ 

}
.

It is clear that (Bl ,‖ · ‖Bl
) is a Banach space. We can conclude that Bl is a phase space.

Define

x(t)(υ) = x(t,υ),

D

 x(t)(υ) =

∂



∂t 


x(t,υ),

g(t,ϕ)(υ) =
∫ 

–∞
eτ ϕ(τ )(υ) dτ ,

f
(
t,ϕ,�x(t)

)
(υ) =

∫ 

–∞
H(t,υ, τ )Q

(
ϕ(τ )υ

)
dτ + �x(t)(υ),

ci = arctan


i , ti = i, i = , , . . . , n,

where �x(t)(υ) =
∫ t

 ϒ(s, t)e–x(s,υ) ds. Then with these settings equations () can be written
in the abstract form of (). Suppose further that:

(a) The function H(t, x, τ ) ≥  is continuous in J × [, ] × (–∞, ] and satisfies∫ 
–∞ H(t, x, τ ) dτ < ∞.

(b) The function Q(·) is continuous,  ≤ Q(x(τ ,υ)) ≤ ∫ 
–∞ es|x(s, ·)|L ds for

(τ ,υ) ∈ (–∞, ] × [, ].
Thus under the above hypotheses, we have

∥∥f
(
t,ϕ,�x(t)

)∥∥
L ≤

{∫ 



[∫ 

–∞
H(t,υ, τ )Q

(
ϕ(τ )(υ)

)
dτ

]

dυ

} 


+
{∫ 



[
Bx(t)(υ)

] dυ

} 


≤
{∫ 



[∫ 

–∞
H(t,υ, τ )

∫ 

–∞
es∣∣ϕ(τ )(·)∣∣L ds dτ

]

dυ

} 


+
∥∥�x(t)

∥∥
L

≤
{∫ 



[∫ 

–∞
H(t,υ, τ ) dτ

]

dυ

} 
 ‖ϕ‖Bl

+
∥∥�x(t)

∥∥
L

= Sr(t),

hence f satisfies (H) and in a similar way we can show that g may satisfy (H).
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For υ ∈ (, ), the operator � is defined by

(�(t)
)
(υ) = � (a)

[
I –

n∑
i=

arctan


i � (i)

]– n∑
i=

arctan


i

∫ i


(i – s)– 



· ν(i – s)λρ(s,υ) ds +
∫ a


(a – s)– 

 ν(a – s)λρ(s,υ) ds,

where {� (t)}(t≥) and {ν(t)}(t≥) are the same as the formulas in Example ..
Then all the conditions of Theorem . are satisfied. Hence, system () is controllable

on J .
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