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Abstract
In this paper, we use a hybrid feedback control method to study lag synchronization
in uncertain drive-response dynamical networks with a feature that the unknown
system parameter exists in the node dynamics. We then design two hybrid feedback
control methods to achieve the lag synchronization including the linear and adaptive
feedback control. With the designed controllers and update laws for the system
parameter in the node dynamics, we obtain two theorems on the lag synchronization
based on the LaSalle invariance principle. When the lag synchronization is achieved,
we identify the unknown system parameter. Finally, we provide two numerical
examples to verify the efficiency of the proposed control schemes.
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1 Introduction
Complex networks [, ] have attracted considerable attention as a fundamental tool in
understanding the dynamical behaviors of real systems, such as internet, World Wide
Web, food webs, electrical power grids, metabolic networks, scientific citation web and
fractal networks []. The dynamics of complex networks has been an interesting issue
with focus on the interplay between the local node dynamics and the overall topological
structures. As a typical collective behavior, synchronization of complex networks has been
widely investigated because of many applications in engineering []. Among many types of
synchronization of complex networks, inner synchronization inside a network and outer
synchronization between two coupled networks are striking. Generally the method of syn-
chronization is to transform the networked systems into some low dimensional systems
and obtain the criteria of synchronization by the master stability function or linear ma-
trix inequality [, ]. When the inner synchronization may not happen inside a network
with unappropriate topological connections and node dynamics, some controlling (e.g.,
the adaptive, feedback, pinning and impulsive control) methods are employed for realiz-
ing the synchronization (see [–] and many references cited therein).

To study the outer synchronization between two coupled networks, Li et al. applied the
open-plus-closed-loop control to achieve outer synchronization []. This original work
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theoretically and numerically demonstrated the feasibility of this type of synchronization.
In reality, when the trains arrive at the platform in subway systems, the inner and outer
doors simultaneously open or close, showing that both inner synchronization and outer
synchronization happen. Afterwards, the expanded works on the outer synchronization,
such as introducing the adaptive control, effect of noise and fractional-order node dynam-
ics, can be found in the literature [–].

It should be noted that all of the above-mentioned works on the synchronization fo-
cus on the known node dynamics and topological connections. This assumption cannot
be used in many real networks with evolving or adaptive couplings, e.g., flocks of robots
[]. Recently the synchronization of dynamical networks with unknown information has
received increasing attention. Zheng used the impulsive control to study the synchro-
nization of uncertain complex-variable chaotic delayed systems []. Wu and Lu studied
the outer synchronization and parameter identification between two networks with time-
varying connections by designing the adaptive controllers []. By designing the nonlin-
ear controllers, we achieved the generalized outer synchronization between two uncertain
networks where the couplings of each network are unknown nonlinear functions [].

During the studies on the synchronization of complex networks, most of the existing
works studied the complete synchronization. Apart from this type of synchronization, lag
synchronization is an interesting phenomenon, which is referred to as the coincidence
of the states between two coupled systems, where one system is delayed by a finite time.
Presently lag synchronization has been observed in lasers, neural models and electronic
circuits [] and applied in secure communication []. Recently the lag synchronization
of coupled networks has become a new issue in the research of complex networks. Li et
al. studied the successive lag synchronization on nonlinear dynamical networks by the
linear feedback control []. Zhao et al. considered the lag synchronization between two
different networks based on the state observer and designed the corresponding adaptive
controllers []. Projective lag synchronization in drive-response dynamical networks was
studied by proposing a hybrid feedback control method [, ]; however they did not
consider the parameter identification. To reduce the number of control nodes, the lag
synchronization by pinning control was studied in [, ].

Inspired by the above discussions, we study lag synchronization in drive-response dy-
namical networks by the method proposed in [, ] and identify the unknown parame-
ter in the node dynamics. By designing the hybrid feedback controllers, we achieve the lag
synchronization. With the proposed controllers and update laws for the system parame-
ter, we obtain two theorems on the lag synchronization and identify the unknown system
parameter when the lag synchronization happens. In addition, this control method is ef-
fective for the drive system with and without mismatched terms. Our findings may help a
deeper understanding of the consensus or agreement of the connected agents.

The rest of this paper is organized as follows. In Sections  and , preliminaries and
network models are given. Section  studies the lag synchronization by linear and adaptive
feedback control. Numerical examples are shown to verify the efficiency of the proposed
adaptive schemes in Section . Finally, conclusions are drawn in Section .

Notations: Throughout this paper, some necessary notations are first introduced. The
norm of a vector x is ‖x‖ =

√
xT x. The norm of a matrix A is ‖A‖ =

√
λmax(AT A), where

λmax(AT A) denotes the maximal eigenvalue of matrix AT A. ⊗ is the Kronecker product.
In is an identity matrix of size n.
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2 Preliminaries
Consider the following uncertain dynamical system:

ẋ(t) = f
(
x(t), θ

)
� f

(
x(t)

)
+ f

(
x(t)

)
θ , ()

where x ∈ Rn is the state vector, θ ∈ Rm is an unknown system parameter vector. f : Rn →
Rn is a continuous vector function and f : Rn → Rn×m is a continuous matrix function.

Assumption  There exists a positive constant L satisfying

(y – x)T(f (y, θ ) – f (x, θ )
)≤ L(y – x)T (y – x),

where x, y ∈ Rn are time-varying vectors.

Lemma  ((LaSalle invariance principle) []) Let � ⊂ D be a compact set that is positively
invariant with respect to ẋ = f (x). Let V : D → R be a continuously differentiable function
such that V̇ (x) ≤  in �. Let E be the set of all points in � where V̇ (x) = . Let M be the
largest invariant set in E. Then every solution starting in � approaches M as t → ∞.

3 Model presentation
The uncertain drive-response coupled networks with the designed controllers is given by

ẋd(t) = f
(
xd(t)

)
+ f

(
xd(t)

)
θ + �(t), ()

ẏr
i (t) = f

(
yr

i (t)
)

+ f
(
yr

i (t)
)
θ̃ (t) +

N∑

j=

aij�yr
j (t) + ui(t), i = , , . . . , N , ()

where xd = (xd
 , xd

, . . . , xd
n)T ∈ Rn is the state vector of the drive system. f, f have the same

meanings in Eq. (). �(t) is the nonlinear mismatched term. yr
i = (yr

i, yr
i, . . . , yr

in)T ∈ Rn

denotes the state vector of the ith node. θ = (θ (), θ (), . . . , θ (m))T ∈ Rm is the unknown pa-
rameter vector. θ̃ (t) = (θ̃ ()(t), θ̃ ()(t), . . . , θ̃ (m)(t))T ∈ Rm is the estimation of the unknown
parameter θ . � ∈ Rn×n is an inner coupling matrix measuring the interactions of vari-
ables. A = (aij)N×N is the coupling configuration matrix denoting the topological struc-
tures of networks. The entries aij are defined as follows: aij >  if there is a link between
node i and node j (i 
= j); otherwise aij =  (i 
= j), and the diagonal entries aii = –

∑N
j=,j 
=i aij,

i = , , . . . , N . ui(t) (i = , , . . . , N ) are the controllers to be designed.
The lag synchronization error is defined as ei(t) = yr

i (t) – xd(t – τ ), i = , , . . . , N , where
τ >  is a constant denoting time delay or lag. Then the lag synchronization between the
reference node () and the dynamical networks () is achieved if

lim
t→∞

∥∥yr
i (t) – xd(t – τ )

∥∥ = , i = , , . . . , N .

4 Lag synchronization analysis
4.1 Linear feedback control
In this subsection, we study the lag synchronization in drive-response networks () and
() with the designed linear feedback controllers. The main results are summarized in the
following theorem.
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Theorem  Suppose that Assumption  holds. If the controllers are designed as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ui(t) = ui(t) + ui(t),
ui(t) = �(t – τ ),
ui(t) = –diei(t) (i = , , . . . , N),
˙̃
θ (t) = –

∑N
i= f T

 (yr
i (t))ei(t),

()

where di (i = , , . . . , N) >  are feedback gains satisfying dmin = mini=,...,N {di} ≥ L +
λmax((P + PT )/) +  with P = A ⊗ �, then the lag synchronization in drive-response net-
works () and () is achieved and the unknown parameter θ can be identified.

Proof From networks () and (), we obtain the following error dynamical system:

ėi(t) = f
(
yr

i (t), θ
)

– f
(
xd(t – τ ), θ

)
+ f

(
yr

i (t)
)
θ̄ (t) +

N∑

j=

aij�ej(t) – diei(t), ()

where θ̄ (t) = θ̃ (t) – θ .
Consider the following Lyapunov function:

V (t) =



N∑

i=

eT
i (t)ei(t) +



θ̄T (t)θ̄ (t).

The time derivative of V (t) along the trajectories of error system () gives

V̇ (t) =
N∑

i=

eT
i (t)

[
f
(
yr

i (t), θ
)

– f
(
xd(t – τ ), θ

)
+ f

(
yr

i (t)
)
θ̄ (t) – diei(t)

]

+
N∑

i=

N∑

j=

eT
i (t)aij�ej(t) –

N∑

i=

θ̄T f T

(
yr

i (t)
)
ei(t)

≤
N∑

i=

(L – di)eT
i (t)ei(t) +

N∑

i=

N∑

j=

eT
i (t)aij�ej(t)

≤ (
L + λmax

((
P + PT)/

)
– dmin

)
eT (t)e(t),

where e(t) = (eT
 (t), eT

 (t), . . . , eT
N (t))T . According to the conditions, we obtain V̇ (t) ≤

–eT (t)e(t). Then the set

E =
{

ei(t) = , θ̃ (t) = θ , i = , , . . . , N
}

is the largest invariant set of the set Ê = {V̇ (t) = } for error system (). Based on the LaSalle
invariance principle, the orbits converge asymptotically to the set E, which means that the
lag synchronization is achieved. It also gives that the system parameter vector θ can be
identified by the updating laws () when the lag synchronization is achieved. �

Remark  In this theorem, we design a hybrid feedback control method to realize lag
synchronization, including ui(t) being the nonlinear feedback control and ui(t) being
the linear feedback control.
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Remark  For this linear feedback control, the expected feedback gains di need satisfy
di ≥ L + λmax((P + PT )/) + . As many studies on the linear feedback control show [,
], the theoretical values of di are much bigger than those needed in practice. To deal
with the shortcoming of linear feedback control, we will use the adaptive technique to
achieve the lag synchronization.

4.2 Adaptive feedback control
In this subsection, we apply the adaptive controllers to achieve the lag synchronization
and identify the unknown parameter in the node dynamics. The corresponding adaptive
controllers and update laws are then designed.

Theorem  Suppose that Assumption  holds. The lag synchronization in drive-response
networks () and () is achieved and the unknown parameter θ is also identified with the
following adaptive controllers and the corresponding updating laws:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ui(t) = ui(t) + ui(t),
ui(t) = �(t – τ ),
ui(t) = –di(t)ei(t) (i = , , . . . , N),
ḋi(t) = hieT

i (t)ei(t),
˙̃
θ (t) = –

∑N
i= f T

 (yr
i (t))ei(t),

()

where hi are arbitrary positive constants.

Proof Choose the Lyapunov function candidate as follows:

V (t) =



N∑

i=

eT
i (t)ei(t) +




N∑

i=


hi

(
di(t) – d∗

i
) +



θ̄T (t)θ̄ (t),

where d∗
i (i = , , . . . , N ) are sufficiently large positive constants to be determined later.

The derivative of V (t) yields

V̇ (t) =
N∑

i=

eT
i (t)ėi(t) +

N∑

i=


hi

(
di(t) – d∗

i
)
ḋi(t) + θ̄T (t) ˙̄θ (t)

=
N∑

i=

eT
i (t)

[
f
(
yr

i (t), θ
)

– f
(
xd(t – τ ), θ

)
+ f

(
yr

i (t)
)
θ̄ (t) – di(t)ei(t)

]

+
N∑

i=

N∑

j=

eT
i (t)aij�ej(t) –

N∑

i=

θ̄T (t)f T

(
yr

i (t)
)
ei(t) +

N∑

i=

(
di(t) – d∗

i
)
eT

i (t)ei(t)

≤
N∑

i=

(
L – d∗)eT

i (t)ei(t) +
N∑

i=

N∑

j=

eT
i (t)aij�ej(t)

≤ [
L + λmax

((
P + PT)/

)
– d∗]eT (t)e(t),

where d∗ = mini=,...,N {d∗
i }. Taking d∗ ≥ L+λmax((P +PT )/)+, we obtain V̇ (t) ≤ –eT (t)e(t).

Then the set

E =
{

ei(t) = , θ̃ (t) = θ , di(t) = d∗
i , i = , , . . . , N

}
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is the largest invariant set of the set Ê = {V̇ (t) = }. According to the LaSalle invariance
principle of differential equation, the orbits asymptotically converge to the set E. It shows
that the system parameter vector θ can be identified by the updating laws () when the lag
synchronization is achieved. �

Remark  It is noted that the mismatched term �(t) has no effect on the derivative of
Lyapunov function V (t), which shows that this method is robust for some control systems
with parameters perturbation and noise disturbance.

5 Numerical analysis
In this section, we will provide numerical examples to show the effectiveness of the pro-
posed control schemes obtained in the previous sections, which includes the linear and
adaptive feedback controls. In the numerical simulations, the node dynamical equations
are taken as the Lorenz chaotic system [], which is given by

⎧
⎪⎨

⎪⎩

ẋd
 = θ ()(xd

 – xd
 ),

ẋd
 = θ ()xd

 – xd
 – xd

 xd
 ,

ẋd
 = xd

 xd
 – θ ()xd

 .

Then the system can be rewritten in the following form:

⎛

⎜
⎝

ẋd


ẋd


ẋd


⎞

⎟
⎠ =

⎛

⎜
⎝


–xd

 xd
 – xd



xd
 xd



⎞

⎟
⎠

︸ ︷︷ ︸
f(xd)

+

⎛

⎜
⎝

xd
 – xd

  
 xd

 
  –xd



⎞

⎟
⎠

︸ ︷︷ ︸
f(xd)

⎛

⎜
⎝

θ ()

θ ()

θ ()

⎞

⎟
⎠

︸ ︷︷ ︸
θ

.

We introduce the quantity E(t) = maxi=,...,N ‖yr
i (t) – xd(t – τ )‖ to measure the lag syn-

chronization process and take the inner coupling matrix � = I.

5.1 Lag synchronization by linear feedback control
In this subsection, we use the linear feedback control schemes () in Theorem  to realize
the lag synchronization and to identify the unknown parameter in the node dynamics. We
choose an undirected coupling network, and the coupling matrix is

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

–         
 –        
  –       
   –      
    –     
     –    
      –   
       –  
        – 
         –

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.
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According to Theorem , the estimation of the unknown parameter θ̃ (t) reads as

⎛

⎜⎜
⎝

˙̃
θ ()(t)
˙̃
θ ()(t)
˙̃
θ ()(t)

⎞

⎟⎟
⎠ =

⎛

⎜
⎝

–
∑N

i=(yr
i(t) – yr

i(t))ei(t)
–
∑N

i= yr
i(t)ei(t)

∑N
i= yr

i(t)ei(t)

⎞

⎟
⎠ .

Based on the results obtained in [] on the Lorenz system, one can choose a positive
constant L =  such that Assumption  holds. According to Theorem , the feedback gains
di ≥ L +λmax((P + PT )/) + . We then take di = , i = , , . . . , , for numerical simulations
and employ the mismatched terms as �(t) = (sin(t), , . cos(t))T . The real values for the
system parameter θ are set as θ () = , θ () = , θ () = /. The initial values are randomly
chosen in (–, ). The numerical results are presented in Figures  and . Figure  displays
the time evolution of the lag synchronization error E(t) with a delay τ = ., indicating
that the lag synchronization between the drive and response networks is achieved. Fig-

Figure 1 Time evolution of the lag synchronization error E(t).

Figure 2 The estimated unknown parameter θ̃ = (θ̃ (1), θ̃ (2), θ̃ (3))T by linear feedback control with
τ = 0.01.
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ure  shows the identification of the uncertain system parameter θ , which means that the
unknown parameter is successfully estimated. In addition, we increase the network size
N ≤  and the lag  < τ ≤  and see that these two quantities have a little effect on the
lag synchronization.

5.2 Lag synchronization by adaptive feedback control
In this subsection, we apply the adaptive technique to control the lag synchronization by
using the controllers and corresponding laws () in Theorem . In this numerical example,
we take a directed network as follows:

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

–         
 –        
  –       
   –      
    –     
     –    
      –   
       –  
        – 
         –

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

The mismatched terms are chosen as �(t) = (sin(t), cos(t), )T , and the initial values
are chosen randomly in (–, ). The corresponding numerical results are shown in Fig-
ures , , . The time evolution of lag synchronization error E(t) is depicted in Figure .
From Figure , the proposed adaptive controllers and update laws can identify the un-
known system parameter. Figure  shows the curves of the adaptive feedback gains di for
i = , , . . . , , which converge to some constants when the lag synchronization is achieved.
These results show that the required lag synchronization has been realized with our de-
signed control laws (). Compared to the linear feedback control, the adaptive control
method is better for realizing the lag synchronization and identifying the unknown pa-
rameter.

Figure 3 Time evolution of the lag synchronization error E(t).
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Figure 4 The estimated unknown parameter θ̃ = (θ̃ (1), θ̃ (2), θ̃ (3))T by adaptive feedback control with
τ = 0.05.

Figure 5 Time evolution of feedback gains di(t) with hi = 10, i = 1, 2, . . . , 10.

6 Conclusions
In the current study, we have studied lag synchronization in drive-response dynamical
networks with an uncertain parameter vector in the node dynamics by the hybrid feed-
back control method. By employing the linear and adaptive feedback controllers, we have
designed two types of control schemes and updated laws for the system parameter and
derived two criteria on the lag synchronization. Simultaneously, we have identified the
unknown system parameter when the lag synchronization is achieved. In the numerical
simulations, we have provided two examples to show the validity of the proposed control
schemes. Our hybrid control method is effective for the driving system with parameter
perturbation and noise disturbance and it also holds that the disturbance is in the re-
sponse networks. In the future, how to derive the domain of the lag in the synchronization
of drive-response networks is underway.
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