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Abstract
In this paper, the linearization of third-order ordinary differential equations, which are
the transformed equations of the quintic nonlinear beam equation, is presented. First
of all, a third-order ordinary differential equation can be linearized if its coefficients
satisfied the conditions of the linearization theorem. So, the conditions for
linearization are investigated. After that, in each case, the linearizing transformation is
defined, and finally the linear third-order equation is obtained. Moreover, after
calculating the solutions to linear third-order equations and substituting the original
variables to the solutions, the exact solutions to the equation of motion are obtained.

Keywords: conditional linearization; quintic nonlinear beam equation; nonlinear
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1 Introduction
A structural element for carrying a load in buildings, bridges and steel constructions is
beam. The exact solution to the problem of beam was investigated in  by Love (cited
in Sedighi et al. [], p.). Afterward, many beam problems were formulated and solved
by various methods. In the case of the equation of motion for the quintic nonlinear beam,
the transversal oscillation of quintic nonlinear beam was solved in the paper of Sedighi et
al. [] by using the homotopy analysis method. After that, in , Sedighi et al. [] used
the stiffness analytical approximation method, the homotopy perturbation method with
an auxiliary term, the max-min approach (MMA) and the iteration perturbation method
(IPM) to solve the governing equation of a transversely vibrating quintic nonlinear beam.
And then, the exact solution to beam vibration with quintic nonlinearity, including ex-
act expressions for the beam curvature, was performed by using the parameter expansion
method from Sedighi and Reza []. In , Sripana and Chatanin [] applied Lie sym-
metry analysis for finding the exact solutions to the nonlinear vibration of Euler-Bernoulli
beam which is the equation of motion with a quintic nonlinear term. The infinitesimal
generators were used to reduce the partial differential equation to the ordinary differen-
tial equation. In some cases, the ordinary differential equation could be solved analytically
and give exact solution. On the other hand, some cases of nonlinear ordinary differential
equations were difficult to solve analytically.

Linearization had been used to transform the nonlinear differential equations to lin-
ear equations in many fields of research. Sophus Lie [] used the idea of point trans-
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formations to solve the problem on linearization of second-order ordinary differential
equations. After that, the linearization of a third-order equation using the idea of point
transformation was studied by Guy Grebot [] but the problem solving in this research
was not completed. In , Ibragimov and Meleshko [] presented the linearization
of third-order ordinary differential equations by means of point and contact transfor-
mations. The necessary and sufficient conditions for linearization were provided in ex-
plicit forms. After that, the linearization of fourth-order ordinary differential equations
by means of point transformations was studied by Ibragimov et al. [] in , and
the solutions to these linearized problems were solved and presented. Moreover, a new
method for reducing fourth-order autonomous ordinary differential equations (ODEs) to
Lie linearizable second- and third-order ODEs was presented by Dutt and Qadir [] in
.

In this paper, the linearization theorem from the research of Ibragimov and Meleshko
[] is applied for linearizing third-order ordinary differential equations. All of those equa-
tions are the transformed equations for the quintic nonlinear beam in the research of
Sripana and Chatanin []. When the conditions for linearization in each case are in-
vestigated, linear equations are obtained. Therefore, the exact solutions to the quintic
nonlinear equation of motion are obtained when all of the original variables are substi-
tuted.

2 Review of the linearization theorem
The necessary and sufficient conditions for linearization of the third-order ordinary dif-
ferential equation by using point and contact transformations were found by Ibragimov
and Meleshko in  []. The linearization theorem states that the nonlinear ordinary
differential equation, which is in the form as follows:

U ′′′ +
(
AU ′ + A

)
U ′′ + BU ′ + BU ′ + BU ′ + B = , ()

is linearizable if and only if its coefficients satisfy the following five equations:

AU – Az = , ()
(
B – A

 – Az
)

U = , ()

Az – AA – B = , ()

AU + A
 – B = , ()

(
B – Az – A


)
Az + (Bz – AB)U + BUA – BUU = . ()

After that, the linearizing transformations t = ϕ(z), u = ψ(z, U) are defined by solving the
Riccati equation


dχ

dz
– χ = B – A

 – Az ()

for χ =
ϕzz

ϕz
, ()
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and by solving the following integrable system of partial differential equations for
ψ(z, U):

ψUU = AψU , ()

ψzU = (χ + A)ψU , ()

ψzzz = χψzz + BψU –



(
Az + A

 – B + χ)ψz – �ψ , ()

where χ is given by (). The variables are changed and a coefficient α(t) is found
by

α = �ϕ–
z , ()

where

� =



(
Azz + AzA + BU – Bz + A

 – AB + AB
)
. ()

Finally, the third-order linear equation will be obtained by

u′′′ + α(t)u = . ()

3 Equation of motion
The partial differential equation which is the quintic nonlinear equation of motion is in-
teresting. The nonlinear vibration of Euler-Bernoulli beam has been explained by Zhang
et al. [], whereas the governing equation which was studied by Sedighi et al. [] is studied
in this paper. A hinged-hinged flexible beam model with length subjected to constant axial
load is simplified to the quintic nonlinear equation of motion. This model is studied only
in the fundamental transverse mode. The interaction between transverse and longitudinal
vibrations is neglected to be an assumption.

The quintic nonlinear equation of motion is in the form

mwtt + cwt + EI
[




w
xw

xx – w
xx – w

xwxxxx +



w
xwxxxx

]

+ EIwxxxx + Pwxx +



Pw
xwxx = . ()

For explaining the variables and constants, the flexural deflection with respect to x, t is
denoted by w. The five important constants are a constant axial force P, the damping
coefficient c, mass per unit length m, a modulus of elasticity E and a moment of iner-
tia I .

4 Lie symmetry reduction for the quintic nonlinear beam equation
From the research of Sripana and Chatanin [], Lie symmetry analysis was applied to the
quintic nonlinear equation of motion. The numbers of the independent variables were
reduced by one, and then the partial differential equation was reduced to the ordinary
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Table 1 Two groups of nonlinear ordinary differential equations

Group Generators Ordinary differential equations

1 X1 + X2,
X1 + X2 + X3

cφ′ + (m + P0)φ′′ + EIφ(4) – 3EIφ′′3 + 3
2 P0φ

′2φ′′
– 3EIφ′2φ(4) + 27

2 EIφ
′2φ′′3 + 9

4 EIφ
′4φ(4) = 0

X1 + X2 + X4 c + cφ′ + (m + P0)φ′′ + EIφ(4) – 3EIφ′′3 + 3
2 P0φ

′2φ′′
– 3EIφ′2φ(4) + 27

2 EIφ
′2φ′′3 + 9

4 EIφ
′4φ(4) = 0

2 X2 + X4,
X2 + X3 + X4

c + P0φ′′ + EIφ(4) – 3EIφ′′3 + 3
2 P0φ

′2φ′′
– 3EIφ′2φ(4) + 27

2 EIφ
′2φ′′3 + 9

4 EIφ
′4φ(4) = 0

X2 + X3 P0φ′′ + EIφ(4) – 3EIφ′′3 + 3
2 P0φ

′2φ′′
– 3EIφ′2φ(4) + 27

2 EIφ
′2φ′′3 + 9

4 EIφ
′4φ(4) = 0

Table 2 The conditions for linearization in each case

Group Nonlinear equations Conditions for linearization

1 EIU′′′(1 – 3U2 + 9
4U

4) + EIU′3( 272 U
2 – 3)

+ U′(m + P0 + 3
2 P0U

2) + cU = 0
U =

√
18
81 , P0 = 0, c = 0,m = 0

EIU′′′(1 – 3U2 + 9
4U

4) + EIU′3( 272 U
2 – 3)

+ U′(m + P0 + 3
2 P0U

2) + c(U + 1) = 0
U =

√
18
81 , P0 = 0, c = 0,m = 0

2 EIU′′′(1 – 3U2 + 9
4U

4) + EIU′3( 272 U
2 – 3)

+ P0U′(1 + 3
2U

2) + c = 0
U =

√
18
81 , P0 = 0, c = 0

EIU′′′(1 – 3U2 + 9
4U

4) + EIU′3( 272 U
2 – 3)

+ P0U′(1 + 3
2U

2) = 0
U =

√
18
81 , P0 = 0

differential equation by using infinitesimal generators. After calculating the infinitesimal
generators, four linearly independent generators were obtained as follows:

X =
∂

∂x
–

m
c

e– c
m t ∂

∂w
, X =

∂

∂t
–

m
c

e– c
m t ∂

∂w
,

X = –
m
c

e– c
m t+ ∂

∂w
, X =

[
–

m
c

e– c
m t + 

]
∂

∂w
.

The results of transforming the nonlinear partial differential equation to nonlinear ordi-
nary differential equations are summarized in Table . In Group , φ′ is denoted by dφ

dz and
z = t – x. In Group , z is denoted by x.

5 Conditional linearization and exact solutions
The conditional linearization of third-order ordinary differential equations in each case
from Table  is presented by applying the linearization theorem of Ibragimov and
Meleshko [], and then all of nonlinear ordinary differential equations are transformed
to the linear equation u′′′ = . In summary, the conditions for linearization are shown in
Table .

For finding the conditions for linearization in Group , the ordinary differential equation
can be reduced to

EIU ′′′
(

 – U +



U
)

+ EIU ′
(




U – 
)

+ U ′
(

m + P +



PU
)

+ cU = , ()

where U ′ = dU
dz , U = φ′ and z = t – x.
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Table 3 The exact solutions to the quintic nonlinear equations of motion

Group Generators Exact solutions

1 X1 + X2 w = 2m2

c2
e–

c
m t +

h1c
2
1

6b1
(t – x)3 + h2c1

2b1
(t – x)2 + h3

b1
(t – x) + r

X1 + X2 + X3 w = m2

c2
(2 + e)e–

c
m t +

h1c
2
1

6b1
(t – x)3 + h2c1

2b1
(t – x)2 + h3

b1
(t – x) + r

X1 + X2 + X4 w = 3m2

c2
e–

c
m t + t +

h1c
2
1

6b1
(t – x)3 + h2c1

2b1
(t – x)2 + h3

b1
(t – x) + r

2 X2 + X4 w = 2m2

c2
e–

c
m t + t +

h1c
2
1

6b1
x3 + h2c1

2b1
x2 + h3

b1
x + r

X2 + X3 + X4 w = m2

c2
(2 + e)e–

c
m t + t +

h1c
2
1

6b1
x3 + h2c1

2b1
x2 + h3

b1
x + r

X2 + X3 w = m2

c2
(1 + e)e–

c
m t +

h1c
2
1

6b1
x3 + h2c1

2b1
x2 + h3

b1
x + r

The coefficients of Equation () are specified by using the general form of Equa-
tion () that are A = , A = , B = , B = cU 

EI(–U+ 
 U)

, B = (m+P+ 
 PU)

EI(–U+ 
 U)

, and

B = ( 
 U–)

(–U+ 
 U)

. From the necessary conditions, conditions () and () are satisfied. Con-

dition (), that is, d
dU [ (m+P+ 

 PU)
EI(–U+ 

 U)
] = , will be satisfied if and only if U =  or m, P = .

Condition (), that is, –[ ( 
 U–)

(–U+ 
 U)

] = , will be satisfied if and only if U =
√


 . Con-

dition (), that is, – d

dU [cU 
EI(–U+ 

 U)
] = , will be satisfied if and only if U =  or

c = . In the same way, the conditions for linearization in Group  are satisfied by letting
U =

√

 and P = . By comparing the coefficients with Equation (), we have A = ,

A = , B = , B = , B =  and B = ( 
 U–)

(–U+ 
 U)

.
The linearizing transformation ζ = ϕ(z) is defined by solving the Riccati equation

 dχ

dz – χ = , and the simplest solution is χ = . By considering the equation χ = ϕzz
ϕz

,
the simplest solution for ϕ(z) is ϕ = cz. For finding ψ(z, U), we get ψUU =  and
ψzU = . The simplest solution for ψ(z, U) is ψ = bU . So, the linearizing transforma-
tion is ζ = cz and u = bU . The coefficient α(ζ ) is found by using α = �ϕ–

z , where
� = 

 (Azz +AzA +BU –Bz +A
 –AB +AB). By calculating � =  and

ϕ–
z = c–

 , the coefficient α(ζ ) is equal to zero. Therefore, the third-order linear equation
u′′′ + α(ζ )u =  becomes u′′′ = . After calculating the solution to this third-order linear
equation, we get u = h

ζ

 + hζ + h, that is, U = h
(cz)

b
+ h

(cz)
b

+ h
b

. After that, the origi-

nal variable U = φ′ is substituted into the solution, which gives φ = hc


b
z + hc

b
z + h

b
z + r.

Finally, all of solutions are obtained by substituting the original variables in each case as
shown in Table .

6 Conclusions
In this research, the conditional linearization of third-order ordinary differential equations
is presented. The transformed equations of the quintic nonlinear beam equation in the
research of Sripana and Chatanin, which are fourth-order nonlinear ordinary differential
equations, can be reduced to third-order ordinary differential equations and have the form
that corresponds to the third-order equation in the linearization theorem of Ibagimov and
Meleshko. So the linearization theorem is applied for linearizing these equations. First, the
linearization conditions are considered. Then, the linearizing transformation is defined.
Finally, the linear third-order differential equations which can be solved analytically are
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obtained. Furthermore, the exact solutions to the quintic nonlinear beam equation are
also obtained after substituting all the original variables to the solutions.
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