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model. However, the study of the discrete epidemic models is comparatively poor due to
the complicated expression and difficulty in dynamical analysis.
In this paper, we construct a backward difference scheme for a class of continuous-time

schistosomiasis models with general nonlinear incidence derived from []. We study the
dynamical properties, especially the global asymptotic stability of the disease-free equilib-
rium and endemic equilibrium for this discrete model. Firstly, we address the basic prop-
erties of the model, such as the positivity and the boundedness of solutions. Further, by
constructing discrete type Lyapunov functions and using the theory of stability of differ-
ence equations, we establish the global asymptotic stability of the equilibria.
The paper is structured as follows. In Section , we present the discrete mathematical

model derived from the continuous one by using backward Euler discretization. In Sec-
tion , we recall some basic properties of themodel. Section  is devoted to the equilibrium
analysis; thus, we study the global stability of the disease-free equilibrium and the endemic
equilibrium. In Section , we present the numerical simulation and some comments. Fi-
nally, in Section , we end the paper by a conclusion.

2 Discrete mathematical model
In this section, we derive the discrete schistosomiasis mathematical model. In [], Traoré
et al. studied the stability of the equilibria of the following deterministic continuous-time
schistosomiasis model:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dHs
dt = bh – dhHs – f (Si,Hs) + γHi,
dHi
dt = f (Si,Hs) – dhHi – γHi,
dSs
dt = bs – dsSs – g(Hi,Ss),
dSi
dt = g(Hi,Ss) – dsSi,

()

where
Hs(t) is the size of the susceptible human population;
Hi(t) is the size of the infected human population;
Ss(t) is the size of the susceptible snails;
Si(t) is the size of the infected snails;
bh is the recruitment rate of human hosts;
bs is the recruitment rate of snails;
dh is the per capita natural death rate of human hosts;
ds is the per capita natural death rate of snails;
γ is the treatment rate of human hosts;
f is the infection function of susceptible human due to infected snails;
g is the infection function of susceptible snails due to infected human.

For the study of system (), it was assumed that functions f and g satisfy the following
assumptions.

H: f and g are nonnegative C functions on the nonnegative orthant.
H: For all (Hs,Hi,Ss,Si) ∈R


+, f (,Hs) = f (Si, ) =  and g(,Ss) = g(Hi, ) = .

H: For all (Hs,Hi,Ss,Si) ∈R

+, f (Si,Hs) ≤ f(,H

s )Si and g(Hi,Ss) ≤ g(,Ss )Hi.

Remark . Assumption H is a natural assumption which means there is not a new in-
fections when there is not an infectious human or an infectious snail.



Guiro et al. Advances in Difference Equations  (2017) 2017:116 Page 3 of 16

System () has a disease-free equilibrium,

EDFE =
(
H

s , ,S

s , 

)
=

(
bh
dh

, ,
bs
ds
, 

)

,

and an endemic equilibrium Ē = (H̄s, H̄i, S̄s, S̄i). Also, the basic reproduction number is

R =
√

f(,H
s )g(,Ss )

ds(γ+dh)
, where

f =
∂f
∂Si

(Si,Hs), f =
∂f
∂Hs

(Si,Hs), g =
∂g
∂Hi

(Hi,Ss), and g =
∂g
∂Ss

(Hi,Ss).

Remark . The basic reproduction number evaluates the average number of new in-
fections generated by a single infected individual in a completely susceptible popula-
tion.

We can summarize the stability results of the equilibria in [] by the following theo-
rem.

Theorem . ([]) The following statement holds.
(i) Let assume R ≤ . Then the disease-free equilibrium EDFE of () is globally

asymptotically stable.
(ii) Let us assume R > . Then the endemic equilibrium Ē of () is globally

asymptotically stable.

On the other hand, as we said in our introduction, there occur situations such that con-
structing discrete epidemic models is a more appropriate approach to understand disease
transmission dynamics and to evaluate eradication policies because they permit arbitrary
time-step units, preserving the basic features of corresponding continuous-time models.
Furthermore, this allows for better use of statistical data for numerical simulations due
to the reason that the infection data are compiled at discrete given time intervals. In this
paper, motivated by the above facts, we propose the following discrete schistosomiasis
models with general incidence, which is derived from system () by applying a variation
of backward Euler method with a step size h = :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Hs(p + ) –Hs(p) = bh – dhHs(p + ) – f (Si(p + ),Hs(p + )) + γHi(p + ),

Hi(p + ) –Hi(p) = f (Si(p + ),Hs(p + )) – dhHi(p + ) – γHi(p + ),

Ss(p + ) – Ss(p) = bs – dsSs(p + ) – g(Hi(p + ),Ss(p + )),

Si(p + ) – Si(p) = g(Hi(p + ),Ss(p + )) – dsSi(p + ),

()

where bh, dh, γ , bs and ds are the same positive constants defined above, similar to the
case of continuous-time system ().
The system () always admits a disease-free equilibrium EDFE = ( bhdh , ,

bs
ds
, ) and an en-

demic equilibrium Ē = (H̄s, H̄i, S̄s, S̄i).
For the global stability of the endemic equilibrium we make the additional assump-

tion:
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H: For all (Hs,Hi,Ss,Si) ∈R
,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

 ≤
f (Si(p+),Hs(p+))

Hs(p+)
f (S̄i ,H̄s)

H̄s

≤ min{ Si(p)S̄i
, Si(p+)S̄i

}

and

 ≤
g(Hi(p+),Ss(p+))

Ss(p+)
g(H̄i ,S̄s)

S̄s

≤ min{Hi(p)
H̄i

, Hi(p+)
H̄i

}.
()

Remark . Assumption H can be seen as a technical assumption to have V (p + ) –
V (p) ≤ . Also, it permits one to ensure the positivity of the variable Hs and Ss.

3 Basic properties
The initial conditions of system () are

Hs() > , Hi() > , Ss() >  and Si() > . ()

Lemma . Let (Hs(p),Hi(p),Ss(p),Si(p)) be a solution of system () with initial conditions
(). Then Hs(p) > , Hi(p) > , Ss(p) >  and Si(p) >  for any p > .

Proof Considering the second and the fourth equation of system (), we have

⎧
⎨

⎩

Hi(p + ) –Hi(p) = f (Si(p + ),Hs(p + )) – dhHi(p + ) – γHi(p + ),

Si(p + ) – Si(p) = g(Hi(p + ),Ss(p + )) – dsSi(p + ),
()

so

⎧
⎨

⎩

Hi(p + ) = 
+dh+γ

(f (Si(p + ),Hs(p + )) +Hi(p)),

Si(p + ) = 
+ds

(g(Hi(p + ),Ss(p + )) + Si(p)),
()

thus, Hi(p + ) >  and Si(p + ) > .
Considering assumption H, we have

f (Si(p + ),Hs(p + ))
Hs(p + )

≥ f (S̄i, H̄s)
H̄s

and
g(Hi(p + ),Ss(p + ))

Ss(p + )
≥ g(H̄i, S̄s)

S̄s
.

So we conclude that Hs(p + ) >  and Ss(p + ) >  since f , g , H̄s and S̄s are positive. �

Let H =Hi +Hs and S = Si + Ss, then system () can be written as

⎧
⎨

⎩

H(p + ) –H(p) = bh – dhH(p + ),

S(p + ) – S(p) = bs – dsS(p + ),
()

with initial conditions

H() >  and S() > . ()



Guiro et al. Advances in Difference Equations  (2017) 2017:116 Page 5 of 16

Lemma . Let (H(p),S(p)) be the solutions of system () with the initial conditions ().
Then H(p) > , S(p) >  for any p > .

Proof Assume that H(p) > , S(p) > ; then we have

⎧
⎨

⎩

( + dh)H(p + ) = bh +H(p),

( + ds)S(p + ) = bs + S(p).
()

By the first equation of (), we have H(p + ) > , and by the second equation of (), we
have S(p + ) > . Hence, by induction, we prove this lemma. �

Lemma . Any solution (H(p),S(p)) of system () with the initial conditions () satis�es
lim supp→+∞(H(p) + S(p)) < bh+bs

μ
, where μ = min{dh,ds}.

Proof Let V (p) =H(p) + S(p). From system (), we have

V (p + ) –V (p) = bh + bs –
(
dhH(p + ) + dsS(p + )

)

≤ bh + bs – min{dh,ds}
(
H(p + ) + S(p + )

)
,

so

V (p + ) –V (p) ≤ bh + bs –μV (p + ),

from which we have lim supp→+∞ V (p) ≤ bh+bs
μ

.
Hence, the proof is complete. �

Corollary . The set

K =
{

(Hs,Hi,Ss,Si) ∈R
;  ≤ Hs +Hi ≤ bh

dh
;  ≤ Ss + Si ≤ bs

ds

}

is an invariant and attracting domain for system ().

Theorem .
(i) If R ≤ , then model () has only a unique disease-free equilibrium

EDFE = (H
s , ,Ss , ).

(ii) If R > , then model () has unique endemic equilibrium Ē = (H̄s, H̄i, S̄s, S̄i).

Proof Let E = (Hs,Hi,Ss,Si) be an equilibrium point of system (). Using the second and
the last equations of (), we have

f (Si,Hs) = (dh + γ )Hi,

g(Hi,Ss) = dsSi,

so we have

f (Si,Hs)
Si

g(Hi,Ss)
Hi

= ds(dh + γ ).
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By using system (), let

�(Hi,Si) =
f (Si,H

s –Hi)
Si

g(Hi,Ss – Si)
Hi

– ds(dh + γ ),

lim
(Hi ,Si)→(+,+)

�(Hi,Si) =
∂f
∂Si

(
,H

s
) ∂g
∂Hi

(
,Ss

)
– ds(dh + γ ) = ds(dh + γ )

(
R
 – 

)
,

and we have also �(H
s ,Ss ) = –ds(dh + γ ).

When R ≤ , we have lim(Hi ,Si)→(+,+) �(Hi,Si) ≤ , thus, there is not any (H∗
i ,S

∗
i ) >

(, ) such that �(H∗
s ,S∗

s ) = . Therefore system () has a unique disease-free equilibrium
EDFE.
When R > , we have lim(Hi ,Si)→(+,+) �(Hi,Si) ≥ , so there exists (H̄i, S̄i) ∈ (,H

s ) ×
(,Ss ), furthermore H̄s >  and S̄s > . This implies that the system () has a unique en-
demic equilibrium point Ē = (H̄s, H̄i, S̄s, S̄i). �

4 Equilibria and analysis
For the stability analysis, we present first the local and global stability of the EDFE and
secondly the global stability of the endemic equilibrium with respect to R.

4.1 Stability of the disease-free equilibrium EDFE

Theorem . If R ≤ , then

lim
p→+∞Hs(p) =

bh
dh

, lim
p→+∞Hi(p) = ,

lim
p→+∞Ss(p) =

bs
ds

and lim
p→+∞Si(p) = ,

()

and EDFE = ( bhdh , ,
bs
ds
, ) is locally asymptotically stable.

Proof Using the assumption H, it follows that f(,Hs) =  and g(,Ss) =  for all Hs

and Ss.
Calculating the linearized system at any point (Hs,Hi,Ss,Si), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hs(p + ) –Hs(p) = –(dh + f(Si(p + ),Hs(p + )))Hs(p + )

+ γHi(p + ) – f(Si(p + ),Hs(p + ))Si(p + ),

Hi(p + ) –Hi(p) = f(Si(p + ),Hs(p + ))Hs(p + ) – (dh + γ )Hi(p + )

+ f(Hi(p + ),Ss(p + ))Si(p + ),

Ss(p + ) – Ss(p) = –g(Hi(p + ),Ss(p + ))Hi(p + )

– (ds + g(Hi(p + ),Ss(p + )))Ss(p + ),

Si(p + ) – Si(p) = g(Hi(p + ),Ss(p + ))Hi(p + )

+ g(Hi(p + ),Ss(p + )))Ss(p + ) – dsSi(p + ).

()

Let Xn = (Hs(n),Hi(n),Ss(n),Si(n)), equation () can be rewritten at EDFE into

Xp+ = A–Xp
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with

A =

⎛

⎜
⎜
⎜
⎝

 + dh   f(,H
s )

  + dh + γ  –f(,H
s )

 g(,Ss )  + ds 
 –g(,Ss )   + ds

⎞

⎟
⎟
⎟
⎠
.

If all the eigenvalues σ of matrix A satisfy |σ | > , then all the eigenvalues λ of the matrix
A– will satisfy |λ| < .
The linearization of system () at EDFE gives the following characteristic equation:

( + dh – λ)( + ds – λ)
[
( + ds – λ)( + dh + γ – λ) – f

(
,H

s
)
g

(
,Ss

)]
= . ()

We can see that all solutions λ of equation () satisfy |λ| > . Indeed, equation () has
roots

λ =  + ds > , λ =  + dh > 

and the other roots are given by

( + ds – λ)( + dh + γ – λ) = f
(
,H

s
)
g

(
,Ss

)
. ()

Let suppose that there exists at least one root λ = |λ| of equation () such that |λ| < .
From the expression of R, we have

f
(
,H

s
)
g

(
,Ss

)
= R

ds(γ + dh).

Since R ≤ , we obtain

f
(
,H

s
)
g

(
,Ss

) ≤ ds(γ + dh),

f
(
,H

s
)
g

(
,Ss

) ≤ ds(γ + dh) < (ds +  – λ)(γ + dh +  – λ);

so equation () cannot have roots. Hence, EDFE is locally asymptotically stable according
to Theorem  in []. �

Now, let us analyze the global behavior of the DFE. The global stability of the DFEwill be
studied using the basic reproduction number R. We first make the following additional
assumption.

Theorem . The disease-free equilibrium is globally asymptotically stable in K whenever
R ≤ .

Proof The proof is based on using a comparison theorem []. By using assumption H,
note that the equations of the infected components in system () can be expressed as

(
Hi(p)
Si(p)

)

≥
(
 + dh + γ –f(,H

s )
–g(,Ss )  + ds

)(
Hi(p + )
Si(p + )

)

, ()
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so

(
Hi(p + )
Si(p + )

)

≤ B–

(
Hi(p)
Si(p)

)

, with B =

(
 + dh + γ –f(,H

s )
–g(,Ss )  + ds

)

.

Using the fact that all the moduli of the eigenvalues of the matrix B are greater than , it
follows that the linearized differential inequality system () is stable whenever R ≤ .
Indeed,we can see that all eigenvalues λ of thematrixB satisfy equation (). By the same

reasoning as in the proof of theorem ., we deduce that the moduli of the eigenvalues of
the matrix B are greater than  since R ≤ .
Consequently, by a standard comparison theorem [], (Hi(p),Si(p)) −→ (, ) as p −→

∞ for system () and substitutingHi = Si =  in system (), we getHs −→H
s and Ss −→ Ss

as p−→ ∞.
Thus, (Hs(p),Hi(p),Ss(p),Si(p)) −→ (H

s , ,Ss , ) as p −→ ∞ for system () when R ≤ .
Therefore, EDFE is globally asymptotically stable if R ≤ . �

4.2 Stability of the endemic equilibrium Ē
To study the global behavior of this endemic equilibrium Ē, we use the assumption H,
which is the discrete version of the one in [].

Lemma . Let ϕ be a C function on a set [min{a,b},max{a,b}]with a,b ∈R
+∗ and c ∈R

+.
Then

(

 – c
lnb – lna
b – a

)

≤
(

 – cmin

{

a
,

b

})

. ()

Proof By using the mean value theorem we get (). �

Theorem . When γ =  andR > , the endemic equilibrium Ē is globally asymptotically
stable in K .

Proof If we consider the system () when R > , there exists a unique endemic equilib-
rium Ē.We now establish the global asymptotic stability of this endemic equilibriumwhen
γ = .
Evaluating both sides of () at Ē with γ =  gives

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

bh = dhH̄s + f (S̄i, H̄s),

dhH̄i = f (S̄i, H̄s),

bs = dsS̄s + g(H̄i, S̄s),

dsS̄i = g(H̄i, S̄s).

()

Let

h(x) = x –  – lnx, ()
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Vhs(p) = g(H̄i, S̄s)H̄sh
(
Hs(p)
H̄s

)

,

Vhi(p) = g(H̄i, S̄s)H̄ih
(
Hi(p)
H̄i

)

,

Vss(p) = f (S̄i, H̄s)S̄sh
(
Ss(p)
S̄s

)

,

Vsi(p) = f (S̄i, H̄s)S̄ih
(
Si(p)
S̄i

)

.

()

We can see that h : R∗
+ → R

∗
+ has the strict global minimum h() = . Thus, Vhs(p) ≥ ,

Vhi(p) ≥ , Vss(p) ≥ , Vsi(p) ≥  with equality if and only if Hs(p) = H̄s, Hi(p) = H̄i, Ss(p) =
S̄s and Si(p) = S̄i. We will study the behavior of the Lyapunov function

V (p + ) = Vhs(p + ) +Vhi(p + ) +Vss(p + ) +Vsi(p + ). ()

We can see that V (p + ) ≥  with equality if and only if

Hs(p + )
H̄s

= ,
Hi(p + )

H̄i
= ,

Ss(p + )
S̄s

=  and
Si(p + )

S̄i
= .

The differencesVhs(p+)–Vhs(p),Vhi(p+)–Vhi(p),Vss(p+)–Vss(p) andVsi(p+)–Vsi(p)
along the solutions of ()will be calculated separately and then combined to get the desired
quantity V (p + ) –V (p).
For this purpose, we use Lemma . and we suppose that Hs(p) ≤ Hs(p + ); the compu-

tation is quite the same as Hs(p + ) ≤ Hs(p). We have

Vhs(p + ) –Vhs(p) = g(H̄i, S̄s)
(

 – H̄s
lnHs(p + ) – lnHs(p)
Hs(p + ) –Hs(p)

)
(
Hs(p + ) –Hs(p)

)
.

By using Lemma ., we have

 – H̄s
lnHs(p + ) – lnHs(p)
Hs(p + ) –Hs(p)

≤  –
H̄s

Hs(p + )

and so

Vhs(p + ) –Vhs(p) ≤ g(H̄i, S̄s)
(

 –
H̄s

Hs(p + )

)
(
Hs(p + ) –Hs(p)

)
.

Using the first equation of () to replace bh, we have

Vhs(p + ) –Vhs(p) ≤ g(H̄i, S̄s)
(

 –
H̄s

Hs(p + )

)
(
dh

(
H̄s –Hs(p + )

)

+ f (S̄i, H̄s) – f
(
Si(p + ),Hs(p + )

))

≤ –dhg(H̄i, S̄s)
(Hs(p + ) – H̄s)

Hs(p + )
+ g(H̄i, S̄s)f (S̄i, H̄s)

×
(

 –
f (Si(p + ),Hs(p + ))

f (S̄i, H̄s)

)(

 –
H̄s

Hs(p + )

)
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≤ –dhg(H̄i, S̄s)
(Hs(p + ) – H̄s)

Hs(p + )
+ g(H̄i, S̄s)f (S̄i, H̄s)

×
(

 –
H̄s

Hs(p + )
–
f (Si(p + ),Hs(p + ))

f (S̄i, H̄s)

+
f (Si(p + ),Hs(p + ))

f (S̄i, H̄s)
H̄s

Hs(p + )

)

.

By adding and subtracting the quantity  + ln( f (Si(p+),Hs(p+))
f (S̄i ,H̄s)

H̄s
Hs(p+)

), we obtain

Vhs(p + ) –Vhs(p) ≤ –dhg(H̄i, S̄s)
(Hs(p + ) – H̄s)

Hs(p + )
+ g(H̄i, S̄s)f (S̄i, H̄s)

×
[(

–
H̄s

Hs(p + )
+  + ln

H̄s

Hs(p + )

)

+
(

–
f (Si(p + ),Hs(p + ))

f (S̄i, H̄s)
+  + ln

f (Si(p + ),Hs(p + ))
f (S̄i, H̄s)

)

+
(
f (Si(p + ),Hs(p + ))

f (S̄i, H̄s)
H̄s

Hs(p + )
– 

– ln

(
f (Si(p + ),Hs(p + ))

f (S̄i, H̄s)
H̄s

Hs(p + )

))]

≤ –dhg(H̄i, S̄s)
(Hs(p + ) – H̄s)

Hs(p + )
+ g(H̄i, S̄s)f (S̄i, H̄s)

×
[

–h
(

H̄s

Hs(p + )

)

– h
(
f (Si(p + ),Hs(p + ))

f (S̄i, H̄s)

)

+ h
(
f (Si(p + ),Hs(p + ))

f (S̄i, H̄s)
H̄s

Hs(p + )

)]

.

Now, let calculate Vhi(p + ) –Vhi(p). We use the same technique as above and we assume
that Hi(p) ≤ Hi(p + ), so

Vhi(p + ) –Vhi(p) = g(H̄i, S̄s)
(

 – H̄i
ln(Hi(p + )) – ln(Hi(p))

Hi(p + ) –Hi(p)

)
(
Hi(p + ) –Hi(p)

)

and, using Lemma ., we get

Vhi(p + ) –Vhi(p) ≤ g(H̄i, S̄s)
(

 –
H̄i

Hi(p + )

)
(
Hi(p + ) –Hi(p)

)

≤ g(H̄i, S̄s)
(

 –
H̄i

Hi(p + )

)
(
f
(
Si(p + ),Hs(p + )

)
– dhHi(p + )

)

≤ g(H̄i, S̄s)
(

 –
H̄i

Hi(p + )

)(

f (S̄i, H̄s)
f (Si(p + ),Hs(p + ))

f (S̄i, H̄s)

– dhH̄i
Hi(p + )

H̄i

)

.
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Using the second equation of () to replace dhH̄i, we have

Vhi(p + ) –Vhi(p) ≤ f (S̄i, H̄s)g(H̄i, S̄s)
(

 –
H̄i

Hi(p + )

)(
f (Si(p + ),Hs(p + ))

f (S̄i, H̄s)

–
Hi(p + )

H̄i

)

≤ f (S̄i, H̄s)g(H̄i, S̄s)
(

 –
Hi(p + )

H̄i
–
f (Si(p + ),Hs(p + ))

f (S̄i, H̄s)
H̄i

Hi(p + )

+
f (Si(p + ),Hs(p + ))

f (S̄i, H̄s)

)

.

By adding and subtracting the quantity  + ln( f (Si(p+),Hs(p+))
f (S̄i ,H̄s)

H̄i
Hi(p+)

), we obtain

Vhi(p + ) –Vhi(p) ≤ f (S̄i, H̄s)g(H̄i, S̄s)
[(

–
Hi(p + )

H̄i
+  + ln

Hi(p + )
H̄i

)

+
(

–
f (Si(p + ),Hs(p + ))

f (S̄i, H̄s)
H̄i

Hi(p + )

+  + ln

(
f (Si(p + ),Hs(p + ))

f (S̄i, H̄s)
H̄i

Hi(p + )

))

+
(
f (Si(p + ),Hs(p + ))

f (S̄i, H̄s)
–  – ln

f (Si(p + ),Hs(p + ))
f (S̄i, H̄s)

)]

≤ f (S̄i, H̄s)g(H̄i, S̄s)
[

–h
(
f (Si(p + ),Hs(p + ))

f (S̄i, H̄s)
H̄i

Hi(p + )

)

– h
(
Hi(p + )

H̄i

)

+ h
(
f (Si(p + ),Hs(p + ))

f (S̄i, H̄s)

)]

.

Let now calculate Vss(p + ) –Vss(p) by the same technique. We have

Vss(p + ) –Vss(p) = f (S̄i, H̄s)
(

 – S̄s
ln(Ss(p + )) – ln(Ss(p))

Ss(p + ) – Ss(p)

)
(
Ss(p + ) – Ss(p)

)
.

Assuming that Ss(p) ≤ Ss(p + ) and using Lemma ., we get

Vss(p + ) –Vss(p) ≤ f (S̄i, H̄s)
(

 –
S̄s

Ss(p + )

)
(
Ss(p + ) – Ss(p)

)

≤ f (S̄i, H̄s)
(

 –
S̄s

Ss(p + )

)

(bs – dsSs(p + ) – g
(
Hi(p + ),Ss(p + )

)
.

Using the third equation of () to replace bs, we have

Vss(p + ) –Vss(p) ≤ f (S̄i, H̄s)
(

 –
S̄s

Ss(p + )

)
(
ds

(
S̄s – Ss(p + )

)

+ g(H̄i, S̄s) – g
(
Hi(p + ),Ss(p + )

))

≤ –dsf (S̄i, H̄s)
(Ss(p + ) – S̄s)

Ss(p + )
+ f (S̄i, H̄s)g(H̄i, S̄s)
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×
(

 –
g(Hi(p + ),Ss(p + ))

g(H̄i, S̄s)

)(

 –
S̄s

Ss(p + )

)

≤ –dsf (S̄i, H̄s)
(Ss(p + ) – S̄s)

Ss(p + )
+ f (S̄i, H̄s)g(H̄i, S̄s)

×
(

 –
S̄s

Ss(p + )
–
g(Hi(p + ),Ss(p + ))

g(H̄i, S̄s)

+
g(Hi(p + ),Ss(p + ))

g(H̄i, S̄s)
S̄s

Ss(p + )

)

.

By adding and subtracting the quantity  + ln( g(Hi(p+),Ss(p+))
g(H̄i ,S̄s)

S̄s
Ss(p+)

), we obtain

Vss(p + ) –Vss(p) ≤ –dsf (S̄i, H̄s)
(Ss(p + ) – S̄s)

Ss(p + )
+ f (S̄i, H̄s)g(H̄i, S̄s)

×
[(

–
S̄s

Ss(p + )
+  + ln

S̄s
Ss(p + )

)

+
(

–
g(Hi(p + ),Ss(p + ))

g(H̄i, S̄s)

+  + ln
g(Hi(p + ),Ss(p + ))

g(H̄i, S̄s)

)

+
(
g(Hi(p + ),Ss(p + )

g(H̄i, S̄s)
S̄s

Ss(p + )

–  – ln

(
g(Hi(p + ),Ss(p + ))

g(H̄i, S̄s)
S̄s

Ss(p + )

))]

≤ –dsf (S̄i, H̄s)
(Ss(p + ) – S̄s)

Ss(p + )
+ f (S̄i, H̄s)g(H̄i, S̄s)

×
[

–h
(

S̄s
Ss(p + )

)

– h
(
g(Hi(p + ),Ss(p + )

g(H̄i, S̄s)

)

+ h
(
g(Hi(p + ),Ss(p + ))

g(H̄i, S̄s)
S̄s

Ss(p + )

)]

.

After that, let us evaluate Vsi(p + ) –Vsi(p). We have

Vsi(p + ) –Vsi(p) = f (S̄i, H̄s)
(

 – S̄i
ln(Si(p + )) – ln(Si(p))

Si(p + ) – Si(p)

)
(
Si(p + ) – Si(p)

)
.

Assuming that Si(p) ≤ Si(p + ) and using Lemma ., we get

Vsi(p + ) –Vsi(p) ≤ f (S̄i, H̄s)
(

 –
S̄i

Si(p + )

)
(
Si(p + ) – Si(p)

)

≤ f (S̄i, H̄s)
(

 –
S̄i

Si(p + )

)
(
g
(
Hi(p + ),Ss(p + )

)
– dsSi(p + )

)

≤ f (S̄i, H̄s)
(

 –
S̄i

Si(p + )

)(

g(H̄i, S̄s)
g(Hi(p + ),Ss(p + ))

g(H̄i, S̄s)

– dsS̄i
Si(p + )

S̄i

)

.
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Using the last equation of () to replace dsSi(p + ), we have

Vsi(p + ) –Vsi(p) ≤ g(H̄i, S̄s)f (S̄i, H̄s)
(

 –
S̄i

Si(p + )

)

×
(
g(Hi(p + ),Ss(p + ))

g(H̄i, S̄s)
–
Si(p + )

S̄i

)

≤ g(H̄i, S̄s)f (S̄i, H̄s)
(

 –
Si(p + )

S̄i
–
g(Hi(p + ),Ss(p + ))

g(H̄i, S̄s)
S̄i

Si(p + )

+
g(Hi(p + ),Ss(p + ))

g(H̄i, S̄s)

)

.

By adding and subtracting the quantity  + ln( g(Hi(p+),Ss(p+))
g(H̄i ,S̄s)

S̄i
Si(p+)

), we obtain

Vsi(p + ) –Vsi(p) ≤ g(H̄i, S̄s)f (S̄i, H̄s)
[(

–
Si(p + )

S̄i
+  + ln

Si(p + )
S̄i

)

+
(

–
g(Hi(p + ),Ss(p + )

g(H̄i, S̄s)
S̄i

Si(p + )

+  + ln

(
g(Hi(p + ),Ss(p + ))

g(H̄i, S̄s)
S̄i

Si(p + )

))

+
(
g(Hi(p + ),Ss(p + ))

g(H̄i, S̄s)
–  – ln

g(Hi(p + ),Ss(p + ))
g(H̄i, S̄s)

)]

≤ f (S̄i, H̄s)g(H̄i, S̄s)
[

–h
(
Si(p + )

S̄i

)

– h
(
g(Hi(p + ),Ss(p + ))

g(H̄i, S̄s)
S̄i

Si(p + )

)

+ h
(
g(Hi(p + ),Ss(p + ))

g(H̄i, S̄s)

)]

.

Combining the above computations of the differences of Vhs, Vhi, Vss and Vsi along the
solutions of (), let us evaluate finally the difference of V . We have

V (p + ) –V (p) ≤ –dhg(H̄i, S̄s)
(Hs(p + ) – H̄s)

Hs(p + )
– dsf (S̄i, H̄s)

(Ss(p + ) – S̄s)

Ss(p + )

+ f (S̄i, H̄s)g(H̄i, S̄s)
[

–h
(
Si(p + )

S̄i

)

+ h
(
f (Si(p + ),Hs(p + ))

f (S̄i, H̄s)
H̄s

Hs(p + )

)

– h
(
Hi(p + )

H̄i

)

+ h
(
g(Hi(p + ),Ss(p + ))

g(H̄i, S̄s)
S̄s

Ss(p + )

)

– h
(
f (Si(p + ),Hs(p + ))

f (S̄i, H̄s)
H̄i

Hi(p + )

)

– h
(

S̄s
Ss(p + )

)

– h
(

H̄s

Hs(p + )

)

– h
(
g(Hi(p + ),Ss(p + ))

g(H̄i, S̄s)
S̄i

Si(p + )

)]

.
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Since the function h is monotone on each side of point  and is minimized at this point ,
H implies

h
(
f (Si(p + ),Hs(p + ))

f (S̄i, H̄s)
H̄s

Hs(p + )

)

≤ h
(
Si(p + )

S̄i

)

and

h
(
g(Hi(p + ),Ss(p + ))

g(H̄i, S̄s)
S̄s

Ss(p + )

)

≤ h
(
Hi(p + )

H̄i

)

.

Since h(x)≥  ∀x ∈R,

V (p + ) –V (p) ≤ ,

so for all (Hs,Hi,Ss,Si) ∈ K with equality only forHs(p+) = H̄s,Hi(p+) = H̄i, Ss(p+) = S̄s
and Si(p + ) = S̄i.
Hence, the endemic equilibrium Ē is the only positively invariant set of the system ()

contained in {(Hs,Hi,Ss,Si) ∈ R

+;Hs = H̄s,Hi = H̄i,Ss = S̄s,Si = S̄i}. Then, by the Lyapunov

theorems on the global asymptotical stability for difference equations [], we see that the
endemic equilibrium Ē is globally asymptotically stable. This completes the proof. �

5 Numerical simulation and comments
In this part, we give some results for the discrete and continuous version on the schis-
tosomiasis model (). So we perform the computation work that supports our study.
In this computation, the functions f and g are chosen as follows: f (Si,Hs) = SiHs and
g(Hi,Ss) = HiSs (mass action). Figures  and  present the situation when R <  and Fig-
ures  and  the case where R > . In any case, we notice that the curves (black line for
the discrete version and blue line for the continuous version) are very close and converge
toward the same equilibrium point with respect to the R.

6 Conclusion
In order to investigate the dynamics of infectious diseases, many authors analyzed the lo-
cal and global stability of equilibria of a class of discrete and continuous epidemic models.
In this paper, motivated by the fact that discrete models are more appropriate forms than
the continuous ones in order to fit the statistical data concerning infectious diseases, we
have studied the discrete forward difference version of a schistosomiasis model with gen-
eral incidence function. From the results obtained in this paper, we see that the backward

Figure 1 R0 < 1; Hs , Hi , the black line for
discrete and the blue line for continuous.
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Figure 2 R0 < 1; Ss , Si , the black line for discrete
and the blue line for continuous.

Figure 3 R0 > 1; Hs , Hi , the black line for discrete
and the blue line for continuous.

Figure 4 R0 > 1; Ss , Si , the black line for discrete
and the blue line for continuous.

difference scheme, that is, the discrete dynamical model (), is obtained with excellent
dynamical properties for the step size h =  in the local and global stability of equilibria.
These properties nearly are the same as the corresponding continuous-timemodel (), but
the techniques of the computations are quite different. Therefore, we see that the discrete
model () hasmore plentiful and complex dynamical behaviors than the continuousmodel
(). Is this conclusion still right for any step size h? For future work, we will investigate and
try to answer this question.
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