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Abstract
In the present paper, a stochastic mutualism model subject to white noises is
established. We first investigate the existence and uniqueness of globally positive
solution of the stochastic model. Then we study its asymptotic behavior, such as
stochastic permanence and extinction, and estimate the limit of the average in time
of the sample paths of every component. We also show that the stochastic system is
globally attractive under some appropriate conditions. Finally, numerical simulations
are presented to justify the analytical results.
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1 Introduction
The relationship between organisms and their living environments is very close in the na-
ture, a small change of ecological environment usually could lead to a great influence on
the organisms. On the other hand, there exist many complicated interactions among var-
ious species in the biological communities, and these phenomena, such as competition,
predation and mutualism, are extensive. Through the years, more and more mathemati-
cal models have been used to describe the relationship between species and their living
environments in ecology. The models mainly study the population dynamic behaviors, for
example, permanence, extinction, global attractivity, etc. They have long been one of the
popular themes in mathematical biology due to their universal existence and importance.
As far as we know, many relevant papers and monographs on population dynamics have
been reported, and many important results can be found in Refs. [–]. In this paper, we
are concerned with a Lotka-Volterra mutualism system expressed by

⎧
⎨

⎩

x′
(t) = x(t)[r – ax(t) + cx(t)

b+x(t) ],

x′
(t) = x(t)[r – ax(t) + cx(t)

b+x(t) ],
(.)

where x(t), x(t) denote the population size, the positive coefficients r, r and a, a are
the intrinsic growth rate and self-inhibition rate, respectively, positive coefficients cj mea-
sure the interspecific mutualism effects of species xj on species xi (i, j = , , i �= j), and b,
b are positive control constants.
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It is well known that many factors may affect the population dynamic behaviors of bi-
ology, for instance, the fluctuating environment, delays, victuals and population density.
Especially, the ecological systems in practical world are often perturbed by various types
of environmental noises. Just as May and Allen show that the birth rate, the death rate
and other parameters usually show random fluctuation to a certain extent due to envi-
ronmental fluctuation (see Ref. []). In fact, species undergoing environmental noises is
also one of the most prevalent phenomena in the nature. Mao points out that a reason-
able mathematical interpretation for the noise is the so-called white noise Ḃ(t), which is
formally regarded as the derivative of the Brownian motion B(t), i.e., Ḃ(t) = dB(t)/dt (see
Ref. []). Hence it might happen that ri(t) are not completely known but subject to some
environmental noises. In other words, ri(t) could be estimated by an average value plus an
error term

ri(t) → ri(t) + σi(t)Ḃi(t), i = , ,

where σ 
i (t) represent the intensities of the noises, Bi(t) are the independent standard

Brownian motions defined on a complete probability space (�,F , {F}t≥, P) with a filtra-
tion {F}t≥ satisfying the usual conditions. In this sense, such systems subject to environ-
mental white noises tend to be more suitably modeled by stochastic differential equations.
Therefore, what is of most interest for our present purposes is the modification of consid-
ering the possible effects of environmental white noises for system (.) and establishing
the stochastic mutualism model

⎧
⎨

⎩

dx(t) = x(t)[r – ax(t) + cx(t)
b+x(t) ] dt + σx(t) dB(t),

dx(t) = x(t)[r – ax(t) + cx(t)
b+x(t) ] dt + σx(t) dB(t),

(.)

with the initial value x() ∈ R
+. In recent years, stochastic differential equations have been

widely used in population biology because they could accurately characterize some real-
istic processes by means of stochastic models. Many interesting and valuable results in-
cluding extinction, persistence and stability can be found in Refs. [–]. But to our best
knowledge, there exist few published papers concerning system (.).

Motivated by the existing results, our contribution is as follows:
• We introduce the white noise to model the evolution of a mutualism system.
• We investigate the existence and uniqueness of globally positive solution, which shows

that the positive solution of system (.) could not explode to infinity at any finite time.
• We estimate the limit of the average in time of the sample paths of every component

of the positive solution.
• We derive sufficient conditions for stochastic permanence, extinction and global

attractivity, and the corresponding numerical simulations are provided.

2 Preliminaries
In this section, we shall state some definitions and lemmas which will be useful for estab-
lishing our main results.

Definition . System (.) is said to be extinct exponentially with probability one
if for any initial condition x() ∈ R

+, the solution x(t) = (x(t), x(t)) satisfies
lim supt→+∞ ln xi(t)/t < , i = ,  a.s.
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Definition . System (.) is said to be stochastically permanent if for every ε ∈ (, ),
there exists a pair of positive constants α, β such that for any initial condition x() ∈ R

+,
the solution x(t) satisfies

lim inf
t→+∞ P

{∣
∣x(t)

∣
∣ ≥ α

} ≥  – ε, lim inf
t→+∞ P

{∣
∣x(t)

∣
∣ ≤ β

} ≥  – ε.

Definition . Let x(t) = (x(t), x(t)), u(t) = (u(t), u(t)) be any two solutions of system
(.) with initial conditions x() ∈ R

+, u() ∈ R
+, respectively. If limt→+∞ |xi(t) – ui(t)| = 

a.s., i = , , then system (.) is said to be globally attractive.

Lemma . Suppose that a, a, . . . , an are real numbers, then the following inequality

|a + a + · · · + an|p ≤ Cp
(|a|p + |a|p + · · · + |an|p

)

holds, where p >  and

Cp =

⎧
⎨

⎩

,  < p ≤ ,

np–, p > .

Lemma . ([]) Assume that an n-dimensional stochastic process X(t) on t ≥  satisfies
the condition

E
∣
∣X(t) – X(s)

∣
∣η ≤ μ|t – s|+ς ,  ≤ s, t < ∞,

for positive constants η, ς , μ. Then there exists a continuous version X̃(t) of X(t) which has
the property that for every ϑ ∈ (,ς/η), there is a positive random variable ψ(ω) such that

P

{

ω : sup
<|t–s|<ψ(ω),≤s,t<∞

|X̃(t,ω) – X(t,ω)|
|t – s|ϑ ≤ 

 – –ϑ

}

= .

In other words, almost every sample path of X̃(t) is locally but uniformly Hölder continuous
with exponent ϑ .

Lemma . ([]) Let f (t) be a nonnegative function on t ≥  such that f (t) is integrable
on t ≥  and is uniformly continuous on t ≥ . Then limt→+∞f (t) = .

3 Existence and uniqueness of global solution
To begin with, we first show the existence and uniqueness of global solution on system
(.) which is fundamental in the present paper.

Theorem . For initial value x() = (x(), x()) ∈ R
+, there is a unique solution x(t) to

system (.) for all t ≥ , and x(t) will remain in R
+ with probability one.

Proof The proof of this theorem is standard. It is obvious that the coefficients of sys-
tem (.) satisfy the local Lipschitz condition, then for any given initial value x() =
(x(), x()) ∈ R

+, there exists a unique local solution (x(t), x(t)) on [, τe), where τe is
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the explosion time. To show that the positive solution is global, we only need to show that
τe = +∞ a.s.

Let n be sufficiently large such that every component of x() remains in the interval
[ 

n
, n]. For each integer n ≥ n, we define the stopping time

τn = inf

{

t ∈ [, τe) : x(t) /∈
(


n

, n
)

or x(t) /∈
(


n

, n
)}

.

Here we set inf∅ = +∞ (∅ denotes the empty set). Obviously, τn is increasing as n → +∞.
Assign τ+∞ = limn→+∞ τn, whence τ+∞ ≤ τe a.s., if we can show that τ+∞ = +∞ a.s., then
τe = +∞ a.s. and x() = (x(), x()) ∈ R

+ a.s. for all t ≥ .
To complete the proof, we only need to show that τ+∞ = +∞ a.s. By reduction to absur-

dity, we assume that there exists a pair of constants T >  and ε ∈ (, ) such that

P{τ+∞ < T} > ε.

As a result, there is an integer n ≥ n such that for n ≥ n,

P{τn ≤ T} ≥ ε.

Define a C-function Ṽ (x) : R
+ → R+ as

Ṽ (x, x) = x –  – ln x + x –  – ln x.

The nonnegativity of this function can be seen from y –  – ln y ≥  for y > . Using Itô’s
formula one can show that

dṼ (x, x) =
(

 –

x

)

dx + .

x


(dx) +

(

 –

x

)

dx + .


x


(dx)

= (x – )
(

r – ax +
cx

b + x

)

dt + (x – )σ dB(t) +


σ 

 dt

+ (x – )
(

r – ax +
cx

b + x

)

dt + (x – )σ dB(t) +


σ 

 dt

=
{

–ax
 + (r + a)x +

cxx

b + x
–

cx

b + x
+



σ 

 – r

– ax
 + (r + a)x +

cxx

b + x
–

cx

b + x
+



σ 

 – r

}

dt

+ (x – )σ dB(t) + (x – )σ dB(t)

≤
{

–ax
 + (r + a + c)x +



σ 

 – r – ax
 + (r + a + c)x

+


σ 

 – r

}

dt + (x – )σ dB(t) + (x – )σ dB(t)

= G(x, x) dt + (x – )σ dB(t) + (x – )σ dB(t), (.)

where

G(x, x) = –ax
 + (r + a + c)x +



σ 

 – r – ax
 + (r + a + c)x +



σ 

 – r.
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Clearly, G(x, x) is upper bounded, denoted by K . So we have

dṼ (x, x) ≤ K dt + (x – )σ dB(t) + (x – )σ dB(t).

Integrating both sides from  to τk ∧ T yields

∫ τk∧T


dṼ (x, x) ≤

∫ τk∧T


K dt +

∫ τk∧T


(x – )σ dB(t) +

∫ τk∧T


(x – )σ dB(t).

Taking expectations leads to

E
[
Ṽ

(
x(τk ∧ T), x(τk ∧ T)

)] ≤ Ṽ
(
x(), x()

)
+ KE(τk ∧ T)

≤ Ṽ
(
x(), x()

)
+ KT . (.)

Let �n = {τn ≤ T} for n ≥ n, then P(�n) ≥ ε. Note that for arbitrary ω ∈ �n, there exist
some i such that xi(τn,ω) equals either n or 

n , and thus Ṽ (x(τn,ω)) is no less than either

(n –  – ln n) ∧
(


n

–  + ln n
)

.

It then follows from (.) that

Ṽ
(
x(), x()

)
+ KT ≥ E

[
�n (ω)Ṽ

(
x(τn,ω), x(τn,ω)

)]

≥ ε

{

(n –  – ln n) ∧
(


n

–  + ln n
)}

,

where �n is the indicator function of �n. Letting n → +∞ leads to the contradiction

+∞ > Ṽ
(
x(), x()

)
+ KT = +∞.

So we must have τ+∞ = +∞ a.s.
This completes the proof of Theorem .. �

4 Stochastic permanence and extinction
In this section, we prove that the pth moment of the solution of system (.) is upper
bounded, and then discuss the stochastic permanence and extinction.

Lemma . Assign p > , then there exists a positive constant K (p) such that the solution
x(t) of system (.) has the following property:

lim sup
t→+∞

E
∣
∣x(t)

∣
∣p ≤ K(p).

Proof Assign p > , we define V (x, x) = xp
 + xp

. By Itô’s formula, we have

dV (x, x) = pxp
 dx + .p(p – )xp–

 (dx) + pxp–
 dx + .p(p – )xp–

 (dx)

= pxp


(

r – ax +
cx

b + x

)

dt + pσxp
 dB(t) + .p(p – )σ 

 xp
 dt
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+ pxp


(

r – ax +
cx

b + x

)

dt + pσxp
 dB(t) + .p(p – )σ 

 xp
 dt

= pxp


(

r – ax +
cx

b + x
+ .(p – )σ 



)

dt + pσxp
 dB(t) + xp

 dt

+ pxp


(

r – ax +
cx

b + x
+ .(p – )σ 



)

dt + pσxp
 dB(t) + xp

 dt

– V (x, x) dt

≤ xp

(
 + rp + cp + .p(p – )σ 

 – apx
)

dt + pσxp
 dB(t)

+ xp

(
 + rp + cp + .p(p – )σ 

 – apx
)

dt + pσxp
 dB(t) – V (x, x)

=
(
L(x, x) – V (x, x)

)
dt + pσxp

 dB(t) + pσxp
 dB(t), (.)

where

L(x, x) = xp

(
 + rp + cp + .p(p – )σ 

 – apx
)

+ xp

(
 + rp + cp + .p(p – )σ 

 – apx
)
.

Since xp
i ( + rip + cjp + .p(p – )σ 

i – aipxi) has a max value p(+rip+cjp+.p(p–)σ
i )

(p+)aip
, let

K∗(p) =
∑

i=

p( + rip + cjp + .p(p – )σ 
i )

(p + )aip
> ,

then K∗(p) is the upper bound of L(x, x). Recalling (.) and integrating on both sides
yield

∫ t


dV

(
x(s), x(s)

) ≤
∫ t



(
K∗(p) – V

(
x(s), x(s)

))
ds +

∫ t


pσxp

 (s) dB(s)

+
∫ t


pσxp

(s) dB(s). (.)

Taking expectation on both sides yields

E
[
V

(
x(t), x(t)

)] ≤ V
(
x(), x()

)
+

∫ t


K∗(p) – E

[
V

(
x(s), x(s)

)]
ds. (.)

It then follows from Gronwall’s inequality that

E
[
V

(
x(t), x(t)

)] ≤ exp(–t)
[
V

(
x(), x()

)
+ K∗(p)

(
exp(t) – 

)]
. (.)

This implies that

lim sup
t→+∞

E
∣
∣x(t)

∣
∣p ≤ p– lim sup

t→+∞
E
[
V

(
x(t), x(t)

)] ≤ p–K∗(p) := K(p). (.)

This completes the proof of Lemma .. �

Next we investigate the stochastic permanence.
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Theorem . If r > .σ 
 and r > .σ 

 hold, then system (.) with initial value
(x(), x()) ∈ R

+ is stochastically permanent.

Proof Assign  < ε <  arbitrarily, we first prove that there is a constant α >  such that

lim inf
t→+∞ P

{∣
∣x(t)

∣
∣ ≥ α

} ≥  – ε.

It follows from ri > .σ 
i that we can choose a constant m >  such that

ri – .σ 
i – .mσ 

i > , i = , .

Define

V(x, x) = m–
∑



(
 + x–

i
)m, (x, x) ∈ R

+.

By Itô’s formula, one derives that

dV(x, x) =
(
 + x–


)m– dx–

 + .(m – )
(
 + x–


)m–(dx–


)

+
(
 + x–


)m– dx–

 + .(m – )
(
 + x–


)m–(dx–


)

=
(
 + x–


)m–[–x–

 dx + x–
 (dx)] + .(m – )

(
 + x–


)m–

σ 
 x–

 dt

+
(
 + x–


)m–[–x–

 dx + x–
 (dx)] + .(m – )

(
 + x–


)m–

σ 
 x–

 dt

=
(
 + x–


)m–

{
(
 + x–


)
[

–x–


(

r – ax +
cx

b + x

)

dt – σx–
 dB(t)

+ σ 
 x–

 dt
]

+ .(m – )σ 
 x–

 dt
}

+
(
 + x–


)m–

{
(
 + x–


)
[

–x–


(

r

– ax +
cx

b + x

)

dt – σx–
 dB(t) + σ 

 x–
 dt

]

+ .(m – )σ 
 x–

 dt
}

=
(
 + x–


)m–

{

–x–


(

r +
cx

b + x
– .σ 

 – .mσ 


)

+ x–


(

–r –
cx

b + x

+ σ 
 + a

)

+ a

}

dt –
(
 + x–


)m–

σx–
 dB(t) +

(
 + x–


)m–

{

–x–


(

r

+
cx

b + x
– .σ 

 – .mσ 


)

+ x–


(

–r –
cx

b + x
+ σ 

 + a

)

+ a

}

dt

–
(
 + x–


)m–

σx–
 dB(t)

≤ (
 + x–


)m–{–x–


(
r – .σ 

 – .mσ 

)

+ x–


(
–r + σ 

 + a
)

+ a
}

dt

–
(
 + x–


)m–

σx–
 dB(t) +

(
 + x–


)m–{–x–


(
r – .σ 

 – .mσ 

)

+ x–


(
–r + σ 

 + a
)

+ a
}

dt –
(
 + x–


)m–

σx–
 dB(t). (.)

Let k be sufficiently small to satisfy

 <
k
m

< ri – .σ 
i – .mσ 

i , i = , .
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We continue to define

V(x, x) = ektV(x, x).

By virtue of Itô’s formula again, we have

dV(x, x) = kektV dt + ekt dV

≤ kektV dt + ekt{( + x–


)m–{–x–


(
r – .σ 

 – .mσ 

)

+ x–


(
–r + σ 

 + a
)

+ a
}

dt –
(
 + x–


)m–

σx–
 dB(t)

+
(
 + x–


)m–{–x–


(
r – .σ 

 – .mσ 

)

+ x–


(
–r + σ 

 + a
)

+ a
}

dt –
(
 + x–


)m–

σx–
 dB(t)

}

= ekt( + x–


)m–{km–( + x–


)– – x–


(
r – .σ 

 – .mσ 

)

+ x–


(
–r + σ 

 + a
)

+ a
}

dt + ekt( + x–


)m–{km–( + x–


)–

– x–


(
r – .σ 

 – .mσ 

)

+ x–


(
–r + σ 

 + a
)

+ a
}

dt

–
(
 + x–


)m–

σx–
 ekt dB(t) –

(
 + x–


)m–

σx–
 ekt dB(t)

= ekt( + x–


)m–
{

–x–


(

r – .σ 
 – .mσ 

 –
k
m

)

+ x–


(

–r + σ 
 + a +

k
m

)

+ a +
k
m

}

dt + ekt( + x–


)m–
{

–x–


(

r

– .σ 
 – .mσ 

 –
k
m

)

+ x–


(

–r + σ 
 + a +

k
m

)

+ a +
k
m

}

dt

–
(
 + x–


)m–

σx–
 ekt dB(t) –

(
 + x–


)m–

σx–
 ekt dB(t)

= ektL(x, x) dt –
(
 + x–


)m–

σx–
 ekt dB(t)

–
(
 + x–


)m–

σx–
 ekt dB(t), (.)

where

L(x, x) =
(
 + x–


)m–

{

–x–


(

r – .σ 
 – .mσ 

 –
k
m

)

+ x–


(

–r + σ 
 + a +

k
m

)

+ a +
k
m

}

+
(
 + x–


)m–

{

–x–


(

r – .σ 
 – .mσ 

 –
k
m

)

+ x–


(

–r + σ 
 + a +

k
m

)

+ a +
k
m

}

.

Now, we verify that L(x, x) is upper bounded for (x, x) ∈ R
+. Denote

Ai = ri – .σ 
i – .mσ 

i –
k
m

, Bi = –ri + σ 
i + ai +

k
m

, Ci = ai +
k
m

, i = , .

Obviously, Ai > , Bi > , Ci > .
Then we only need to prove

G(xi) :=
(
 + x–

i
)m–(–Aix–

i + Bix–
i + Ci

)
=

(
 + x–

i
)m–L(xi)
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is upper bounded. In the following, we consider cases (I) and (II). Let

X =
Bi +

√

B
i + AiCi

Ai
, U =

B
i + AiCi

Ai
.

Case (I). If 
xi

≥X , then L(xi) ≤  and so G(xi) ≤ .
Case (II). If  < 

xi
≤ X , then L(xi) ≤ U . As ( + x–

i )m– ≤ ( + X )m– for m ≥ , while
( + x–

i )m– ≤  for  < m < . Cases (I) and (II) show that G(xi) is upper bounded and so
L(x, x) is, we denote it by M.

Now let us return to (.), which leads to

dV(x, x) ≤Mekt dt –
(
 + x–


)m–

σx–
 ekt dB(t) –

(
 + x–


)m–

σx–
 ekt dB(t). (.)

Integrating on both sides and taking expectations, we get

E
[
V(x, x)

]
= ektE

[
V(x, x)

] ≤ V
(
x(), x()

)
+
M
k

(
ekt – 

)
. (.)

This implies that

lim sup
t→+∞

E
[∣
∣x(t)

∣
∣–m] ≤ lim sup

t→+∞
(

√
)–mE

[(

x

+


x

)m]

≤ lim sup
t→+∞

(
√

)–mE
[(

 + x–
 +  + x–


)m]

≤ lim sup
t→+∞

(
√

)–mCmE

[ ∑

i=

(
 + x–

i
)m

]

= m(
√

)–mCm lim sup
t→+∞

E
[
V(x, x)

]

≤ m(
√

)–mCmM
k

:= δ. (.)

For arbitrary ε ∈ (, ), let α = ( ε
δ
) 

m . By Chebyshev’s inequality, we have

P
{∣
∣x(t)

∣
∣ < α

}
= P

{∣
∣x(t)

∣
∣–m > α–m} ≤ E[|x(t)|–m]

α–m = αmE
[∣
∣x(t)

∣
∣–m]

.

This gives that

lim sup
t→+∞

P
{∣
∣x(t)

∣
∣ < α

} ≤ αmδ = ε.

Furthermore,

lim inf
t→+∞ P

{∣
∣x(t)

∣
∣ ≥ α

} ≥  – ε.

In the following, we turn to proving that for arbitrary fixed ε ∈ (, ), there is a constant
β >  such that

lim inf
t→+∞ P

{∣
∣x(t)

∣
∣ ≤ β

} ≥  – ε.
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Let β = [ K (p)
ε

]

p , then by Chebyshev’s inequality and Lemma ., we have

P
{∣
∣x(t)

∣
∣ > β

}
= P

{∣
∣x(t)

∣
∣p > βp} ≤ E[|x(t)|p]

βp ,

which implies that

lim sup
t→+∞

P
{∣
∣x(t)

∣
∣ > β

} ≤ K(p)
βp = ε.

Consequently,

lim inf
t→+∞ P

{∣
∣x(t)

∣
∣ ≤ β

} ≥  – ε.

This completes the proof of Theorem .. �

Remark . The definition of stochastic permanence here is not a very appropriate one
for stochastic population models. Many authors have introduced some more appropriate
definitions of permanence for stochastic population model, for example, stochastic per-
sistence in probability (see Refs. [, ]) or a new definition of stochastic permanence (see
Ref. []). We would like to study them in our future work.

To end with, we show that a large noise may lead to exponential extinction.

Theorem . If r + c < .σ 
 and r + c < .σ 

 hold, then system (.) with initial value
(x(), x()) ∈ R

+ is extinct exponentially with probability one.

Proof An application of Itô’s formula yields

d ln xi =

xi

dxi –
(dxi)

x
i

=
(

ri – aixi +
cjxj

bj + xj
– .σ 

i

)

dt + σi dBi(t)

≤ (
ri + cj – .σ 

i
)

dt + σi dBi(t), i = , ; i �= j. (.)

Integrating on both sides yields

ln xi(t) ≤ ln xi() +
(
ri + cj – .σ 

i
)
t +

∫ t


σi dBi(t), i = , . (.)

Let t → +∞ and applying the strong law of large numbers for local martingales, we obtain
that

lim sup
t→+∞

ln xi(t)
t

≤ ri + cj – .σ 
i < , i = , ; i �= j.

This completes the proof of Theorem .. �
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5 The limit of the average in time of sample paths
In this section, we estimate the limit of the average in time of the sample paths of every
component of the positive solution. To begin with, we need to introduce the following
important lemma which Liu and Wang obtained and proved in Ref. [].

Lemma . Suppose z(t) ∈ C[� × R+, R+], where R+ := {a|a > , a ∈ R}.
() If there are positive constants λ, T and λ ≥  such that

ln z(t) ≤ λt – λ

∫ t


z(s) ds +

n∑

i=

ρiBi(t)

for t ≥ T , where ρi is a constant, then

lim sup
t→+∞

∫ t
 z(s) ds

t
≤ λ

λ
, a.s.

() If there are positive constants λ, T and λ ≥  such that

ln z(t) ≥ λt – λ

∫ t


z(s) ds +

n∑

i=

ρiBi(t)

for t ≥ T , where ρi is a constant, then

lim inf
t→+∞

∫ t
 z(s) ds

t
≥ λ

λ
, a.s.

Now we are in the position to establish our threshold theorems.

Theorem . Assume that x(t) = (x(t), x(t)) is a solution of system (.) with initial value
(x(), x()) ∈ R

+, if ri > .σ 
i , then the component xi(t) has the property

lim sup
t→+∞

∫ t
 xi(s) ds

t
≤ ri + cj – .σ 

i
ai

, a.s.

Moreover,

lim inf
t→+∞

∫ t
 xi(s) ds

t
≥ ri – .σ 

i
ai

, a.s., i = , .

Proof For arbitrarily fixed ε > , one has –ε ≤ ln xi()
t ≤ ε. Recalling (.), we have

d ln xi =

xi

dxi –
(dxi)

x
i

=
(

ri – aixi +
cjxj

bj + xj
– .σ 

i

)

dt + σi dBi(t)

≤ (
ri + cj – .σ 

i – aixi
)

dt + σi dBi(t), i = , ; i �= j. (.)
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Integrating on both sides, one has

ln xi(t) ≤ ln xi() +
(
ri + cj – .σ 

i
)
t – ai

∫ t


xi(s) ds +

∫ t


σi dBi(s)

≤ (
ri + cj + ε – .σ 

i
)
t – ai

∫ t


xi(s) ds +

∫ t


σi dBi(s), i = , ; i �= j. (.)

It then follows from () of Lemma . that

lim sup
t→+∞

∫ t
 xi(s) ds

t
≤ ri + cj + ε – .σ 

i
ai

, a.s.

Recalling (.) again, we have

d ln xi =

xi

dxi –
(dxi)

x
i

=
(

ri – aixi +
cjxj

bj + xj
– .σ 

i

)

dt + σi dBi(t)

≥ (
ri – .σ 

i – aixi
)

dt + σi dBi(t), i = , ; i �= j. (.)

Integrating on both sides, we obtain

ln xi(t) ≥ ln xi() +
(
ri – .σ 

i
)
t – ai

∫ t


xi(s) ds +

∫ t


σi dBi(s)

≥ (
ri – ε – .σ 

i
)
t – ai

∫ t


xi(s) ds +

∫ t


σi dBi(s), i = , ; i �= j. (.)

In view of () of Lemma ., we have

lim inf
t→+∞

∫ t
 xi(s) ds

t
≥ ri – ε – .σ 

i
ai

, a.s.

Then the desired assertion follows from the arbitrariness of ε.
This completes the proof of Theorem .. �

6 Global attractivity
In this section, we will establish the sufficient criteria for global attractivity of system (.).

Lemma . Let x(t) = (x(t), x(t)) be a solution of system (.) with initial value
(x(), x()) ∈ R

+, then almost every sample path of (x(t), x(t)) is uniformly continuous
for t ≥ .

Proof We first prove x(t). Let us consider the following integral equation:

x(t) = x() +
∫ t


f(s) ds +

∫ t


g(s) dB(s),

where

f(s) = x(s)
[

r – ax(s) +
cx(s)

b + x(s)

]

, g(s) = σx(s).
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Then from Lemmas . and ., one derives that

E
∣
∣f(t)

∣
∣p = E

∣
∣
∣
∣x(t)

[

r – ax(t) +
cx

b + x

]∣
∣
∣
∣

p

= E
[
∣
∣x(t)

∣
∣p

∣
∣
∣
∣r – ax(t) +

cx

b + x

∣
∣
∣
∣

p]

≤ .E
∣
∣x(t)

∣
∣p + .E

∣
∣
∣
∣r – ax(t) +

cx

b + x

∣
∣
∣
∣

p

≤ .E
∣
∣x(t)

∣
∣p + . · p–rp

 + . · p–ap
 E

∣
∣x(t)

∣
∣p + . · p–cp



≤ .K(p) + . · p–rp
 + . · p–ap

 K(p) + . · p–cp
 := R(p)

and

E
∣
∣g(t)

∣
∣p = E

∣
∣σx(t)

∣
∣p = σ

p
 E

∣
∣x(t)

∣
∣p ≤ σ

p
 K(p) := �(p).

Furthermore, in view of the moment inequality for stochastic integral, we can obtain that
for  ≤ t < t < +∞ and p > ,

E
∣
∣
∣
∣

∫ t

t

g(s) dB(s)
∣
∣
∣
∣

p

≤
[

p(p – )


]p/

(t – t)(p–)/
∫ t

t

E
∣
∣g(s)

∣
∣p ds

≤
[

p(p – )


]p/

(t – t)p/�(p).

Let

t – t ≤ ,

p

+

q

= ,

then we have

E
∣
∣x(t) – x(t)

∣
∣p = E

∣
∣
∣
∣

∫ t

t

f(s) ds +
∫ t

t

g(s) dB(s)
∣
∣
∣
∣

p

= p–E
[∫ t

t

∣
∣f(s)

∣
∣ds

]p

+ p–E
∣
∣
∣
∣

∫ t

t

g(s) dB(s)
∣
∣
∣
∣

p

≤ p–E
{[∫ t

t

q ds
] 

q
[∫ t

t

∣
∣f(s)

∣
∣p ds

] 
p
}p

+ p–
[

p(p – )


]p/

(t – t)p/�(p)

= p–(t – t)
p
q

∫ t

t

E
∣
∣f(s)

∣
∣p ds + p–

[
p(p – )



]p/

(t – t)p/�(p)

≤ p–(t – t)
p
q +R(p) + p–

[
p(p – )



] p


(t – t)
p
 �(p)

= p–(t – t)
p


{

(t – t)
p
 R(p) +

[
p(p – )



] p

�(p)

}

≤ p–(t – t)
p


{

R(p) +
[

p(p – )


] p

�(p)

}

.
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Thus it follows from Lemma . that almost every sample path of x(t) is locally but uni-
formly Hölder continuous with exponent ϑ for ϑ ∈ (, (p – )/p), and therefore almost
every sample path of x(t) is uniformly continuous on t ≥ . By a similar procedure as
above, we can demonstrate that almost every sample path of x(t) is uniformly continuous
on t ≥ . The proof of Lemma . is completed. �

Assign

a · a >
c

b
· c

b
, (.)

then it is easy to verify that there exists a pair of positive constants ϕ and ϕ such that

c
b

a
<

ϕ

ϕ
<

a
c
b

,

thus ϕa – ϕ
c
b

> , ϕa – ϕ
c
b

> .

Theorem . If (.) holds, then system (.) with initial value (x(), x()) ∈ R
+ is globally

attractive.

Proof Let x(t) = (x(t), x(t)) and u(t) = (u(t), u(t)) be two arbitrary solutions of sys-
tem (.) with initial values (x(), x()) ∈ R

+, respectively. By Itô’s formula, we obtain
that

d ln xi(t) =
[

ri –


σ 

i – aixi(t) +
cjxj(t)

bj + xj(t)

)]

dt + σi dBi(t), i, j = , ; i �= j,

d ln ui(t) =
[

ri –


σ 

i – aiui(t) +
cjuj(t)

bj + uj(t)

)]

dt + σi dBi(t), i, j = , ; i �= j.

Then

d
[
ln xi(t) – ln ui(t)

]

=
{

–ai
[
xi(t) – ui(t)

]
+ cj

[
xj(t)

bj + xj(t)
–

uj(t)
bj + uj(t)

]}

dt, i, j = , ; i �= j.

Define a Lyapunov function by

V̂ (t) = ϕ
∣
∣ln x(t) – u(t)

∣
∣ + ϕ

∣
∣ln x(t) – u(t)

∣
∣.

A direct calculation of the right differential d+V̂ (t) of V̂ (t) along the solutions yields

d+V̂ (t) = ϕ sgn
(
x(t) – u(t)

)
d
[
ln x(t) – ln u(t)

]

+ ϕ sgn
(
x(t) – u(t)

)
d
[
ln x(t) – ln u(t)

]

= ϕ sgn
(
x(t) – u(t)

)
{

–a
[
x(t) – u(t)

]
+ c

[
x(t)

b + x(t)
–

u(t)
b + u(t)

]}

dt

+ ϕ sgn
(
x(t) – u(t)

)
{

–a
[
x(t) – u(t)

]
+ c

[
x(t)

b + x(t)
–

u(t)
b + u(t)

]}

dt
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≤
{

–ϕa
∣
∣x(t) – u(t)

∣
∣ +

ϕcb|x(t) – u(t)|
[b + x(t)] + [b + u(t)]

– ϕa
∣
∣x(t) – u(t)

∣
∣ +

ϕcb|x(t) – u(t)|
[b + x(t)] + [b + u(t)]

}

dt

≤
{

–ϕa
∣
∣x(t) – u(t)

∣
∣ + ϕ

c

b

∣
∣x(t) – u(t)

∣
∣ – ϕa

∣
∣x(t) – u(t)

∣
∣

+ ϕ
c

b

∣
∣x(t) – u(t)

∣
∣

}

dt

= –
(

ϕa – ϕ
c

b

)
∣
∣x(t) – u(t)

∣
∣dt –

(

ϕa – ϕ
c

b

)
∣
∣x(t) – u(t)

∣
∣dt.

Integrating on both sides from  to t, we have

V̂ (t) – V̂ ()

≤ –
(

ϕa – ϕ
c

b

)∫ t



∣
∣x(s) – u(s)

∣
∣ds –

(

ϕa – ϕ
c

b

)∫ t



∣
∣x(s) – u(s)

∣
∣ds.

That is,

V̂ (t) +
(

ϕa – ϕ
c

b

)∫ t



∣
∣x(s) – u(s)

∣
∣ds +

(

ϕa – ϕ
c

b

)∫ t



∣
∣x(s) – u(s)

∣
∣ds

≤ V̂ () < +∞.

As a result, |x(t) – u(t)| ∈ L[, +∞), |x(t) – u(t)| ∈ L[, +∞). It then follows from Lem-
mas . and . that

lim
t→+∞

∣
∣x(t) – u(t)

∣
∣ = , lim

t→+∞
∣
∣x(t) – u(t)

∣
∣ =  a.s.

The proof of Theorem . is completed. �

7 Numerical simulations
In this paper, we derived the sufficient conditions for stochastic permanence, extinction
and global attractivity of system (.). In order to illustrate the above analytical results, we
will give several specific examples in the following. Motivated by the Milsten method men-
tioned by Higham (see Ref. []), we obtain the following discrete version of system (.):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x(k + ) = x(k) + x(k)[r – ax(k) + cx(k)
b+x(k) ]�t

+ σx(k)
√

�tξ(k) + .σ 
 x(k)[ξ 

 (k) – ]�t,

x(k + ) = x(k) + x(k)[r – ax(k) + cx(k)
b+x(k) ]�t

+ σx(k)
√

�tξ(k) + .σ 
 x(k)[ξ 

 (k) – ]�t,

(.)

where ξ(k) and ξ(k) are Gaussian random variables that follow N(, ). Let us assign

r = ., a = ., c = ., b = .;

r = ., a = ., c = ., b = .,
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Figure 1 Computer simulations of the
permanence for system (7.1) without white
noises.

Figure 2 Computer simulations of the global attractivity for system
(7.1) without white noises.

and the initial value (x(), x()) = (., .). Theorem . shows that the positive solution
of system (.) will not explode to infinity at any finite time, which is fundamental to our
analytical results. From Figures  and , we know that system (.) without white noises is
permanent and globally attractive.

Example . (Stochastic permanence) Theorem . shows that system (.) is stochas-
tically permanent under a small noise. Let σ = .,σ = .,�t = ., then r = . >
.σ 

 = . × . = ., r = . > .σ 
 = . × . = .. It then follows from Theo-

rem . that system (.) is stochastically permanent, see Figure .

Example . (Extinction) Theorem . shows that a large noise may make the system
extinct exponentially with probability one. Let σ =

√
., σ =

√
., �t = ., then r +

c = . + . = . < .σ 
 = . × . = ., r + c = . + . = . < .σ 

 =
. × . = .. In view of Theorem ., we know that system (.) is extinct exponentially
with probability one, see Figure .

Example . (Global attractivity) Let (u(), u()) = (., .), σ = .,σ = .,�t =
.. Since a · a = . × . = . > c

b
· c

b
= .

. × .
. = ., then by Theorem .,

we conclude that system (.) is globally attractive, see Figure .
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Figure 3 Computer simulations of the stochastic permanence for
system (7.1).

Figure 4 Computer simulations of the extinction for system (7.1).

Figure 5 Computer simulations of the global attractivity for system
(7.1).

8 Conclusion
In this paper, we have considered a two-species mutualism model perturbed by white
noises. We first show that the model has a unique globally positive solution, and then study
the stochastic permanence and extinction of the model. The limit of the average in time
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of the sample paths is also estimated. Furthermore, we establish the sufficient conditions
for the global attractivity of the solutions. Finally, we provide several specific examples
to illustrate the analytical results. According to the numerical simulations, we find that a
small noise could not disrupt the original permanence (see Figures  and ), while a large
noise could make species in an equilibrium state tend to be extinct (see Figures  and ),
and that the environment noises have no influence on the global attractivity (see Figures 
and ).

The stability of the positive equilibrium state is one of the most interesting topics in
the study of population models. For models with environmental noises, however, they
could not keep the positive equilibrium state of the corresponding deterministic systems.
In recent years, many authors have investigated the stability in distribution of stochastic
population models (see Refs. [–]). We would like to mention that the stability in dis-
tribution could be an interesting problem associated with the study of system (.), and
we leave this for future investigation.
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