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Abstract

In this paper, we investigate the existence of solutions for a coupled system of
fractional compartmental models as differential inclusions with coupled nonlocal and
integral boundary conditions, whose multivalued terms depend on lower-order
fractional derivatives. By means of nonlinear alternative of Leray-Schauder type,
continuous and measurable selection theorems together with Leray-Schauder
degree theory, some sufficient conditions for the existence of solutions are presented,
which extend some known results. Several examples are given to demonstrate the
application of our main results.
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1 Introduction

Fractional calculus has emerged as an interesting field of investigation in the last few
decades. Fractional differential equations and inclusions arise in the mathematical model-
ing of systems and processes occurring in many engineering and scientific disciplines such
as physics, chemistry, viscoelasticity, electrochemistry, electromagnetism, aerodynamics,
economics, polymer rheology, control theory, signal and image processing, biophysics,
blood flow phenomena, etc. [1-4]. In consequence, the subject of fractional differential
equations and inclusions is gaining much importance and attention. For details and ex-
amples, see [5-12] and the references therein.

On the other hand, coupled systems of fractional differential equations arise in various
problems of applied nature, for example, HIV is a retrovirus that targets the CD4* T lym-
phocytes, which are the most abundant white blood cells of the immune system. Perelson
[13, 14] developed a simple model for the primary infection with HIV. In this model, four
categories of cells were defined: uninfected CD4* T cells, latently infected CD4* T cells,
productively infected CD4* T cells and virus population. AAM Arafal et al. introduced
fractional-order model of infection of CD4* T-cells. The coupled system is described by
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the following set of fractional ordinary differential equations of order a1, o3, 05 > 0:

DY(T)=s—KVT —-dT + bl,
D (I) = KVT — (b + 8)I,
D*(I) = N8I ¢V,

where T, I and V denote the concentration of uninfected CD4* T cells, infected CD4*
T cells, and free HIV virus particles in the blood, respectively. § represents the death rate
of infected T cells and includes the possibility of death by bursting of infected T cells,
hence §d. The parameter b is the rate at which infected cells return to uninfected class,
while ¢ is the death rate of virus and N is the average number of viral particles produced
by an infected cell. Besides, [15-19] have established the existence and uniqueness for
solutions of some systems of nonlinear fractional differential equations.

Compartmental analysis initially developed from studies of the uptake and distribution
of radioactive tracers, but today it plays a fundamental role in many parts of medicine, bio-
engineering and environmental science [20—22]. Compartmental models of pharmacoki-
netics were recently generalized using fractional calculus to extend the governing systems
for the form of fractional-order differential equations with specified initial conditions [23,
24].

In 2011, Ivo Petras$ and Richard L. Magin [25] considered the two-compartmental phar-
macokinetic model for oral drug administration as follows:

DY (t) = —kiqi(t),

(1.1
‘DY qy(t) = koq1(t) + kaqa(2),
with the initial condition
41(0) = dl: qZ(O) = dZ’ (1'2)

where ¢D% (i = 1,2) denotes the Caputo fractional derivative, o3, a3 > 0,£ > 0, g;(¢) (i = 1,2)
denotes the amount of drug in a specific compartment, k; (i = 1,2) is the fractional rate of
transfer to compartment. In their results, they assumed ¢;(0) = g,(0) = 0 if a3, 2 € (0,2].
They pointed out a very effective numerical method for the solution of system (1.1)-(1.2),
and the numerical solution is also created as a Matlab function.

Let q1(t) € F(t,q1(t),q2(t),°D" q2(t)) and qa(2) € G(t,q1(2), D’ qu(t), 42(t)). We get the
converted coupled system of nonlinear fractional differential inclusions:

¢D*x(t) € F(t,x(t),y(t),“D"y(¢)), 1<a<2,0<y<],

(1.3)
°DPy(t) € G(t,x(t),“D°x(t),y(t)), 1<B<2,0<8<1,
supplemented with coupled nonlocal and integral boundary conditions of the form
H0)=hO), [y y&)ds = (), ne©,7), w

y(0) =), [, x(s)ds = pay(), &€(0,T),



Jin and Sun Advances in Difference Equations (2017) 2017:146

where t € J := [0, T], °D denotes the Caputo fractional derivatives of order i, i = o, 8, ¥, 8
respectively, F,G : ] x R — P(R), &, ¢ are given continuous functionals and i, it are
real constants.

To the best of our knowledge, there are few people to study the coupled system of frac-
tional differential inclusions for compartmental models. For the part of theoretical results,
our basic tools are the theory of fractional calculus, the methods and results for differential
inclusions, and several fixed point theorems for multifunctions due to [26, 27].

Next, we compare our theoretical results with the other literature in details as follows:

(i) Our approach is adapted to the case when the right-hand sides have convex values
as well as nonconvex for system (1.3)-(1.4), which was not considered in [13, 14, 18,
19].

(ii) The present work is an extension of a recent paper of the authors [19], which was
considered for a single-valued case. This adds to the uncertainty about the
unknown function.

(iii) The fractional compartment form of (1.1)-(1.2) is a particular case of the coupled

system (1.3)-(1.4) if we take F = {-kix(¢)}, G = {kix(¢) + koy(£)},
h(y) = ¢(x) = 1 = u2 = 0.

(iv) Coupled system (1.3) is called a commensurate-order system if & = 8, otherwise it
is an incommensurate-order system [25].

(v) The coupled system for a single-valued map [19] is a particular case of the
corresponding multivalued map if we take F = {f}, G = {g} and f, g are continuous
functions.

(vi) We adopt the ideas of selection theorems to reduce the condition that the

right-hand side has convex values.

(vii) The mentioned methods are also useful for further investigations concerning the
existence of solutions of a coupled system of fractional differential inclusions and
other types.

The structure of this paper is as follows. In Section 2, we introduce some notations,
definitions of fractional calculus and multivalued maps, together with some basic lemmas
to prove our main results. In Section 3, we will consider the sufficient conditions for the
existence results. Finally, in Section 4, several examples are given to illustrate our main
results.

2 Preliminaries
This section is devoted to presenting some notation and preliminary lemmas that will be
used in the proofs of the main results [28, 29].

Let (X, || - ||) be a normed space, and let Y be a subset of X. We denote

(i) PX)={YCX:Y#0}

(i) Pu(X)={Y e P(X):Y closed};

(iii) Pp(X) ={Y € P(X): Y bounded};

(iv) Pep(X) ={Y € P(X) : Y compact};

V) Po(X)={Y € P(X):Y convex};
(Vi) Pepev(X) ={Y € P(X) : Y compact, convex}.
Consider the Pompeiu-Hausdorft metric H; : P(X) x P(X) — R U {oo} given by

H,(A, B) = max { supd(a, B),supd(A, b) } ,
acA beB

Page 3 of 30
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where d(A, b) = inf,c4 d(a; D), d(a, B) = infpcp d(a; b). Then (Py(X), H;) is a metric space
and (Py(X), H,) is a generalized (complete) metric space (see [28, 30]).
A multivalued map F: X — P(X)
(i) is convex (closed) valued if F(x) is convex (closed) for all x € X;;
(ii) is bounded on bounded sets if F(B) = | .z F(x) is bounded in X for all B € P,(X)
(i.e., sup,ep{supf{lyl : y € F(x)}} < 00);
(iii) is called upper semicontinuous (u.s.c) on X if, for each xy € X, the set F(x) is a

xeB

nonempty closed subset of X and if, for each open set N of X containing F(xy),
there exists an open neighborhood N of xg such that F(Ny) € N;

(iv) is called lower semicontinuous if the set {x € X : F(x) N O # @} is open for each
open set O in X;

(v) is said to be completely continuous if F(B) is relatively compact for every
B € Pp(X);

(vi) is said to be measurable if, for every y € R, the function

t>d(y,F(t)) =inf{|y - z| : z€ G(1)}

is measurable;
(vil) has a fixed point if there is x € X such that x € F(x). The fixed point set of the
multivalued operator F will be denoted by Fix F.

Definition 2.1 ([31]) The fractional integral of order g > 0 of a Lebesgue integrable func-
tion f(-) : (0,00) — R is defined by

1t )
TTO=5@ Jy s

’

provided that the right-hand side is pointwise defined on (0,00) and I'(-) is the (Euler)
gamma function defined by I'(q) = [~ £ e dt.

Definition 2.2 ([31]) The Caputo fractional derivative of order g > 0 of a function f(-) :
[0,00) — R is defined by

1
I'(n-q)

‘DI (t) = / t(t —5)" 17 (s) ds,
0

where n = [¢g] + 1. It is assumed implicitly that f(-) is #n times differentiable whose nth
derivative is absolutely continuous.

Lemma 2.1 ([32]) Let « > 0. If we assume h € AC"(0,1), then the differential equation
‘D*h(t)=0

has a unique solution
h(t)=co+crt + ot + -+ + ¢yt

wherec; €R,i=0,1,2,...,n—1, n is the smallest integer greater than or equal to o.
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In view of Lemma 2.1, it follows that
I%°Dh(t) = h(t) + co + 1t + Cot® + -+ - + Cyg "),

forsomec; €R,i=0,1,2,...,n—1, n is the smallest integer greater than or equal to o.

Lemma 2.2 ([19]) Let w,z € L[0, T] and x,y € AC?[0, T). Then the unique solution of the
problem

‘D*x(t) =w(t), te€(0,T),l<a =<2,

DPy(t) =z(t), te(0,T),1<B<2,

20 =h(y), [y y(s)ds=pix(n),

y0)=¢(), [y x(s)ds = poy(€), 1.&€(0,T),

2.1)

L)
[(a)

¢ 7 (n—s)et T (T —s)f
+Z|:M2€(Ml/<; T W F<ﬂ+1)z(s)ds)

T fE-gt T (T }
+ 5 (Mz/o N0 z(s) ds /0 F(oz+1)w(s)ds)

x(t) = w(s) ds + (o1t + 1)h(y) + tor¢(x)
0

and

tre -1
y(t) = /0 (tF(S};) z(s)ds + (o3t + 1)p(x) + toah(y)

_g)f o
+£|:M177(M2/ ¢ S) ————z(s)ds - / S) (S)dS)

([ —s)°‘*1 (T—3)
*7(’“/0 Ty W% | r(ﬁ+1)z(s)ds>]’

where
T4 -4
A muzné’
4
24106 — T
o=
2A
_ Tpo(T -28)
2 2A b
_ 2iapkan — T3
2A ’
_ Tpa(T -2n)
2A '

Definition 2.3 A function (x,y) € AC%(J,R) x AC*(J,R) is a solution of the coupled
system (1.3) if it satisfies the coupled nonlocal and integral boundary conditions (1.4)
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and there exist functions f,g € L}(J,R) such that f(¢) € F(t,x(¢),y(t),°D" y(t)), g(t) €
G(t,x(t),°D’x(t), y(t)) a.e. on t € ] and

X(0) = / U f(s) ds + (o1t + D(y) + tor(x)

(n—s)
+—[Mz€(m/ 5 ds - f o 1)g<>d)

T2 (-9 9
+7(“2/0 Ty SW9s- /r< f()d)]

and

t p-1
¥(6) = /0 “r(;) 2(5)ds + (03t + () + touh()

¢ € (g - 5)p! (T -5
*Z[“l”(‘”/ F(ﬁ) geds= | F(a+1)f(s)ds)

([ G- T(T-s)f
+7(’“/0 r() - o r(ﬁ+1)g(s)ds>}

where A and o; (i = 1,2, 3,4) are defined in Lemma 2.2.

Definition 2.4 A multivalued map F : X — Py(X) is called
(1) y-Lipschitz if there exists y > 0 such that

Hy(F(x),F(y)) < yd(x,y) foreachu,y€X;
(2) a contraction if it is y-Lipschitz with y < 1.
Definition 2.5 A multivalued map F:J x R? — P(R) is said to be L!-Carathéodory if
(1) t+ F(t x,y,z) is measurable for each x,7,z € R;

(2) (x,9,2) > F(t,x,9,2) is upper semicontinuous for almost ¢ € J;
(3) for each /> 0, there exists ¢; € L'(J,R*) such that

|E@ x,9,2)| = sup{|v]: v € F(t,%,9,2)} < ¢u(t)
forall |lx|| </, |lyll </ |lz|| </and forae. t€].
Lemma 2.3 ([33]) Let X be a Banach space. Let F :] x X3 — Pep,ev(X) be an L-

Carathéodory multivalued map and T be a linear continuous mapping from L(J, X) to
C(J,X). Then the operator

T OSF : CU:X) - Pcp,cv(c(]yX))) y= (TO SF)()’) = T(SFyy)
is a closed graph operator in C(J,X) x C(J,X).

To prove our main results, we will use the following fixed point theorems.
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Lemma 2.4 (Nonlinear alternative of Leray-Schauder type [26]) Let X be a Banach space,
C be a closed convex subset of X, and U be an open subset of C with 0 € U. Suppose that
F:U— Py, ev(C) is an upper semicontinuous compact map. Then either (1) F has a fixed
point in U, or (2) there is x € OU and ) € (0,1) such that x € LF ().

Lemma 2.5 (Covitz and Nadler [27]) Let (X,d) be a complete metric space. If F : X —
P(X) is a contraction, then F has a fixed point, i.e., a point z € X such that z € F(z).

3 Main results
In this section, we will give some existence results for the coupled system (1.3)-(1.4).

Let C(J,R) denote the space of all continuous functions defined on J. Let X = {x:
x € CJ,R) and °D’x € C(J,R)} be a Banach space endowed with the norm |x|x =
x|l + [°D%x|| = maxses |x(t)| + max;e; |°D°x(t)], where 0 < § < 1 [34], and let ¥ = {y:
y € C(J,R)and °D¥y € C(J,R)} be a Banach space equipped with the norm |y|y =
Iyl + 1°DY y|| = maxes |y(t)| + max.es [°DY y(t)|, where 0 < y < 1. Obviously the product
space (X x Y,| - |lxxy) is a Banach space with the norm ||(x,%)|lxxy = lI*llx + |ly|ly for
xy)eXxY.

For each (x,y) € X x Y, define the sets of selections of F, G by

Foo) = U € L'ULR) 1 f(8) € F(£,x(2),9(2),°D” y(¢)) for ace. t € T}
and
SGy = (g € L'U,R) 1 g(8) € G(£,x(2), “D°x(2), y(t)) for a.e. t €T}

In view of Lemma 2.2, we define operators Ny : X X ¥ - P(X x Y)and Ny : X x ¥ —
PX x Y)as

Ni(x,9) = {h € X x Y : there exist f € Sr,x) and g € Sg,(xy)

such that /1 (x, y)(¢) = A1(t,x,9),Vt € ]} (3.1)
and

Na(x,y) = {hz € X x Y: there exist f € S, and g € Sg )

such that i1, (x, y)(£) = Ax(L,x,9),Vt € ]}, (3.2)

where

_ -1
Al(t,x,y):/o (tr()) Y29 f6)ds + (o1t + Dh(y) + tor ()

¢ (n—s)!
+Z[Mz%‘<m/0 T ds- / e 1)g()d>

T’ FE-s)ft (r-
v [ S [y
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and

B-1
As(t,x,) = /o (tr(s,;) (s)ds + (03t + 1)p(x) + tosh(y)

t (-9 - 5)"

N [“l”<“2/0 T 1f ¥ ds)
T2 n a— 1 T

o5 ([ i [t pes)]

Then we define an operator N: X X ¥ - P(X x Y) x P(X x Y) by

N(xry) = (Nl(x7y)’N2(xry))l (33)

where N, N are defined as (3.1) and (3.2).
It is clear that if (x,y) € X x Y is a fixed point of the operator N, then (x,y) is a solution
of the coupled system (1.3)-(1.4).

For computational convenience, we introduce the notations:

Tip1palé T* I
P=(1+ + . ,
IA| M@ +1)) T@+1)

P:( § . T>'|,112|Tﬁ+2
27\JAlB+1) " 2(A]) T(B+1)’

T T4 TP
P, = <1+ [1paln . ) )

[A] 21A1(B+1)) T(B+1)’
P n T | | T2
4 = + ° )
Al +1)  2]|A] IN'a +1)
— TN )T Te+?
P, =

F@) AT+  2/AT(@+2)

2 =< § + T >'|,U«2|Tﬁ+l
27\AlIB+D) T 21A1) T(B+1)’

TP |apalnT? TP
+ + ,
L) [AIT(B+1)  2]AIN(B +2)

> n r | T
P4= + : bl
Ala+1)  2[A]) T(a+1)

Qi =Li(|o1| T +1) + Ly|oo|T,

Ps =

Q, = Liloy| + Lo,
Q2 =Ly(lo3|T +1) + Ly|oal T,

Q, = Ly|os]| + Li|ogl.

3.1 The Carathéodory case
First we consider the case when F, G are convex valued.
We give the following conditions:
(H1) F,G:] xR® — Pep,ev(R) are L'-Carathéodory multivalued maps;
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(H2) There exist my, my € C(J,R*) and 1, @3, Y1, ¥, p1, p2 : [0, 00) — (0, 00)
continuous, nondecreasing such that

||F(t,x,y,z) || = sup{[fl :fe F(t,x,y,Z)}
< my () (1 (1x]) + v (lyl) + p1(l2l))

and

|Gt %,5,2)|| = sup{lg| : g € G(t,x,,2)}
< my(t)(e2(I%1) + Y2 (Iy1) + p2(121))

forx,y,z€ Randae. t€J;
(H3) h, ¢ are continuous functionals with /4(0) = ¢(0) = 0, and there exist constants
Li >0, Ly > 0 such that

|h(x1) = h(x2)| < Lillx - %2,

|p(x1) — p(x2)| < Lallvr —x2ll, V1,55 € CULR).

Theorem 3.1 Assume that (H1)-(H3) are satisfied and there exists K > 0 such that

2
K> Aillmill (9K + Yi(K) + pi(K)) (1= As) ™. (3.4)

i=1
If, in addition, As <1, where

TI—S _ Tl—y _

A =P P + P Py

1 1+ g r2-9) 1+F(2—y) 4
TI—S _ Tl—y

P P}

re-s 'Te-pn"
Tl—é _ Tl—y

Az=Q1+Qx + F(2—5)Q1+ F(Z—y)Qz’

Az =P2 +P3+

then the coupled system (1.3)-(1.4) has at least one solution on J.

Proof Consider the operators N1 : X x Y — P(X x Y)and Ny : X x Y — P(X x Y) defined
by (3.1) and (3.2). From (H1), we have that for each (x,y) € X x Y, the sets Sg,(x) and Sg,(x,)
are nonempty [33]. For (x,y) € X x Y, let f € Sr,x,), & € SG,(x,) and

1 (x, y)(2)

/t (t _ S)Otfl
= f(s)ds + (o1t + 1)h(y) + torg(x)
0 IMa)

t
+Z[“25(’““/0 r() O~ /F(ﬂ D¢ SM)

T? £ -5
s , f s
+2<”“2/o Ty W /r( f()dﬂ ortes
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and

hy (%, y)(2)

¢y Bl
_ f (tr(s) 2(s) ds + (03t + 1)p(x) + toah(y)

i[um(/ ‘S)‘“()d /F( f()d)

12 (n—s)*" (T -5s)
+7(,u1/0 @) f(s)ds— | F(ﬂ+1)g(s)ds>:|' fort e,

that is, /i; € Ni(x,y), hy € Na(x,9), so (1, ) € N(x,9).
We will show that N satisfies the requirements of the nonlinear alternative of Leray-

Schauder type. The proof will be given in five steps.

Step 1. N(x,y) is convex valued.
Suppose (/;, 1) € (N1,N) (i = 1,2). Then there exist f; € Sg,x,), & € SG,xy) (i =1,2) such

that forany t € /,i=1,2, we have

(If S)al
o Tl

" (n-s)*! (r-s/
5t [ s [ e )

2 [ g [ )
v e [ 1 0w)

hi(t) = ————fi(s)ds + (o1t + 1)h(y) + tor¢(x)

and

t (t_s)ﬁ—l
o T(B)

t 5 (& -s)f! (T -s)"
5ol [ Sieoa [ reyos)

r? "(n-s)" (T -s)f
g [ s [ peos)|

Let 0 <6 <1. Then, for any ¢ € /, we have

gi(s)ds + (o3t + 1)p(x) + tosh(y)

Ti(t) =

(051 + (1 - 6)hs)(2)

t _ -1
- / (tr(s(i) (B/1() + (1 =0)/2(9)) s + (12 + DA(Y) + 1029 (x)
0

n a-1
+ i[ﬂz%‘ (Ml/ (ﬂr i (0£1(s) + A = 0)f2(s)) dis

(T -s)P

-/, m(@gl(s)ﬂl—e)gz(s))ds)

T? FE-s)ft
+ 7(#2/0 NG (6g1(s) + 1 - 0)ga(s)) ds

_ (T (9ﬁ(s)+1 0)f(s)) d ﬂ
0o I'a
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and

(07 + (1-0)hs) (2)
t(t—s)f!
= / ———(0gi(s) + (1 — 0)g2(s)) ds + (o3¢ + 1)P(x) + tosh(y)
0

0
+ i [Mm (Mz / G 1: (;))ﬂl (0gi(s) + (1 - 0)ga(s)) ds
(rfa 1)(efl(s)+ (1-0)h(s)) d )
+T;(m/" (”F‘S) " (0A) + - 0)(9) ds
_ OT %(egl(s) +1-0)0,) ds)].

Since F and G are convex valued, we deduce that Sg,,) and Sg,,) are convex. Obviously,
Ohy + (L—0)hy € Ny, 0y + (1 - 0)hy € N». Therefore, 6(hy, ) + (1 - 0)(h2, h12) € N.

Step 2. N maps bounded sets into bounded sets in X x Y.
Letr>0,B,={(x,y9) € X x Y: ||(x,9)|lxxy <7} be abounded subset of X x Y, (i, h5)

) and (x,) € B,. Then there exist f € S, and g € Sg,,5) such that forany t € J,

N(x,y
~ t(t S)ot—
(5,)(0) = /0 Fs O ds 4 (1t + D) + 26)
t (n —s)*
+A[Mz$(m/0 - " fsyds— / = 1)g()ds>
5 (m [ S sds)|
+2(“2/o gy W= /r(
and
(- )Pt
(s)ds + (o3t + 1)p(x) + toah(y)

)0 - [ e
t S (E—s)f!
A[’“”( /0 (g S04

I "(n—S)‘“ (T—s)ﬂ ]
<m /0 roas- [ 1 +1)g<s)ds) .

)

+
2 0
Based on assumptions (H3), we find the following estimates

|h()| < |h() = hO)| + |HO)] < Lillylly < Lir, ¥yeR,

()| < [p(x) — $(0)| + |¢(0)] < Lollxllx < Lor, VxeR.

Using these estimates, we get
|1 (2, ) (1)

Ta
< TarlD) [l (@1(r) + Y1 (r) + p1(r)) + Lyir - oyt + 1] + Lor - o2t
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al6T TP
Al T(B+2)

Tipale T
|A| (o +1)

Nl (@1(r) + ¥ (r) + pr(r) +

X [lmall(92(r) + ¥a(r) + pa(r))

T3 T8
* |l;|2|A| ‘TB+1) 175 (02(r) + Wra(r) + p2(1))
T3 T+l

+ 5A Tesd )l (1(r) + Y1 (r) + p1(r))

<Py lmll(@a(r) + ¥1(r) + pr(r) + Py - 1mall (02(r) + ¥2(r) + pa(r)) + Qur

and
) (0

- Ot?@?:;uwk+om00+@¢@m+%{uﬁ(uhénm;gjfﬂwm
[ e Sl S s | o)

§F$~wm@mnwmnmmw¢mm+mmv
-ﬂ“iﬂs.”jiD~WmnwAA+wm0+mv»+fﬁf~agf%
) + 0+ ) + Y )+ 200+ 200)

;Z|Ffwl)nmm@mﬂ+wum+mu»

=Py - lmy || (@1(r) + Y1 (r) + p1(r)) + Py - [lma |l (92(r) + W2 (r) + pa(r)) + Qi1

which implies that

’CD‘Shlxy t)’ _/ (- T S)Ihl(xy ) (s) ’ds

1-6
<
—TI'(2-9)

+Py - [mal(@2(r) + Y2 (r) + pa(r)) + Qyr].

[Py Il (1(r) + ¥1.(r) + p1(r))

Thus

[y = [mEn]+ [Dhy]

Tl s T178 —
< (Pl + ml’l) Nyl (@u(r) + Y1) + o1 (r)) + (Pz + ml’ 2)

1-6
xumﬂumoo+WAﬂ+ﬂﬂ”)+(Ql ré af%>
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In a similar manner, for any ¢ € /, we obtain
| (x,9)(2) |

< TG+ lm2]1(@2(r) + Y2 (r) + po(r)) + Lor - 03T + 1] + Lyr - 02| T

Tlppaln TP lpalnT — T**
N -F(ﬁH)~IIWZ2||(¢2(r)+1//z(r)+pz(r))+ A T+

im0 + 1) + ) + I T ) 4 ) 4 )
1\¥1 1 £1 21A| F(a+1) 11I\¥1 1 P1

T3 T+
+ 3A TGeD 21l (92(r) + Y2 (r) + pa(r))

< P3 - [|ma||(@2(r) + Y2 (r) + pa(r)) + Py - Iyl (@1(r) + ¥1(r) + p1(r)) + Qars

’hz(x,y)/(fﬂ
|9 1 FE-9!
= ‘ rGD) g(s)ds + o3¢ (x) + o4h(y) + |: m(uzfo T ) g(s)ds

(T —s)* T2 " (n —s)*! T (T _g)P
- F(Ot+1)f(s)ds>+7(m/0 ) f(s)ds - ) I‘(ﬁ+1)g(s)ds>”
p-1

= ) lm2]1(@2(r) + Y2 (r) + p2(r)) + Lalos|r + Ly|og|r

|[1pealn Tk ln T
Al TGD m | (@2(r) + Yo (r) + pa(r)) + Al T@rd

2 o
Il (@) + Y2 (r) + (1) + ";Z g Il 0+ 00+ )

T? TB+1
+ M . m . ||m2||(<P2(r) + Yo (r) + pz(r))

=Ps - [ma || (@2(r) + Y2 (r) + p2(r)) + Py - [l (@1 (r) + Y1 (r) + pr(r)) + Qor

and

|CDVh2(x,y) t)| _f (- |h2(x,y) (s)|ds

T _
“Ta ) [Ps - Imall (@2(r) + ¥2(r) + pa(r))

+ Py - lmy || (@1(r) + ¥1(r) + p1(r)) + Qyr].

In consequence, we get

|Gy = 2] + D7 ha )|

P T P P T 2
< . -
_( 3 + r2_y) 3> ||m2||(902(f)+1/fz(r)+,02(r))+< 4 + r2-7) 4>

1-
< Im (1) + 92 (r) + (1) + (Qz . Fé—fy@)r.
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Hence, we obtain

[0 )|y = @D + [y
< Ar- lmall(@u(r) + ¥ (r) + pa(r))
+ Ay - lma | (@2(r) + ¥a(r) + pa(r)) + Asr

=1 (aconstant).

Step 3. N maps bounded sets into equicontinuous sets in X x Y.
Let B, be abounded set of X x Y asin Step2.Let0 <t <t, < T and (x,y) € B,. For each
(M1, hy) € N(x,), then there exist f € Sp,,) and g € Sg,(x,5) such that

t _ -1
I 9)(0) = /0 ‘tr(‘z) F(5)ds + (o1t + Dh(y) + to26()

n _ -1 T _ B
+ﬂuzs(m /0 =9 gyas— [ L9 g(s)ds)

(o) o T'(B+1)

T2 ) (T -s)
o [ 5 )

and

B~
By (x, y)(t /(t 9 1g()ds+(03t+1)<,25( ) + togh(y)
_q)8-1 Y
+£[Mm(uz %g(s)ds— O (F(M)l)f(s)ds)

T2 " (- s)a -1 T (T—s)ﬂ
o e [ o)

Since

|7 (x, ) (£2) = I (%, 9)(81) |

5] _ o)1 _ _ o)1
< /0 (t2 = 5) F(a()“ ()| ds + o) [t — 1) + |20 62 — 1)

2 (- s)*! -t " (n—s)*!
+fﬁ o lrwldse 2 (wms[c ro ol

r
cls [T

2| T 5 (& —s)P T (T (T -s)"
+ ) /(; T B) ‘g(s)|ds+7 ; F(a+1)lf(s)}ds>
Mty =)t = (t —s)*
= /0 )
+ (lo1|Lyr + |02 |Lor) (2 — 11)

2 (ty—s)*!
f ')

ds - lmy | (@1(r) + v1(r) + pa(r))

+

_ Ta
ds - lmy||(e1(r) + ¥ (r) + pr(r)) + bhh—t |:|M1/L2|$

|A| Mo +1)
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Al 200+ 20) + L i a0) 020+ a0)
; ;’ﬁ'}ff; Nl (@2) + ¥2(0) + o)
; sz) sl (1) + v () + pl(r))]
< er_(;l) Nl (1) + ) + ) + (lorlar + |02l Lar) (2 — 1)
P i (0) )+ i) + 2 Bl
% (1) + 910) + ) + ";z’ff;l mal(207) + 920) + o)
. ;’;jgff) (2 + )+ ()
s

20 (o +2)
|1y (x,9) (£2) — (%, y) (t)]
(

ty—5)*2—(t —s)*2 2 (4 —s)2
5(/0 Fla—1) d”/tl Fla—1) ds)

x [lma | (@1(r) + ¥1(r) + pa(r))
ta l_ta 1

< s 2 0
T (@-1l(a-1)

Nl (@1 (r) + ¥ () + Pl(f))],

Nyl (@1(r) + Y1) + pa(r))
and

°D° I (%,9)(82) = D’ (x, 7) (1) |

? (t2 _5)78 ’ i (tl - 5)76 ’
/(; F(I—S) h1(x,y) (S)dS—/O F(1—5) hl(x,y) (S)ds

Bty —s) — (¢
5/0 2 SF(l 51) s 9

r1-2s)

Bty —s)? —(t; —5)7° 2 (ty—s)7
= </o ri-9) d“/tl ri-9) ds)
x (Py - lmy | (1(r) + Y (r) + pu(r))

+ Py - lma || (@2(r) + Y2 (r) + p2(r)) + Qi)

87 —4°
= 1=8)T(1-0)

+ Py - mall(92(r) + ¥2(r) + pa(r)) + Q7).

+/ 297 )] ds

(Pr- I [l (@1(r) + 4 (r) + o2 ()

Hence |71 (x, )(t2) — hi(x, y)(t1)| — 0 as £, — 4.
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Analogously, one can obtain

|12, ) (82) — ha (%, 9)(81) |

b4
= Sy Iml(@2) + )+ pa(r) + (o5l Lar + loalLur) (2 = 1)
PR
+ (tgr(tg; : ”m2||((/72(7') + Yo (r) + 02(7”))
- 8
t2|A|t1 |:|l;1(l;2L'717; ) ||m2||(<p2(r) + Y (r) + ,02(}‘))
o+1
* % Nl (@1(r) + 9 () + o2 ()
M [l (@1(r) + Y1 (r) + pu(r))
20 (a +1) ¢ 1 o1
B+3
argry el )+ pZ(,))}
o (,9) (82) = ha (3, 9) (1)
-1 p-1
B

=< m - s || (‘/72(1”) + Y (r) + ,Oz(r))

and

|°D” ha(x,9)(t2) = °D” ha (%, 9)(11)

-7
T (1-py)ra-
+ Py - lm |l (@1(r) + 1 (r) + pr(r)) + Qyr).

) (Ps - lma |l (@2(r) + Ya(r) + p2(r))

Hence |15 (x, ) (£2) — ha (%, ¥)(¢1)| — 0 as t, — . Therefore, the operator N(x, y) is equicon-
tinuous.

From the foregoing arguments, we infer that the operator N(x, y) is completely contin-
uous by the Arzela-Ascoli theorem.

Step 4. N has a closed graph.

Letting (%, y1) = (%4, ¥4), (hp, 1) € N(%,9,) and (B, 1) — (B, h,), we need to show
(he, 1) € N (x4, 7x). Now (hy,hy) € N (x4, y,) implies that there exist f, € Sr,x,,,) and g, €
S6,(xny) SUch that for all £ € /,

t(_ oyl
o) = [ g0 ds e+ D) + 102000
t (-5 sy
5ot [ o= [ 5 eso)

T2 €9t )
+7<“2/o Ty G- / f”)dsﬂ
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and

L(t—s)PT
o TI'(B)

t FE-s) (T -9
ek [ [ EE a0 [ 1T g0 as)

e - s)al (T3
+7(m/0 () /0 o l)gnudsﬂ

Let us consider the continuous linear operators ®;,®, : L}(J,X x Y) — C(J, X x Y) given
by

(0, y)(8) = 24(5) ds + (o3t + 1) (x) + tosh(y)

(-

Dy (x, y)(8) = / f(s) ds + (o1t + 1)h(y) + toa¢p(x)

t (n—s)*! T(T-s)P
+K[“25(“1/0 Fe) (S)ds'/o r(ﬂ+1)g(s)ds>

12 S (T -s)
+7(“2/0 gy SO ) r(a+1)f(s’ds>]

and

o p-1
5 (x,)(0) = /O (tr(‘z)

i[um( / 'S'“ o(s)ds - /r( f()d)

(- )‘“ (T-s)
*7(’“/0 fods-J, F(ﬂ+1>g(s)ds>]'

From Lemma 2.3, we know that (®;, ®;) o (Sg, Sg) is a closed graph operator. Moreover,
we get (h,,1,) € (P1, Py) 0 (SE,Gemym)» SG, () for all m. Since (X, ¥) = (%5 Ys), (M 11y) —
(h, 1) it follows the existence of fi € Sk s, ,) and g € SG,x,.5.) such that

g(s)ds + (o3t + 1)p(x) + toah(y)

t _ -1
h*(x*,y*)(t):‘/0 (tr(so){) -fi(s) ds + (o1t + 1)h(y) + torp(x)
t T (n—s) (T -9
+K[M2€<M1/o ) O ) TE SO )
T? G (T
(e Srgeoi- [ s

and

_ t _ \B-1
h*(x*,y*)(t)=/0 (tF(S/;) g.(s)ds + (o3t + 1)p(x) + togh(y)
t (g —s)ft T(T-s)
+ X[Mm(uz/o | F(Ml)f*(s)ds)

T2 7 (n —s)71 T (T _g)p
+7(M1./0 @) f(s) ds — ) F(ﬁ+1)g*(s)ds>]’

that is, (4, E*) € N(x*ry*)

Page 17 of 30
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Step 5. A priori bounds on solutions.
Let (x,y) € AN(x,7) for some A € (0,1). Then there exist f € Sg,x,) and g € Sg,,) such
that forall £ €/,

t _ o)1
x(t):)»/o (tF(So)t) -f(s)ds + (o1t + 1)h(y) + tord(x)
A n _ -1 T T — B
+XI[M2€<MI/0 et [ (r(ﬂf)ng“)ds)

T2 S () T(T-s)"
oy (o [ g e [ o)

and

tp Bl
O = 2 /0 (tr(s;) 2(s)ds + (03t + 1)p(x) + tosh(y)

At §(E-s)pt (T -9
+Z[mn(uz/o N0 g(S)ds—/O F(oz+1)f(s)ds)

(=gt [T (T ﬂ
"2 (’“/o () JO% /o rp 040 %) |

With the same arguments as in Step 2 of our proof, for each (x,y) € X x Y, we obtain

1-6

lxllx < <P1 + ﬁﬁl) Al (o1 ([ G69) | ,ey)

+(|

() ”)(xy))

TI—S _
+ (Pz + m%) Nimall (e2(|

([ @) xy) + 221 xr)

T1—5 o
+ (Ql + 7F(2—8)Q1>|

() ||X><Y) + 101(|

(x’y)”)(xy)

(x’y)”XxY
and
T _
Il < <p3 ; m—_y)pg) sl (e (1))
+ WZ(” () ||X><Y) + 102(‘ (x’y)“XxY))

T _
+ <P4 + F(T_V)PAL) : ||Wll||(<ﬂl(|

() ||X><Y)

1-y

T —_
() Do) + (@ @ ) 16Dy

Thus

2
A= A)][ D) oy = D Ai Il (@i 5 0) | oy)

i=1

+ 1/’:‘(’ () Hxxy) + pi(“ () HXXY))'
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Now we set
U= {(x,y)eXx Y: ||(x,y)||XX),<I(}.

Clearly, U is an open subset of X x Y and (0,0) € U{. As a consequence of Steps 1-4, to-
gether with the Arzela-Ascoli theorem, we can conclude that N : .f — Pep,ev(X) X Pepev(Y)
is upper semicontinuous and completely continuous. From the choice of I/, there is no
(x,7) € 0U such that (x,y) € AN(x,y) for some A € (0,1). Therefore, by Theorem 2.4, we
deduce that N has a fixed point (x,y) € U, which is a solution of the coupled system (1.3)-
(1.4). This completes the proof. d

3.2 The lower semicontinuous case
Now we study the case when F, G are not necessarily convex valued.
In this result, we need to give the following conditions:
(H4) F,G:J] x R* - P,,(R) are multivalued maps such that
(1) (t,%,9,2) > F(t,x,9,2) and (t,x,9,2) = G(t,x,y,z) are EQ BRQ] B B
measurable;
(2) (x,9,2) > F(t,x,9,2) and (x,y,z) — G(¢,x,,z) are lower semicontinuous for
ae. te].

Theorem 3.2 Assume that (H2)-(H4) and relation (3.4) hold. Then the coupled system
(1.3)-(1.4) has at least one solution on J.

Proof From (H2), (H4) and [35], Lemma 4.1, maps

Fi: X — P(Ll(], ]R)), x— F1(%,¥) = Sk x)
Fo: Y — P(Ll(], R)), y— ]:2(9@)’) = SG,(x,y),

are lower semicontinuous and have nonempty closed and decomposable values. Then
from the selection theorem due to Bressan and Colombo [36], there exist continuous
functions f : X — L}(J,R) and g : Y — L(J,R) such that f € Fi(x,y) and g € F»(x,y) for
all x € X, y € Y. That is to say, we have f(¢,x(£), y(¢), D" y(£)) € F(¢,x(¢), y(¢), D" y(¢)) and
g(t,x(t),*D’x(t), y(2)) € G(t,x(t),*D’x(t), y(t)) for a.e. t € J. Now consider the problem

D*x(t) = f(&,x(2), y(1), D y(8)), te€], (3.5)
DPy(t) = g(t,x(t),“D’x(8),y(1)), t€],
with the boundary conditions (1.4). Note that if (x,y) € X x Y is a solution of the coupled
system (3.5), then (x, y) is a solution to the coupled system (1.3)-(1.4,).
A solution of the boundary value problem (3.5), (1.4) is then reformulated as a fixed
point problem for the operator N : X x ¥ — X x Y defined by

N(x,y)(8) = (N1(x%,9) ), Na (%)),
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where

t (t _ S)a—l
o)

Ni(x,y)(t) = /0 f (5,%(5), 5(5), °D y(s)) ds + (o1t + 1)h(y) + to2¢p(x)

n _ -1
vl [Mzé <,U«1 /0 Mf (s, %(5), y(),°D” y(s)) dis

A I'a)
T(T-9f o T2 5 -9
_/0 mg(s,x(s), D°x(s), y(s)) ds) + 7(#2/0 “TE
T o
g(s,x(S),CD5x(s),y(s)) ds — /0 lg‘](wa__:)l)f(s,x(s),y(s),CDVy(S)) ds>:|
and
N (x,y)(t) = / i ,3 (s x(s), °D°x(s),§(s)) ds + (o3t + 1) (%) + toah(y)
ﬁ -1 s
[Ml'l( F(,B) (S,x(s), D x(s),y(s)) ds
(T -s)" . T2 1 (y —s)*t
- o o+ l)f(s,x(s),y(s), DVy(s)) d5> * 2 (m/(; W

T(T-5s)f

Xf(s,x(s),y(s),cDVy(S)) ds - 0 m

g(s,%(5), °D°x(s), 5(s)) ds) :| .

It can easily be shown that N is continuous and completely continuous and satisfies all
the conditions of the Leray-Schauder nonlinear alternative for single-valued maps [37].
The remaining part of the proof is similar to that of Theorem 3.1, so we omit it. This

completes the proof. O

3.3 The Lipschitz case
In this section, we need to give the following conditions:
(H5) F,G:J xR® — Pep(R) are multivalued maps such that
(1) F and G are integrable bounded, and maps ¢t — F(t,x,7,z) and t — G(¢,%,,2)
are measurable for all x,y,z € R;
(2) There exist m3, my € C(J,R*) such that for a.e. £ € J and all
x1,%2,)1,¥2,21,22 € R,

Hy(F(t, %1, 91,21), F(£, %2, 52, 22)) < m3(0) (|1 — x| + |y1 = 32| + |21 — 22])
and
Hy(G(t,%1,51,21), G(t,%2, 92, 22)) < ma () (11 — %] + [y1 — 32| + |21 — 22]).

Theorem 3.3 Assume that (H3) and (H5) hold. If, in addition,

T1—8 Tl—)/
Apg+ ———As5+ Ag+ ——— A7 <1, 3.6
4 r2-9) 5 6 r2-y) 7 (3.6)
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where
Tmsll  puapo T E Imsll o TP2E Imall o] TP ma|
4= + + +
Mo +1) |AIT(a +1) [AIT(B +2) 2|AIT(B +1)
+m+max{L jo1 + 1], Ly 0 )
2|AIT(« +2) R e
A :T“_1||Wl3|| . [1pa | TE || ms | N |12 | TPHEE [y | . || T2 ||
T T |AIT (@ +1) |AIT(B+2)  2|AIT(B+1)
T3 |ms]|
+ ————— + maxiL;|o1|,La|os],
SNAT @+ 2) {Lilo1], La]on |}
TP |lma|| |M1M2|Tﬁ+lﬂllm4|| | T nlims | |pa| T3 || s
6 = + +
F(ﬁ+1) [AIT(B +1) |AIT (a +2) 2|AIT (o +1)
Tﬁ+4
+ Il +max{L2|ag + 1|,L1|a4|},
2|AIT(B +2)
A, =Tﬁ_1||Wl4|| I TEnllmall || T nlims)l |pua| T2 ||ms |

TB)  |ATB+1) | [AT@+2) @ 2[AT(@+1)

TP |my |
+ —_—
2|AIT(B +2)
then the coupled system (1.3)-(1.4) has at least one solution on J.

+max{L2|03|,L1|04|}x

Proof From (H5), we have that the multivalued maps ¢ — F(t,x(t), y(¢),°D” y(t)) and ¢t —
G(t,x(t),°D’x(t), y(t)) are measurable [29], Proposition 2.7.9, and closed valued for each
(%,y) € X x Y. Hence they have measurable selection [29], Theorem 2.2.1, and the sets
SFxy) and Sg,(,) are nonempty. Let N be defined in (3.3). We will show that, under this
situation, N satisfies the requirements of Lemma 2.5.

Step 1. For each (x,) € X x Y, N(x,9) € Pay(X) x Pa(Y). Let (hy, 1) € N(x,,y,) (1> 1)
such that (4, 1,) = (1) in X x Y. Then (h, %) € X x Y and there exist Jn € Sk, and
&n € SG,(xnyy) (n=>1) such that forall £ € J,

t(_ oyl
O = [ D f0ds 4 o+ DAO) + 12000

_ o)1 T _ B
+i[ms(m PO s - / T )gn(s)ds>
0 0

A ') rpg+1)
ey S o)
" (“2/0 TT(p) O / s
and
L(e-s)f~

P, y0)(2) = gn(S) ds + (03t +1)p(x) + togh(y)
0

r'(B)

t (& —s)P!
+Z[Mm<m/0 e ds- /F( fn()ds)

T2 ([ (s T(T <)
+7<’“/0 T 9%E | TE 1)g”()ds>}
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By (H5), the sequences f, and g, are integrable bounded. Since F and G have compact
values, we may pass to subsequences if necessary to get that f, and g, converge to f and g
in L'(J,R). Thus f € Sk,(x), & € SG,(xy and for each t €/,

B, y) () — B, 3)(2)

ft (t _ S)a—l
= f(s)ds + (o1t + 1)h(y) + toad(x)
0 I (er)

t 7 (n —s)*t (T -5s)?
+Zbﬁo“ﬁ IR A nﬂnﬁ®“>

T2 S () (T -s)
+7<’“/0 rp SV, F(a+1)f(s)ds>}

and

P, 3)(2) = B, y)(®)

ft (t—s)P1
= T g(s)ds + (o3t + 1)p(x) + togh(y)

¢ (& - 5)p-! T (T —s)"
+KPMQQA Fw)gwm—f ﬁ;ﬁgum)
T? " (n - S)“ 1 (T
+3(m£ / r(6+ D ﬂ

This means that (4, /) € N and N is closed.
Step 2. There exists t <1 such that

Hy(N(x,y),Nx3) < t(lx=Zlx + ly-Fly), YxXeX,pyeY.

Let (x,9), (%,5) € X x Y and (/1, hy) € N(x,). Then there exist i € S, and g1 € Sg,(x)
such that forall £ €/,

t _ o)1
h(x, y)(2) = /0 %ﬁ@) ds + (o1t + Dh(y) + tord(x)
t " (n—s) T(T-s)P
+Z[m&’(u1/0 r@) -fi(s)ds — ; F(ﬂ_'_l)gl(s)ds)

T2 f (-5 (Tsw
w3 () S0 [ o)

and

B-1
mmwmzl(%;)

& _ \B-1 T o
+£{M"Q”ﬁ @F£>5ﬂ”“_ﬂ 4 S)ﬁ )
T2 " (n 5) (T - )’5
+ 7(#1/ fl( )ds /0 T8+ l)gl( s) S):|

g1(8)ds + (o3t + 1)p(x) + toah(y)
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From (H5)(2), we deduce

Hy(F(£x(2), y(£),°D” y(2)), F (¢, %(2), (£), ‘D" 5(t)) )

< m3()(|x(t) - %(t)| + [y(&) - ¥(1)| + |°D? y(t) - °D?3(2)|)

and

Hy(G(t,x(2),°D’x(£), y(t)), G(¢,%(2), “D°%(£), 5 (t)))
< ma(t)(Jx(t) - %(t)| + |°D’x(t) - “D°x(t)

+ |y(e) - 5(0)]).-

Hence, for a.e. t € ], there exist f € F(t,%(t),5(t),°D?%(t)) and g € G(t,%(t),°D’%(¢), y(t))

such that

i) ~f| < ms(@)(|x() = %(O)] + |y(®) = 3()| + [°D"y(¢) - DV ¥(2)|) 3.7)
and

@) — g < ma()(|x(8) — % ()| + |*D’x(t) - D% (2)| + |y(®) - 5(0)))- (3.8)

Consider the multivalued maps V3, V; : ] — P(R) given by

Vi) = feR:
' V@) = f1 < m3(6)(|x(2) = x(@)] + |y(£) = ¥(&)| + |°D¥ y(¢) — D" y(£)])

and

geR:
VZ(t) = ~ cnd N = :
lg1(2) — gl < ma(®)(1x(2) = %(2)] + 1°D°x(2) = “D°x(8)| + |y(£) = ¥(©)])

Define

k1 (8) = m3(6)(|x(6) = %(2)| + |y(6) = F(®)| + |*D” y(t) - D" ¥(9))),
K2 (t) = ma(t)(|%(8) - %(2)| + |°D°x(t) - “D°x(t)| + |y(2) - ¥(1)]).
Since fi(£), g1(¢), k1(t), k2 (£) are measurable, [38], Theorem II1.41, implies that V; and V,
are measurable. It follows from (H5) that the maps ¢ — F(¢,x(¢), y(¢),D y(¢)) and ¢ —
G(t,%(t),*D’x(¢), y(t)) are measurable. Hence, by (3.7)-(3.8) and [29], Proposition 2.1.43,
the multivalued maps ¢ — Vi(£) N F(t,x(t),y(t),“DYy(t)) and ¢ — V,(t) N G(¢t, x(t),

°D’%(t),¥(t)) are measurable and nonempty closed valued. Therefore, we can find f;(¢) €
F(t,%(2),5(t),°D"5(t)) and g»(¢) € G(¢,%(t), “D*%(t), 5(t)) such that for a.e. £ € ],

[A(6) = ()| < m3(o)(|x(8) = %()] + |[y(t) = F(@®)| + |D” y(t) - D' 5(t)|)
and

|g1(8) - 22| < ma®)(|x(t) - %(@)| + |°D’x(8) - “D°x(t)| + |y(8) - ¥(2)|).
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Let

T 7)(0) = fo “r(s T yds + ot + HG) + 120

‘ 1 (5ot T (T
+Z[”“ 25(“ /0 r@ 9% | TEs 1)g2(s)ds>

T2 [f (-t (T
+7(”“ 2/0 gy LWd- | ﬁ(s)dsﬂ

and

- B-1
ha (%, y)(t) = / (tl_,:;) &2(s)ds + (o3t + 1)¢(%) + toah(y)
0

_g)p1 «
+§[mn(u2/0 F(sﬁ)) :(s)ds - / = i )
2 _ al
€<“1/ (n y S ds f (B + l)gZ(s)dsﬂ

that is, (1, 1) € N (%,7). Since

|71 (%, 9)(2) = I (% 7)(2)|
t(t_s)a—l
< /0 o ) 0] ds

n _ o)1
+£[Mz€<u1 f U S) 16— ds— [TV ) - gz(s>|d5)
0

F(ﬁ 1
T? S (- S)ﬁ -1 T(T-s)
+7<me e \ds—fo —F(Ml)lﬂ(s)—fz(s)|ds>]

+|toy +1] - |h() = h@)| + tloa| - |p(x) — (@)

t (t _ S)oz—l 3 ~ . ) B
S/O @) m3(s)(|x(s) = %(s)| + |9(s) = ¥(s)| + DY y(s)° D" 3(s)|) ds

n _ el
+ i[uzé (m/o (nr(;)) ms3(s)(|x(s) — %(s)|

+ () = F(s)| + |°D y(s)°D¥ 3(s)|) ds

- TS () - 6] + DD + |y(s)‘7(s)|)ds>
o T(B+1)

2 Yt
+ T? (,uZ/O (ér(Sﬁ)) m4(s)(|x(s) —9_c(s)| + |CD8x(s)cD‘3§(s)| + |y(s) —y(s)|) ds

T (T—S)a
“Jo T(a+1)

+Lyloy + 1] - [ly = ylly + La|oa] - llx - ¥|[x

mg(s)(|x(s) - %(s)| + |y(s) - i(s)| + |CDVy(s)CDVy(s) \) ds)]

(¢2
<
T INa+1)

Nmsll(lx = Flx + lly = 7lly)



Jin and Sun Advances in Difference Equations (2017) 2017:146 Page 25 of 30

|M1M2|T‘H1§
+ e —
AT (a +1)

|lua TP+%¢
L IR
|AIC(B +2)

Nmsll(Ilx = Flix + lly = 7lly)

Nmall (I =Zlx + ly = lv)
|| TP

+ _—

2(AIT(B+1)

Ta+4
+ _—
2|AI(a +2)

Nmall (e =Fllx + Iy =7lv)

sl (Nl = Zllx + ly = ¥lv)

+max{Ly|oy + 1|, Ly|oa| } (Ilx = Fllx + ly = Vlly)
=Ag- (le=Zllx + ly-7lv),
| (%,9)' () = m(5) (0)]

-9 | ls (7 (-9
< | F(—V -f2 S)| N T [fl(s) —fz(s)‘ds
lualé (7 (T - lual T2 (% (& - ) a1
A T8+ 1)|g1 s) - ga(s)| ds + 2al ) TG |g1(s) — g2(s)| ds
T2 T ( —S)a

*5ial ), F(Ml)tzfl(s) —fa(s)| ds + |o1] - [n(y) — h(D)| + 02| - |p(x) — p(R)|
<As-(lx=%lx+ ly-7ly)
and

|CD‘Sh1(x,y)(t) - DI (%,5)(¢))|

/ (= |h1 (6,3) (0) ~ T (&.7) (0)| ds

< m 5+ (Ilx=Zlx + ly=7lv),

we obtain
1-5

r2-9)

|, 9) - @), < (A4 + As) (Il =Zllx + ly = ¥lly)-

In a similar manner, we can have

|12 (2, 9) (&) — o (%, ) (8)| < A - (Ilx = %x + Iy = Flly),
|ha(x,p) (8) = (%) (O] < A7 - (e =%lx + ly=¥ly)
and

1-y

re-y)

|°D” hy (%, y)(£) = D" o (%, 5)(2)| < Az (Il =Zlx + Ly = Vlly)-

We deduce that

a9 - 7@ )], < (A6 R A7) (lx=Flx + Iy =3l).

re-y)
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Thus,

|t =By, hy = Bo)| ..y

T8 T1-v
<[Ag+ ————As+Ag+ ———A _x —Fly).
_< racs Mt e o) 7>(||x &llx + lly = ¥lly)

Denote

1-6 Tl—y

A5 + A6 + —A7.

e LTy T2-y)

By using an analogous relation obtained by interchanging the roles of (x,y) and (x,%), we
get

Ha(N(x,9),N5)) < t(lx=Xlx + ly=lv)-

Therefore, from (3.6), Lemma 2.5 implies that N has a fixed point, which is a solution of
the coupled system (1.3)-(1.4). This completes the proof. d

Remark 3.1 If f(t,x(t), y(£),°D? y(t)) and g(¢, x(t), “D’x(t), y(t)) are continuous functions,
F(t,x(t),y(t),°D”y(t)) only contains the function f(¢,x(£),y(£),°D"y(¢)) and G(t, x(¢),
°D%x(t),y(t)) only contains the function g(t,x(¢), °D°x(t), ¥(¢)). Then the existence results
Theorem 3.1 and Theorem 3.2 are just the ones, respectively, in paper [19].

Remark 3.2 The new existence results for a class of second-order coupled system dif-
ferential inclusions with coupled nonlocal and integral boundary conditions follow as a
special case by taking « = B = 2 in the results of this paper.

4 Examples for fractional compartmental models

In this section, we will give some examples to illustrate our main results.

Example 4.1 Consider the following fractional differential inclusions:

Dix(t) € F(t, x(t),y(t), D’ y(t)), ¢t e [0,1],

, (4.1)
‘D2y(t) € G(t,x(2), “D’x(t), y(1)),
with boundary conditions of the form
x(0) = goy(®),  f) () ds = Lx(d), @)
¥(0) = gyx(e), [y xls)ds=Ly(d),

L
180’

wherea=2,8=3,y=1,8=20,T=L mu=pr=35n=£E=51L =

F,G:[0,1] x R® — R are multivalued maps given by

1
Lz = T2z’ and

||
1+ x|

—t
F(t,x,y,CDyy) = {fe R:0<f< + siny+tan_1(CD%y) P },

1+¢2

. ‘Dax
G(t,x,°D’x,y) = {ge R:0<g<sinx+ —— +tan‘1y+cost+1}.
1+<Dix
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It is clear that F, G are L'-Carathéodory and have convex values satisfying

||F(t,x,y,z) || = sup{[f| :f e F(t,x,y,z)} <4, foreach (¢t x,5,2)e] x R3,

|G(t,%,5,2)|| = sup{lg| : f € G(t,x,5,2)} <5, for each (t,x,5,2) €] x R?,

with m;(2) = ma(2) = p1(|x]) = pa2(|x]) = p1(I2]) = L, Y (ly]) = V2(ly]) = p2(lz]) = 2.

Using the given data, we find that P} ~ 1.7762, P, ~ 1.8657, P3 ~ 1.4459, P4 ~ 0.9819,
P, ~ 1.9968, P, ~ 1.8657, P3 ~ 1.8220, P4 ~ 0.9819, Q; ~ 0.0216, Q, ~ 0.0246, Q, ~
0.0161, Q, ~ 0.0177, A; ~ 6.0862, A, ~7.3976, A3 ~ 0.0836 < 1.

Furthermore, let K be any number satisfying

6.0862 x 4 +7.3976 x 5
K> > 66.9280.
1-0.0836

Clearly, all the conditions of Theorem 3.1 are satisfied. So there exists at least one solu-
tion of problem (4.1)-(4.2) on [0, 1].

Example 4.2 Consider the following coupled system of fractional compartmental mod-
els:

D3 x(t) € F(t,x(t),y(t),°D" y(t)), t e [0,1],

3 (4.3)
“D2y(t) € G(t,x(t), “D’x(2), y(8)),
with boundary conditions of the form
x(0)=0, [/ y(s)ds=0, wa)
¥(0) =0, foTx(s) ds=0, :
wherea:ﬁ:%,y:S:%,T:l,m:,ugzo,nzé=%,L1=ﬁ,L2=ﬁandF,G:

[0,1] x R® — R are multivalued maps given by
F(t;xyyrz) = {_klx(t)}’ G(t7xyyrz) = {kzx(t) + k3y(t)}! kl!k27 k3 eR".
It is clear that F, G satisfy (H4) and

|Et%,9,2)|| <killxll, for each (¢,x,5,2) €] x R?,
|Gt %,9,2)|| < kallxll + ks llxll < max{ks, ks}(Ilxl + Iyl)

for each (¢,x,7,2) € ] x R,

with m(f) = ki, my(¢) = max{ky, ks}, @i(lx]) = @a(lxl) = llxll, Y2(ly)) = lyll, Y1yl =
p1(|z]) = p2(|z]) = 0. Because x(¢), y(¢) denote the amount of a drug in a specific com-
partment in [25], ||lx|| and ||y|| are constants. Letting ¢;(|x|) = @2(|x]) = ¢1, Yo (ly]) = 2
(c1, cp are constants). Using the given data, we find that P} ~ 1.3544, P, ~ 0, P; ~ 1.3544,
P, ~0, P, ~1.7306, P, ~ 0, P3 ~ 1.7306, P4 ~ 0, Q; ~ 0.0167, Q, ~ 0.0208, Q; ~ 0.0111,
62 ~ 0.0139, A1 = 3.3077, A, = 3.3077, A3~ 0.0657.



Jin and Sun Advances in Difference Equations (2017) 2017:146 Page 28 of 30

Furthermore, let K be any number satisfying

K 33077](161 +3.3077 max{kz, kg} . (C1 + C2)
> .
1-0.0657

Clearly, all the conditions of Theorem 3.2 are satisfied. So there exists at least one solu-
tion of problem (4.3)-(4.4) on [0, 1].

At the same time, we can see that the numerical solutions and simulations for problem
(4.3)-(4.4) (single-valued) are obtained in [25]. That is, the conclusions we have gained
are correct.

Example 4.3 Consider problem (4.1)-(4.2), where F, G : [0,1] x R® — R* are multivalued
maps given by

| sinx + siny + sinz|
F(t,x,9,2) =0, )
(6:%5,2) [ 42 + 1)
| cosx + cosy + cos z|
Gt} ’ ’ = 07
(t.%.5,2) [ 42+ 1)5
Now

1
sup{[f]:f € F(t,x,5,2)} < —— <116, for each (t,%,7,2) € [0,1] x R?,

T2+ T
1
sup{lgl:g € G(t,x,5,2)} < @e e <164, foreach (t,x,9,2) € [0,1] x R3,
+
and
1
dy (F(t,%1,31,21), F(t,%2,¥2,22)) < m(m = x| + 1 =32l + 21 — 22),
1
dy (G(t,%1,31,21), G(t,%2, 92, 22)) < 2+ 08 (I%1 = 22| + 131 = y2| + |21 = 22).
Here mj3(t) = W’ my(t) = ﬁ with ||ms]|| = % and ||my| = 6—14.
Using the given data, we find that A4 ~ 0.0853, A5 ~ 0.1403, A¢ ~ 0.1190, A7 ~ 0.1390
and
1-8 Tl—y
Ay Ag+ — A7~ 0.5138<1.

M VT R R o

The compactness of F, G together with the above calculations leads to the existence of
solution of problem (4.1)-(4.2) by Theorem 3.3.

5 Conclusion

In this article, we present existence conditions of solutions, which are the prerequisites
for solving the numerical solutions. Before solving the numerical solution, we can know
whether there is a solution. This reduces a lot of unnecessary calculations to a certain
extent. It is very significant for fractional compartmental model for a biological system.
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