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Abstract

The purpose of this paper is to study the solvability of a resonant boundary value
problem for the fractional p-Laplacian equation. By using the continuation theorem
of coincidence degree theory, we obtain a new result on the existence of solutions for
the considered problem.
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1 Introduction
In this paper, we establish an existence theorem of solutions for the following resonant

boundary value problem with p-Laplacian operator:

6D 8y (3D %) = f (6% D), £ [0,1], w1
x(0) =0, 6DYx(0) = §Dyx(1),
where 0 < o, 8 <1 are constants, {D? is a Caputo fractional derivative, f : [0,1] x R*? > R

is a continuous function, ¢, : R — R is a p-Laplacian operator defined by

¢p(s) = |5|p_25 (S #0)1 ¢p(0) =0, p>L

Obviously, ¢, is invertible and its inverse operator is ¢, where g > 1 is a constant such that
1/p+1/g=1.

Fractional calculus is a generalization of ordinary differentiation and integration, and
fractional differential equations appear in various fields (see [1-4]). Recently, because of
the intensive development of fractional calculus theory and its applications, the initial and
boundary value problems (BVPs for short) of fractional differential equations have gained
popularity (see [5-15] and the references therein).

In [11], by using the coincidence degree theory for Fredholm operators, the authors con-
sidered the existence of solutions for BVP (1.1). Notice that §D/ ¢,(GDY) is nonlinear, and
so it is not a Fredholm operator. Thus there is a gap in the proof of the main result, and
we fix this gap in the present paper.
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2 Preliminaries
For convenience of the reader, we will introduce some necessary basic knowledge about
fractional calculus theory (see [2, 4]).

Definition 2.1 The Riemann-Liouville fractional integral operator of order @ > 0 of a

function u: (0, +00) — R is given by

o _L ! _ -l
Oltu_r‘(oz)/o(t $)* " u(s) ds,

provided that the right-hand side integral is pointwise defined in (0, +00).

Definition 2.2 The Caputo fractional derivative of order « > 0 of a continuous function

u:(0,+00) — R is given by

d"u

de”

(C)D(ZM = 01;7_0[
1 t
= m/ (t =) U (s)ds,
- 0

where 7 is the smallest integer greater than or equal to o, provided that the right-hand
side integral is pointwise defined in (0, +00).

Lemma 2.1 (See [1]) Let a > 0. Assume that u,{D{u € L([0, T],R). Then the following
equality holds:

ol eDfu(t) =u(t) +co+at+--- + Co1t" L,
wherec; €R,i=0,1,...,n—1, here n is the smallest integer greater than or equal to o.
Next we present some notations and an abstract existence result (see [16]).
Let X, Y be real Banach spaces, L :domL C X — Y be a Fredholm operator with index

zero, and P: X — X, Q:Y — Y be projectors such that

ImP =KerlL, KerQ=ImlL,

X =KerL & KerP, Y=ImL&ImQ.
It follows that
Lldomznkerp : domL NKerP — ImL
is invertible. We denote the inverse by Kp.
If © is an open bounded subset of X such that dom L N Q # @, then the map N: X — Y

will be called L-compact on Q if QN (L) is bounded and Kp(I — Q)N : @ — X is compact.

Lemma 2.2 (See [16]) Let L:domL C X — Y be a Fredholm operator of index zero and
N :X — Y be L-compact on Q. Assume that the following conditions are satisfied:
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(1) Lx # ANx for every (x,A) € [(domL \ KerL) N 9L2] x (0,1),
(2) Nx¢1ImL forevery x € KerLN 02,
(3) deg(QN|kerr, 2N KerL,0) #0, where Q: Y — Y is a projection such that
ImL =KerQ.
Then the equation Lx = Nx has at least one solution in dom L N Q.
In this paper, we let Z = C([0,1], R) with the norm ||z||s = max;c[o,1] |2(¢)| and take
X ={x= (%) " 1,2 € Z}

with the norm

llllx = max{ 11 lloo, 122 loc }-

By means of the linear functional analysis theory, we can prove that X is a Banach
space.

3 Main result
We will establish the existence theorem of solutions for BVP (1.1).

Theorem 3.1 Letf:[0,1] x R? — R be continuous. Assume that

(H1) there exist nonnegative functions a, b, c € Z such that

[f(t, u, V)‘ <a(t) + b()|ulP™ + c@)vP, Y(t u,v)€[0,1] x R?,
(Hy) there exists a constant B > 0 such that

vf(t,u,v) >0 (or <0), Vtel0,1,ueR,|v|>B.

Then BVP (1.1) has at least one solution provided that

2 ( 1Bl +”C”><1
PETE )\t TN ) S5

Consider BVP of the linear differential system as follows:

(C)D(t)(xl = ¢q(x2)r te [O, 1]7
(C)D/tst :f(t,xl’ ¢q(x2)), te [0>1], (31)
21(0)=0,  x2(0) = x5(1).

Obviously, if ¥ = (x1,%,) T is a solution of BVP (3.1), then x; must be a solution of BVP (L.1).
Therefore, to prove BVP (1.1) has solutions, it suffices to show that BVP (3.1) has solutions.
Define the operator L : domL C X — X by

c o
oDix

Lx = ( ), (3.2)
f)D:ﬂxz
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where
domL = {x € X|5D%1, 5D} x5 € Z,x1(0) = 0,x,(0) = x5(1)}.

Let N : X — X be the Nemytskii operator defined by

$q(x2(2))

N =\ 46,00, by 200

), vt € [0,1]. (3.3)
Then BVP (3.1) is equivalent to the following operator equation:
Lx=Nx, xedomlL.
Now, in order to prove Theorem 3.1, we give some lemmas.
Lemma 3.1 Let L be defined by (3.2), then

KerL = {x € X|x,(t) = 0,%:(¢) = ¢, V£ € [0,1],c € R}, (3.4)

ImL = |y € X|o{ y>(1) = 0}. (3.5)
Proof By Lemma 2.1, the equation Lx = 0 has solutions
x1(t) = c1, x(t)=ca, c,c0€R

Thus, from the boundary value condition x;(0) = 0, one has that (3.4) holds.
Let y € ImL, then there exists a function x € domL such that y, = ng x3. So, by
Lemma 2.1, we have

x(8) =c+ olfyz(t), ceR.

Hence, from the boundary value condition x,(0) = x,(1), we get (3.5).
On the other hand, suppose that y € X satisfies Olfyz(l) =0.Letx; = oIfy1, %5 = olfyz(t),
then x = (x1,%,) " € domL and Lx = y. That is, y € Im L. The proof is complete. O

Lemma 3.2 Let L be defined by (3.2), then L is a Fredholm operator of index zero. And the
projectors P: X — X, Q: X — X can be defined as

0
Px(t) = (xz(O))’ vt e[0,1],
Q(t)—( 0 ) vt €[0,1]
07\ 4 Dot "

Furthermore, the operator Kp : Im L — dom L N Ker P can be written as

ol
](Py: < .
offyz
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Proof For any y € X, one has

5 0 )
Ly= Q<F(ﬁ + Dol (1)

0
) <F(ﬁ +1)0lly,(1) - T(B + 1)&51(1))
= Qy. (3.6)

Let y* = y — Qy, then we get from (3.6) that

ol y5(1) = o (1) = oI (Qy) (1)
B 1
T T(B+1)
= (),

(Q)(@®) - (Q%y2)(2))

which yields y* € ImL. So X = ImL + ImQ. Since ImL N ImQ = {(0,0) "}, we have X =
ImZL & Im Q. Hence

dimKerLZ =dimImQ = codimImZL =1.

Thus L is a Fredholm operator of index zero.

For y € Im L, by the definition of operator Kp, we have

SD?OI?%)

LKpy = (
SDfoff b2

_y (3.7)
On the other hand, for x € dom L N Ker P, one has
x1(0) = x2(0) = x2(1) = 0.

Thus, from Lemma 2.1, we get

176 D% x (¢
KpLx(t):(O coDrn )>

oI7¢DP ) (£)
_ (xl(t) —x1(0)>
X2 () — x2(0)
=x(t). (3.8)
Hence, combining (3.7) with (3.8), we know Kp = (L|gomnkerp) ' The proof is complete. (]

Lemma 3.3 Let N be defined by (3.3). Assume Q2 C X is an open bounded subset such that
domILNQ # @, then N is L-compact on Q.
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Proof From the continuity of ¢, and f, we obtain Kp(I — Q)N is continuous in X and
QN(Q), Kp(I — QIN(R2) are bounded. Moreover, there exists a constant T’ > 0 such that

|U-QNx|, <T, VxeQ. (3.9)

Thus, in view of the Arzela-Ascoli theorem, we need only to prove Kp(I — QN(RQ) C X is
equicontinuous.
ForO0<f <t <1,x €, one has

|Kp(I = QNx(t;) — Kp(I - QNx(ty)|
_ (01?((1 - QINx)1(ty) — oI (U - Q)Nx)l(tl))
olf (I = QNK)3 (£5) — o (I - QNx)a (1))

From (3.9), we have

oI (I = QINx),(12) — oIf (I - QNx), (1)

1

_ - 2 _ a-1 _
_F(a)/o (tp —s) ((I Q)Nx)l(s)ds

- [ o - )

T i a-1 a-1 & a-1
< m{/o [(t1 —8)* " = (tp —5) ]ds+/t1 (tp — ) ds}

1=ty +2(t — 1) ].

_Fm+n[

Since t* is uniformly continuous on [0, 1], we get (Kp(I — Q)N (R2)); C Z is equicontinuous.

A similar proof can show that (Kp(I — Q)N(€2)), C Z is also equicontinuous. Hence, we
obtain Kp(I — Q)N : Q@ — X is compact. The proof is complete. O

Finally, we give the proof of Theorem 3.1.

Proof of Theorem 3.1 Let
Q; = {x € dom L\ KerL|Lx = ANx, € (0,1)}.

For x € Q1, we have x;(0) = 0 and Nx € Im L. So, by Lemma 2.1, we get
x1 = ol (DY 1.

Thus one has

|x1(t)| =<

1
TasD) 16D x|, VEe[o,1].

That is,

lllo < Fo s 6D - (3.10)

a+1)|
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From Nx € ImL and (3.5), we obtain
0 = oIf (Nx)2(1)

- /1(1—3)‘31f(s x1(5), bg (x2(5))) ds
" T(B) Jo TR '

Then, by the integral mean value theorem, there exists a constant £ € (0,1) such that
f(s:xl($)> ¢q(x2(§))) =0.
So, by (H,), we have |x,(£)| < BP™L. From Lemma 2.1, we get

%5(8) = %2(8) — oIl DE 22 (£) + oI § DY s (1),

which together with
Be P L eps
02§D x> (1) < BT |sDf %2, VEe[o,1]
yields
Bp—l 2 c B
”x2||oo = + F(ﬂ + 1) ||0Dt X2 ”oo (311)
From Lx = ANx, one has
oDfx1 = Ay (x2), (3.12)
DL xs = A (.21, 04(x2)). (3.13)

By (3.12), we have
[6D8 ] < Iwall Y,

which together with (3.10) yields

%Moo < 2 1% (3.14)

1
INa+1)
By (3.13) and (H;), we obtain

6Dl 2] < llalloo + 1Blloo %112 + liclioo %2l

which together with (3.11) and (3.14) yields

r 1
|6Df x| < llallo + @nxznm
r 1)y Br1
< llalloo + LB+ Dy~ + yngDi’xz |- (3.15)

2
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Since y <1, we get from (3.15) that there exists a constant My > 0 such that
[5D7 2., < Mo.
Thus, combining (3.11) with (3.14), we have

Mo
o < B!
l%2ll00 < +I‘(ﬂ+1)

g-1

1
X < = M.
” 1||oo_ F(Ol+1) 2

=M,

Hence
llllx < max{My, M>}:=M,

which means 2; is bounded.
Let

Q) ={xeKerL|NxeImlL}.

For x € Q,, we have olf (Nx)2(1) = 0 and x1(£) = 0, % (¢) = ¢, ¢ € R. Thus one has

1
/ 1- s)ﬂ‘lf(s, 0, ¢q(c)) ds=0,
0
which together with (H,) yields |c| < B?L. Hence
ll¢llx <max{0,B”"} =B,

which means €5 is bounded.
By (H>), one has

op(Vf(t,u,v) >0, Vtel0,1,ucR,|v|>B (3.16)
or

dp(Vf(t,u,v) <0, Vtel0,1,ucR,|v|>B. (3.17)
When (3.16) is true, let

Q3 ={xeKerL|ix+(1-1)QNx=0,1€[0,1]}.

For x € Q3, we have x1(£) = 0, x5(¢) = ¢, c€ R and

1
rc+(1-2)B / (1-9)"7f(s,0,p4(c)) ds = 0. (3.18)
0
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If 1 = 0, we get from (3.16) that |c| < B*"L.If A € (0,1], we assume |c| > B”~L. Thus, by (3.16),
we obtain

1
r+(1- A),B/; (1- s)ﬁ‘l@ (¢q(c))f(s,0,¢q(c)) ds >0,

which contradicts (3.18). Hence, €23 is bounded.
When (3.17) is true, let

Q= {x e KerL|-ix + (1-1)QNx = 0,4 € [0,1]}.

A similar proof can show € is also bounded.
Set

Q = {x € X||lxlx < max{M,B"'} +1}.

Clearly, ©; U Q2; U Q3 C Q (or ©; U Q, U Q5 C Q). It follows from Lemma 3.2 and 3.3
that L (defined by (3.2)) is a Fredholm operator of index zero and N (defined by (3.3))
is L-compact on Q. Moreover, based on the above proof, the conditions (1) and (2) of
Lemma 2.2 are satisfied. Define the operator H :  x [0,1] — X by

H(x,\) = £Ax + (1 — A)QNx.
Then, from the above proof, we have
H(x,1)#0, VxedQNKerL.
Thus, by the homotopy property of degree, we get

deg(QN [kerz, 2 N KerL,0) = deg(H(-,0), 2 N KerL,0)
=deg(H(-,1), 2 NKerL,0)
=deg(+l,Q2NKerL,0)

#0.

Hence, condition (3) of Lemma 2.2 is also satisfied.
Therefore, by using Lemma 2.2, the operator equation Lx = Nx has at least one solution
in dom L N Q. Namely, BVP (1.1) has at least one solution in X. The proof is complete. [
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