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Abstract
The multilevel augmentation method with the anti-derivatives of the Daubechies
wavelets is presented for solving nonlinear two-point boundary value problems. The
anti-derivatives of the Daubechies wavelets are applied as the multilevel bases for the
subspaces of approximate solutions. This process results in a full nonlinear system that
can be solved by the multilevel augmentation method for reducing computational
cost. The convergence rate of the present method is shown. It is the order of 2s,
0 ≤ s ≤ p when p is the order of the Daubechies wavelets. Various examples of the
Dirichlet boundary conditions are shown to confirm the theoretical results.

1 Introduction
Many problems in science and engineering can be modeled by nonlinear differential equa-
tions. Due to their complexities of both differential equation forms and boundary condi-
tion types, analytical solutions are available for only simple problems. Efficient and accu-
rate numerical solutions are then usually required in general. One of the most effective
numerical methods relies on variational formulations; see [, ], and [].

The multilevel basis method can be applied with the variational formulation to ob-
tain the approximate solutions of nonlinear problem. This formulation results in the dis-
cretization of nonlinear systems with unknown coefficients in the approximate subspace
of each basis level. A nonlinear solver such as the Newton iterative method can be used
to find approximate solutions for each level required. In order to obtain more accurate
results, the number of applied basis levels must be increased, resulting in large nonlinear
systems. The computational time increases exponentially with only a small increase in the
basis levels. In order to reduce the computational time, we apply the advantage of mul-
tilevel bases by connecting the information among basis levels. This approach, the aug-
mentation method, was first introduced by [, , ]. The fully nonlinear system is divided
into two smaller systems and then solved separately.

In multi-scale decompositions, multi-scale piecewise polynomials can be applied in
variational formulation (see [, ]). These basis types are easily presented and imple-
mented as a numerical algorithm. They can be used for specific types of boundary condi-
tions, and in this case they can represent Dirichlet conditions with zero boundary values
while the modified approximation technique can be applied for non-zero Dirichlet con-
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ditions. To extend to a more general class of multilevel basis for solving various types of
boundary conditions, the anti-derivatives of Daubechies wavelets introduced by Xu and
Shann [] can be applied to solve many kinds of boundary conditions: Dirichlet and Neu-
mann types. Reference [] has presented the case of the linear boundary value problem
and shown that the Daubechies wavelets can be applied in conjunction with the augmen-
tation method to save computational time for Dirichlet boundary value problem.

This study extends the multi-scale decomposition to a nonlinear boundary value prob-
lem. We apply the anti-derivatives of the Daubechies wavelets to solving nonlinear bound-
ary value problems. The discretization of the nonlinear differential problem is represented
by a nonlinear system that can be solved iteratively by the Newton method. To save com-
putational time, the augmentation method presented by Chen, Chen, Wu and Xu (see e.g.
[, , , ]) will be applied to solving the nonlinear system under the Daubechies wavelets.
Combining these two concepts, as presented here, results in a new numerical method.
The rate of convergence is also proved. It is of the order s,  ≤ s ≤ p when p is the order
of the Daubechies wavelets applied.

Given the interval (a, b), we use the notation L(a, b) to denote the space of square inte-
grable functions on (a, b) with standard inner product (·, ·) defined by

(u, v) =
∫ b

a
u(x)v(x) dx,

and associated norm ‖ · ‖.
Let Hs(a, b) denote the standard Sobolev space with the norm ‖ · ‖s given by

‖v‖
s =

s∑
i=

∫ b

a

∣∣v(i)(x)
∣∣ dx,

and the seminorm | · |s given by

|v|s =
∫ b

a

∣∣v(s)(x)
∣∣ dx.

For Dirichlet boundary conditions, we work on the solution space

H
(a, b) =

{
v ∈ H(a, b)|v(a) = v(b) = 

}
,

equipped with the inner product

[u, v] =
∫ b

a
u′(x)v′(x) dx, for u, v ∈ H

(a, b),

and associated norm | · |. It is well known that the norm | · | is equivalent to the standard
norm ‖ · ‖ in this space.

We consider the following nonlinear differential equation:

du
dx – β(x)

du
dx

= f (x, u), for x ∈ [a, b], ()



Utudee and Maleewong Advances in Difference Equations  (2017) 2017:100 Page 3 of 15

where β(x) ∈ L∞(a, b) and ϕ(x, u) ∈ C([a, b] ×R), with Dirichlet boundary conditions:

u(a) =  and u(b) = .

To solve numerically the nonlinear problem, the formulation can be summarized as fol-
lows.

. Formulate the variational form of the considering problem. We determine
approximate solution, if the variational form has a unique solution. Because it is not
our main consideration in this work, we assume that the nonlinear boundary value
problem and its variational form have the same isolated solution u∗ ∈ H

(a, b).
. Choose a sequence {Sn} of nested finite-dimensional subspaces of the solution

space H
(a, b) such that

⋃
n∈N Sn = H

(a, b). At this step, such finite-dimensional
subspaces have anti-derivatives of Daubechies wavelets as their orthonormal bases.

. Apply the multilevel augmentation method (MAM) to obtain the nth level
approximation, which is composed of two smaller systems. One is a linear system.
Another one is a nonlinear system. The nonlinear system will be solved iteratively
using the Newton method.

This work is organized as follows. In Section , we introduce the anti-derivatives of the
Daubechies wavelets and the finite-dimensional subspaces of the solution subspaces of
H(a, b). The concept of multilevel augmentation method is presented in Section . The
estimations of the optimal error rate are shown in Section . Some numerical examples
are demonstrated in Section . Conclusions are finally drawn in Section .

2 Bases for subspaces of H1
0(a, b)

To apply our method for solving the nonlinear boundary value problem, we construct
a sequence {Sn} of nested finite-dimensional subspaces of the solution space such that⋃

n∈N Sn is dense in the solution space. In this section, we will give a brief introduction to
the anti-derivatives of wavelets that are the orthonormal bases for the finite-dimensional
subspaces of the solution space H

(a, b).
Assume that p is a positive integer. For j ≥ – and (j, k) ∈ Z×Z, let

ψjk(x) =

⎧⎨
⎩

φ(x – k), j = –,√
jψ(jx – k), j ≥ ,

be the Daubechies wavelets of order p (see e.g. [, ] for the details of the construction
and additional properties of the wavelets). We shift the interval [, p – ] to [a, b] by the
transformation

y =
b – a
p – 

x + a, x ∈ [, p – ].

Note that the support of the wavelet ψjk(y) is the interval

[
a +

(
k
j

)(
b – a
p – 

)
, a +

(
k + p – 

j

)(
b – a
p – 

)]
.

Set

I– = {k ∈ Z| – p ≤ k ≤ p – }q and
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Ij =
{

k ∈ Z| – p ≤ k ≤ j(p – ) – 
}

, for j ≥ .

The wavelets {ψjk|j ≥ –, k ∈ Ij} form a frame for L(a, b), that is, the set consisting of all
linear expansions is equal to L(a, b).

In [], Xu and Shann introduced the anti-derivatives of the Daubechies wavelets that
form orthonormal bases for the finite-dimensional subspaces of solution spaces.

For j ≥ – and k ∈ Ij, the anti-derivatives of wavelets are defined by

�jk(y) =
∫ y

a
ψjk ds –

y – a
b – a

∫ b

a
ψjk ds, for a ≤ y ≤ b.

Note that �jk ∈ H
(a, b). For n ∈N, define the finite-dimensional subspace

Sn = span
{
�jk(y)|– ≤ j < n, k ∈ Ij

}
.

Let

D– = {k ∈ Z| – p < k ≤ p – } and

Dj =
{

k ∈ Z| – p ≤ k ≤ j(p – ) – p
}

, for j ≥ .

The set {�jk| –  ≤ j < n, k ∈ Dj} is a basis for Sn. Applying the Gram-Schmidt process, the
resulting set,

{� jk| –  ≤ j < n, k ∈ Dj},

is an orthonormal basis for Sn with the inner product [·, ·] in H
(a, b). For the sake of

simplicity when we consider the algebraic system, we will enumerate the double indices
lexicographically. The resulting set {� j| ≤ j ≤ dim Sn} is an orthonormal basis for Sn.

3 Multilevel augmentation method
In this section, we summarize the main concepts of multilevel augmentation method for
solving the nonlinear boundary value problems. Readers can refer to [, , , ] for details.

The variational form of the nonlinear differential equation () is: Find u ∈ H
(a, b)

(
u′, v′) – A(u, v) = , for all v ∈ H

(a, b), ()

where

A(u, v) = –
(
β(x)u′ + ϕ(x, u), v

)

= –
∫ b

a

(
β(x)u′ + ϕ(x, u)

)
v dx

= –
∫ b

a

(
β(x)u′ + ϕ(x, u)

)
v dx.

Suppose that u∗ ∈ H
(a, b) is the common isolated solution of given differential equation

and its variational form. We will solve the variational form (). Let Sn be a nested se-
quence of finite-dimensional subspaces of such that

⋃
n∈N Sn is dense in H . Let {� j|j =

, , . . . , dim Sn} be an orthonormal basis for Sn and the nth level approximate solution
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un ∈ Sn be of the form

un =
dim Sn∑

j=

αj� j,

satisfying

(
u′

n,� ′
k
)

– A(un,�k) = , for all k = , , . . . , dim Sn.

Note that by the orthonormal property of the basis, we have

αk = A(un,�k), for all k = , , . . . , dim Sn.

Suppose that un is already solved. Instead of solving un+ directly from the nonlinear
system of dim Sn+, we apply the multilevel augmentation method to find an approxi-
mate solution in the next level, un,. There are two main steps here. Firstly, we solve for
uH

n+ =
∑dim Sn+

j=dim Sn+ α
j � j ∈ Sn+ \ Sn from the system

((
un + uH

n+
)′,� ′

k
)

= A(un,�k), for all k = dim Sn + , . . . , dim Sn+.

We then obtain

α
j = A(un,� j), for all j = dim Sn + , . . . , dim Sn+.

Secondly, we solve for uL
n+ =

∑dim Sn
j= α

j � j ∈ Sn from the nonlinear system

((
uL

n+ + uH
n+

)′,� ′
k
)

= A
(
uL

n+ + uH
n+,�k

)
, for all k = , , . . . , dim Sn,

((
dim Sn+∑

j=

α
j � j

)′
,� ′

k

)

= A

(
dim Sn∑

j=

α
j � j +

dim Sn+∑
j=dim Sn+

α
j � j,�k

)
, for all k = , , . . . , dim Sn.

That is, we solve for α
j where j = , . . . , dim Sn from

α
k = A

(
dim Sn∑

j=

α
j � j +

dim Sn+∑
j=dim Sn+

α
j � j,�k

)
, for all k = , , . . . , dim Sn.

Finally, we obtain the approximate solution at this level by setting

un, = uL
n+ + uH

n+ =
dim Sn+∑

j=

α
j � j.

For i ∈N, suppose that un,i is already solved, say,

un,i =
dim Sn+i∑

j=

αi
j� j.
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The (n + i + )th multilevel augmentation solution, un,i+, can be solved inductively. We
begin with solving for uH

n+i+ =
∑dim Sn+i+

j=dim Sn+ αi+
j � j ∈ Sn+i+ \ Sn from the system

αi+
j = A(un,i,� j), for all j = dim Sn + , . . . , dim Sn+i+.

Then we solve uL
n+i+ =

∑dim Sn
j= αi+

j � j ∈ Sn from the nonlinear system

((
uL

n+i+ + uH
n+i+

)′,� ′
k
)

= A
(
uL

n+i+ + uH
n+i+,�k

)
, for all k = , , . . . , dim Sn.

That is, we obtain αi+
j where j = , . . . , dim Sn from

αi+
k = A

(
dim Sn∑

j=

αi+
j � j +

dim Sn+i+∑
j=dim Sn+

αi+
j � j,�k

)
, for all k = , , . . . , dim Sn.

Finally, we obtain the approximate solution at this level by setting

un,i+ = uL
n+i+ + uH

n+i+ =
dim Sn+i+∑

j=

αi+
j � j.

It should be noted that the original full nonlinear system of dim Sn+i+ can be solved in the
augmentation method by just solving the smaller nonlinear system of the fixed size dim Sn.
The increasing number of unknown coefficients when increasing the level approximation
can be solved by the corresponding linear systems. Specially for our presented orthonor-
mal basis, the linear system is easy to solve. The unknown coefficients in the higher level
are obtained directly. Overall, the computational time can then be reduced greatly by this
method.

Algorithm: The multilevel augmentation method based on the Galerkin method.
Let n, i be two fixed positive integers.
Step : Solve the nonlinear system

(
u′

n,� ′
k
)

– A(un,�k) = , for all k = , , . . . , dim Sn

and obtain the solution un. Let un, := un and m := .
Step : Compute

αm
j = A(un,,� j), for all j = dim Sn + , . . . , dim Sn+m.

Define uH
n,m :=

∑dim Sn+m
j=dim Sn+ αm

j � j.
Step : Solve the nonlinear system

αm
k = A

(
dim Sn∑

j=

αm
j � j +

dim Sn+m∑
j=dim Sn+

αm
j � j,�k

)
, for all k = , , . . . , dim Sn.

Define uL
n,m :=

∑dim Sn
j= αm

j � j and let un,m = uL
n,m + uH

n,m.
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Step : Set m ← m +  and go back to Step  until m = i.
The computational complexity which is measured by the number of multiplications and

functional evaluations used in the computation of the above algorithm is of the order
O(dim Sn+m). More details of complexity analysis can be found in [] and [].

4 Error analysis
In this section, we will show the convergent rate of the multilevel augmentation method
in conjunction with the anti-derivatives of the Daubechies wavelets. Let u∗ be the iso-
lated solution of (), un ∈ Sn be the nth (standard) multilevel solution obtained from the
wavelets of order p and un,i be the (n + i)th multilevel augmentation solution of ().

Throughout this section, we assume that ϕ satisfies the following conditions:
(i) ϕ(x, u) is a real continuous function in (x, u) ∈ [a, b] ×R, and satisfies the Lipschitz

condition with respect to u for |u| ≤ R, R ≥ , that is,

∣∣ϕ(x, v) – ϕ(x, v)
∣∣ ≤ M|u – w|, |v| ≤ R, |w| ≤ R,

for some positive constant M.
(ii) ϕ(x, u) is continuously differentiable with respect to u for all x ∈ [a, b], and all

v ∈ B(u∗,ρ) := {v||v – u∗| ≤ ρ}, for some ρ > , and there exists a positive constant
M such that

∣∣ϕu(x, v) – ϕu(x, w)
∣∣ ≤ M|v – w|, for all v, w ∈ B

(
x∗,ρ

)
.

The following lemma was proved in Section  of [] but for convenience of the reader,
we have reproduced and included its proof for ready reference.

Lemma . Suppose that ϕ(x, u) satisfies the conditions (i) and (ii). Then there exists a
continuous and compact operator K : H

(a, b) → H
(a, b) such that

(
β(x)u′ + ϕ(x, u), v

)
= [Ku, v], for all v ∈ H

(a, b),

and that K is Fréchet differentiable on the closed ball B(u∗,ρ) and the Fréchet derivative
K′ satisfies the Lipschitz condition, that is, there exists a positive constant C

∣∣K′(v) – K′(w)
∣∣
 ≤ C|v – w|, v, w ∈ B

(
u∗,ρ

)
.

Proof For a given u ∈ H
(a, b), the operators fu(·) := (β(x)u′, ·) and gu(·) := (ϕ(x, u), ·) are

bounded linear functionals on H
(a, b). By the Riesz representation theorem, there exist

Ku,Ku ∈ H
(a, b) such that

(
β(x)u′, v

)
= [Ku, v], for all v ∈ H

(a, b),

and

(
ϕ(x, u), v

)
= [Ku, v], for all v ∈ H

(a, b).
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We define the linear operator K : H
(a, b) → H

(a, b) by

K : u �→Ku, for all u ∈ H
(a, b),

and define the nonlinear operator K : H
(a, b) → H

(a, b) by

K : u �→Ku, for all u ∈ H
(a, b).

The operator K is compact. By the linearity of K, we see that K is continuous (or
bounded) and its Fréchet derivative is itself. Then there exists a positive constant c such
that

∣∣K′
(v) – K′

(w)
∣∣
 =

∣∣K(v) – K(w)
∣∣
 ≤ c|v – w|.

By Proposition . in [], the nonlinear K is continuous, compact and Fréchet differen-
tiable on the closed ball B(u∗,ρ). Moreover, for any v, w ∈ B(u∗,ρ), there exists a positive
constant c such that

∣∣K′
(v) – K′

(w)
∣∣
 ≤ c|v – w|.

Define K = K +K. Then K continuous, compact and Fréchet differentiable on the closed
ball B(u∗,ρ). Set C := c + c, the Fréchet derivative K′ therefore satisfies the Lipschitz
condition. �

Next, we consider the difference between the isolated solution u∗ and the (n + i)th mul-
tilevel augmentation solution, un,i, of ().

Theorem . Let u∗ be an isolated solution of () and un,i be the (n + i)th multilevel aug-
mentation solution. Let K′(u∗) be the Fréchet derivative of K at u∗. If  is not an eigenvalue
of K′(u∗) and if u∗ ∈ Hs+(a, b), then there exist a positive constant β and a positive integer
N such that, for all n ≥ N , and i ∈N,

∥∥u∗ – un,i
∥∥ ≤ c–(n+i+)s∥∥u∗∥∥

s+,  ≤ s ≤ p.

Proof The variational form of () can be written in the form of (I –K)u = . By Lemma .,
the operator K is completely continuous and Fréchet differentiable on the closed ball
B(u∗,ρ) and the Fréchet derivative K′ satisfies the Lipschitz condition.

Let En := inf{|u∗ – v||v ∈ Sn}. By Theorem . in [],

En ≤ C–(n+)s∣∣u∗∣∣
s+,  ≤ s ≤ p,

where C is a constant depending on n and s. Fix  ≤ s ≤ p. For n ∈ N, set γn =
C–(n+)s|u∗|s+. Then γn+/γn ≥ σ := –s > . Referring to Lemma . in [], there exist
a positive constant ρ and a positive integer N such that, for all n ≥ N , and i ∈N,

∣∣u∗ – un,i
∣∣
 ≤ (ρ + )γn+i.
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Thus

∣∣u∗ – un,i
∣∣
 ≤ (ρ + )C–(n+i+)s∣∣u∗∣∣

s+.

Since the norm | · | is equivalent to the standard norm ‖ · ‖, ‖u‖ ≤ ‖u‖, and |u|s+ ≤
‖u‖s+, there exists a positive constant c such that

∥∥u∗ – un,i
∥∥ ≤ c–(n+i+)s∥∥u∗∥∥

s+. �

The above estimation suggests that, if we apply the wavelet of order p, the solution u ∈
H

(a, b)∩Hs+(a, b). If we apply the multilevel augmentation method from level n + i –  to
n + i by the anti-derivatives wavelets of order p, the errors measured in L-norm decrease
at most by a factor of p. Consequently, the errors obtained by the standard multilevel and
the multilevel augmentation methods decrease with the same order.

5 Numerical examples
In this section, we illustrate the accuracy of the multilevel augmentation method in con-
junction with the anti-derivatives of the Daubechies wavelets of order p for solving non-
linear boundary value problems with Dirichlet boundary conditions.

Example . Consider the boundary value problem []

u′′(x) = eu(x), for x ∈ (, ), ()

with boundary conditions

u() = u() = .

The isolated solution is u∗(x) = – ln  +  ln[c sec{c(x – /)/}], with c ≈ . . . . .

The variational form is

(
u′(x), v′) = –

(
eu(x), v

)
, for all v ∈ H

(, ),

where the inner product (f , g) =
∫ 

 fg dx. Equivalently,

(
u′(x),� ′

j
)

= –
(
eu(x),� j

)
, for all � j ∈ H

(, ),

where {� j} is an orthonormal basis for H
(, ).

Find the first level of approximate solution: standard multilevel method. For p = , the
set {�} is a basis for the subspace S. Suppose that the approximate solution u ∈ S is
of the form

u = a�.

We need to know a. It can be approximated from

a
(
�

′
,� ′


)

= –
(
ea� ,�

)
.
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This becomes a nonlinear equation with one unknown, a. It can be solved by the Newton
method. At this step, we obtain the first level approximate solution.

Find the second level of approximate solution: standard multilevel method. For p = , the
set of {�,�,�} is represented as the multilevel bases for the subspace S. Suppose
that the approximate solution u ∈ S is in the form of

u = b� + b� + b�.

We will find approximate solution u ∈ S by solving for b, b, b from

(
u′

(x),� ′


)
= –

(
eu(x),�

)
,

(
u′

(x),� ′


)
= –

(
eu(x),�

)
,

(
u′

(x),� ′

)

= –
(
eu(x),�

)
,

or

b = –
(
eu(x),�

)
,

b = –
(
eu(x),�

)
,

b = –
(
eu(x),�

)
.

We obtain the system of nonlinear equations with three unknown b, b, and b. We
can solve by the Newton method. At this step, we obtain the second level of approximate
solution by the standard multilevel method.

Find the third level of approximate solution: standard multilevel method. For p = , the
set {�,�,�,�,�,�,�} is represented as the multilevel basis for the sub-
space S. Suppose that the approximate solution u ∈ S is of the form

u = c� + c� + c� + c� + c� + c� + c�.

We will find approximate solution u ∈ S by solving for c, c, c, c, c, c, c from

c = –
(
eu(x),�

)
,

c = –
(
eu(x),�

)
,

c = –
(
eu(x),�

)
,

c = –
(
eu(x),�

)
,

c = –
(
eu(x),�

)
,

c = –
(
eu(x),�

)
,

c = –
(
eu(t),�

)
.

We obtain a system of nonlinear equations with seven unknowns that can be solved by the
Newton method. At this step, we obtain the third level of approximation by the standard
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multilevel method. The calculations can be extended to any number of levels, depending
on the numerical accuracy required.

Next, we will show the calculation steps of the multilevel augmentation method. Assume
that we have obtained u ∈ S: u = b� + b� + b� from the second level of
the standard multilevel method. The third level of approximation can be obtained by the
multilevel augmentation method as follows.

Find the third level of approximate solution: multilevel augmentation method. Next, we
will show how to find u,, which is the approximation of u in the third level. Assume that
we have already obtained the second level of the approximate solution. The approximate
solution u, ∈ S is of the form

u, = uL
, + uH

,,

where uL
, ∈ S and uH

, ∈ S \ S. Suppose that

uL
, = α

� + α
� + α

�,

uH
, = α

� + α
� + α

� + α
�.

There are two sub-steps to find uL
, and uH

,.
We first solve for α

,α
,α

,α
 from

α
 = –

(
eu(x),�

)
,

α
 = –

(
eu(x),�

)
,

α
 = –

(
eu(x),�

)
,

α
 = –

(
eu(x),�

)
.

Next, we can solve for α
,α

,,α
, from

α
 = –

(
eu,(x),�

)
,

α
 = –

(
eu,(x),�

)
,

α
 = –

(
eu,(x),�

)
.

At this step, we solved iteratively by the Newton method. This procedure shows that the
present scheme can reduce the computational time when solving the nonlinear systems.

The approximate solution u, ∈ S is finally obtained,

u, = uL
, + uH

,

= α
� + α

� + α
� + α

� + α
� + α

� + α
�.

Find the fourth level of approximate solution: multilevel augmentation method. Next,
we will show how to find u,, which is the approximation of u in the third level. Assume
that we have already obtained the second level of approximate solution. The approximate
solution u, ∈ S is of the form

u, = uL
, + uH

,,
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where uL
, ∈ S and uH

, ∈ S \ S. Suppose that

uL
, = α

� + α
� + α

�,

uH
, =

∑
j=

α
j�j +

∑
j=

α
j�j.

There are two sub-steps to find uL
, and uH

,.
We first solve for α

, . . . ,α
,α

,α
, . . . ,α

, from

α
j = –

(
eu,(t),�j

)
for j = , , , ,

α
j = –

(
eu,(t),�j

)
for j = , , , . . . , .

Next, we can solve for α
,α

,,α
, from

α
 = –

(
eu,(t),�

)
,

α
 = –

(
eu,(t),�

)
,

α
 = –

(
eu,(t),�

)
.

The approximate solution u, ∈ S is finally obtained,

u, = uL
, + uH

,

= α
� + α

� + α
� +

∑
j=

α
j�j +

∑
j=

α
j�j.

The multilevel augmentation method for calculating higher levels can be performed using
the same procedure. The accuracy of the numerical solution depends on the starting level
of the augmentation method.

Since we have to calculate the inner product of functions and bases, we perform it nu-
merically by the trapezoidal rule in all of the examples. The derivatives are approximated
using the central difference formula.

In Example ., we apply the Daubechies wavelets of order p =  and p =  to solve the
problem. The numerical results are shown in Tables  and , respectively. The column of
‖u – un‖ shows the error in the L norm obtained from the standard multilevel method.
The L error decreases by the factor of  when the applied level increases. The next col-
umn, Timen, is the computing time in seconds run on the machine processor . GHz,
Intel Core i, memory  GB,  MHz. It takes exponential order when the number of
level increases. The L error when starting with the levels  and  are also shown. The de-
creasing in L error agrees with the theoretical results. Moreover, when we augment one
more level, the computing time of our algorithm increases slightly, which is consistent
with the linear complexity estimate.

The L errors by the augmentation method are of the same order as those of the standard
multilevel method, when applied at the same level. When comparing the results between
p =  and p = , the L errors for p =  decrease faster than those for p = . The rate of con-
vergence decreases by the factor of C, for some constants C. The results from Tables 
and  confirm the theoretical results of our main theorem.
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Table 1 Numerical results for p = 1

n dim Sn ‖u – un‖ Timen ‖u – u1,n–1‖ Time1,n–1 ‖u – u2,n–2‖ Time2,n–2 ‖u – u3,n–3‖ Time3,n–3

1 3 2.3549e–1 3.5800e–2 2.3962e+0 8.3000e–3
2 7 1.0022e–1 2.3140e–1 1.3037e+0 3.7700e–1 1.0073e+0 1.7500e–2
3 15 4.8223e–2 1.7408e+0 4.5435e–1 6.2230e–1 4.3987e–1 4.4840e–1 4.3458e–1 5.6600e–2
4 31 2.4206e–2 1.6873e+1 2.1642e–1 7.3150e–1 2.1044e–1 7.3400e–1 2.0832e–1 4.9160e–1
5 63 1.3392e–2 1.3638e+2 1.1440e–1 8.4620e–1 1.1187e–1 8.3810e–1 1.1097e–1 8.2520e–1

Table 2 Numerical results for p = 2

n dim Sn ‖u – un‖ Timen ‖u – u1,n–1‖ Time1,n–1 ‖u – u2,n–2‖ Time2,n–2 ‖u – u3,n–3‖ Time3,n–3

1 7 9.6680e–5 3.8360e–1 7.9852e–2 2.4100e–2
2 13 1.2588e–5 1.9599e+0 5.1073e–3 4.5320e-1 5.1347e–3 4.5900e–2
3 25 2.2134e–06 1.2856e+01 1.6628e–04 6.4740e–1 1.8461e–4 5.1630e–1 1.8573e–4 1.2630e–1

Table 3 Numerical results for p = 1

n dim Sn ‖u – un‖ Timen ‖u – u1,n–1‖ Time1,n–1 ‖u – u2,n–2‖ Time2,n–2 ‖u – u3,n–3‖ Time3,n–3

1 3 2.3184e+0 3.5800e–2 2.3962e+0 8.3000e–3
2 7 9.8550e–1 2.3140e–1 1.3037e+0 3.7700e–1 1.0073e+0 1.7500e–2
3 15 4.3358e–1 1.7408e+0 4.5435e–1 6.2230e–1 4.3987e–1 4.4840e–1 4.3458e–1 5.6600e–2
4 31 2.0971e–1 1.6873e+1 2.1642e–1 7.3150e–1 2.1044e–1 7.3400e–1 2.0832e–1 4.9160e–1
5 63 1.1300e–1 1.3638e+2 1.1440e–1 8.4620e–1 1.1187e–1 8.3810e–1 1.1097e–1 8.2520e–1

Example . Consider the boundary value problem

u′′(x) + u(x) = sin(πx) – π sin(πx), for x ∈ (, ), ()

with Dirichlet boundary conditions

u() = u() = .

The isolated solution is u∗(x) = sin(πx).

Numerical results for p =  is shown in Table . The L norm of the error decreases by a
factor of . The L errors of the multilevel augmentation method are slightly greater than
those of the multilevel method at the same level and decrease in the same order as the
standard multilevel method.

In our last example, we will test our present method to solve the nonlinear boundary
value problem with non-zero Dirichlet boundary conditions.

Consider

u′′ – β(x)u′ = ϕ(x, u), for x ∈ (a, b), ()

with the Dirichlet boundary condition

u(a) = c and u(b) = d.



Utudee and Maleewong Advances in Difference Equations  (2017) 2017:100 Page 14 of 15

Table 4 Numerical results for p = 1

n dim Sn ‖u – un‖ Timen ‖u – u1,n–1‖ Time1,n–1 ‖u – u2,n–2‖ Time2,n–2 ‖u – u3,n–3‖ Time3,n–3

1 3 3.6441e+0 5.5200e–2 4.0184e+0 1.5600e–2
2 7 1.6750e+0 3.4570e–1 2.0257e+0 4.5810e–1 1.7817e+0 3.6700e–2
3 15 7.4431e–1 2.7760e+0 9.7397e–1 7.0520e–1 8.1878e–1 4.3340e–1 7.6238e–1 1.5370e–1
4 31 3.6599e–1 2.1067e+1 4.8121e–1 7.5820e–1 3.9986e–1 6.5820e–1 3.7317e–1 6.2760e–1
5 63 1.9502e–1 1.6468e+2 2.4916e–1 9.5190e–1 2.0838e–1 8.5460e–1 1.9563e–1 1.1097e+0

We assume that β ∈ L∞(a, b), ϕ ∈ C([a, b],R) and u is the unknown to be determined.
Assume the solution u as

u =
[

d – c
b – a

x +
bc – ad

b – a

]
+ w.

The variational formulation of () is to find w ∈ H
(a, b) such that

∫ b

a

[
w′′ – β(x)

(
w′ +

d – c
b – a

)]
v dx –

∫ b

a
ϕ

(
x, w +

d – c
b – a

x +
bc – ad

b – a

)
v dx = ,

for all v ∈ H
(a, b).

By applying this technique, we can solve the nonlinear problem with non-zero Dirichlet
conditions.

Example . Consider the boundary value problem

u′′ + u =
(
sin(πx) + x

) – π sin(πx), ()

with Dirichlet boundary conditions

u() = , u() = .

The isolated solution is u∗(x) = sin(πx) + x.

The variational form of this problem is

(
(w + x)′′ + (w + x), v

)
=

((
sin(πx) + x

) – π sin(πx), v
)
, for all v ∈ H

(, ).

Equivalently,

(
w′′ + (w + x), v

)
=

((
sin(πx) + x

) – π sin(πx), v
)
, for all v ∈ H

(, ).

Numerical results for the wavelet basis of order p =  are shown in Table . At the same
level, the L errors of the multilevel augmentation method are slightly greater than those
of the standard multilevel method. The rate of convergence in the L error agrees well with
the theoretical results. The computing time of the augmentation method is of the same
order when the number of augmented levels increases.
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6 Conclusions
This study extends the multi-scale decomposition to a nonlinear boundary value problem.
We apply the anti-derivatives of the Daubechies wavelets of order p to solve nonlinear two-
point boundary value problems. The augmentation method is employed in a variational
formulation for multilevel constructions. The present method can reduce computational
time when solving the discretization of the full nonlinear system. The nonlinear system
from the standard multilevel method can be separated or augmented into two smaller
systems. One is linear and the other is a nonlinear one that can be solved iteratively by the
Newton method. The numerical accuracy can be improved by increasing the resolutions
or the level of approximations. The rate of convergence was shown to be at most on the
order of p where p is the order of the wavelet basis. We illustrate numerically in our
examples that the L error decreases when the number of basis levels increases. The rate
of convergence from our estimations has been confirmed by many examples. Due to its
advantages, the anti-derivatives of the Daubechies wavelets can be used to solve various
kinds of boundary conditions. We are extending this study to apply this basis type with
the augmentation method for solving Neumann type and mixed boundary conditions,
without any modifications in the assumed form of approximate solution; these results will
be reported elsewhere.
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