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Abstract
We propose a new method called the fractional reduced differential transform
method (FRDTM) to solve nonlinear fractional partial differential equations such as
the space-time fractional Burgers equations and the time-fractional Cahn-Allen
equation. The solutions are given in the form of series with easily computable terms.
Numerical solutions are calculated for the fractional Burgers and Cahn-Allen
equations to show the nature of solutions as the fractional derivative parameter is
changed. The results prove that the proposed method is very effective and simple for
obtaining approximate solutions of nonlinear fractional partial differential equations.
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1 Introduction
The space-fractional Burgers equation describes the physical processes of unidirectional
propagation of weakly nonlinear acoustic waves through a gas-filled pipe. They are also
connected with applications in acoustic phenomena and have been used to model tur-
bulence and certain steady-state viscous flows. Moreover, Burgers equations are used to
model the formation and decay of nonplanar shock waves, where the variable x is a coordi-
nate moving with the wave at the speed of sound and the dependent variable u represents
the velocity fluctuations. The Burgers equations occur in various areas of applied sciences
and physical applications, such as modeling of fluid mechanics and financial mathematics,
and the equation has still interesting applications in physics and astrophysics.

The fractional differential equations (FDE) appear more and more frequently in differ-
ent research areas and engineering applications. There are many physical applications in
science and engineering that can be represented by models using fractional differential
equations [–], which are quite useful for many physical problems. These equations are
represented by fractional linear and nonlinear PDEs, and solving such fractional differen-
tial equations is very important [–].

Many approximation and numerical techniques have been used to solve fractional dif-
ferential equations [, , –]. Lately, many new approaches to fractional differen-
tial equations have been proposed, a few of these methods are as follows: the fractional
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differential transform method (FDTM) [–], the fractional Adomian decomposition
method (FADM) [], the fractional variational iteration method (FVIM) [], the fractional
sub-equation method [], the fractional natural decomposition method [, ] and the
fractional homotopy perturbation method (FHPM) [, ]. Kurulay [] found approx-
imate and exact solutions of the space- and time-fractional Burgers equations. Bekir et
al. [] found exact solutions of the time-fractional Cahn-Allen equation. Khan et al. []
used the generalized differential transform method (GDTM) and the homotopy perturba-
tion method (HPM) to solve the time-fractional Burgers and coupled Burgers equations.
Recently, Rawashdeh [, ] used the FRDTM to solve nonlinear fractional partial differ-
ential equations.

The general response expression contains a parameter describing the order of the frac-
tional derivative that can be varied to obtain various responses. Note that we call Eq.
(.) the time-fractional Burgers and the space-fractional Burgers equation in the case
 < α ≤ ,η =  and  < β ≤ ,α = , respectively.

In this work, we first consider the nonlinear fractional generalized Burgers equation with
time- and space-fractional derivatives of the form []

∂αu
∂tα

+ η
∂βu
∂xβ

+ ν
∂u
∂x – εu

∂u
∂x

= , x, t > ,  < α,β ≤ , (.)

where ε,ν and η are parameters and α and β are parameters describing the order of the
fractional time- and space-derivatives, respectively. The function u(x, t) is a function of x
and t and u(x, t) will vanish when t <  and x < .

Second, we consider the time-fractional Cahn-Allen equation [, ]

∂αu
∂tα

–
∂u
∂x + u – u = , t > ,  < α ≤ . (.)

The rest of this paper is divided into six sections. In Section , we give a background of
fractional calculus. In Section , the RDTM is introduced. Section  is devoted to ap-
plication of the FRDTM to three test problems and presentation of graphs to show the
effectiveness of the FRDTM for some values of x and t. In Section , we present tables for
Examples ., . and .. Section  is for discussion and conclusion of this paper.

2 Background of fractional calculus
Here are some definitions and facts that we shall use in our work. Some of these basic
definitions are due to Liouville [, , , ].

Definition . A real function f (x), x > , is said to be in the space Cμ, μ ∈ R, if there
exists a real number q(> μ) such that f (x) = xqg(x), where g(x) ∈ C[,∞), and it is said to
be in the space Cm

μ if f (m) ∈ Cμ, m ∈N.

Definition . For an integrable function f ∈ Cμ, the Riemann-Liouville fractional inte-
gral operator of order α ≥  is defined as

⎧
⎨

⎩

Jαf (x) = 
�(α)

∫ x
 (x – t)α–f (t) dt, when α > , x > ,

Jf (x) = f (x).
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Definition . The fractional derivative of f ∈ Cm
– in the Caputo sense can be defined as

Dαf (x) = Jm–αDmf (x)

=


�(m – α)

∫ x


(x – t)m–α–f (m)(t) dt, where m –  < α ≤ m, m ∈N, x > .

Lemma . ([]) If m –  < α ≤ m, m ∈N and f ∈ Cm
μ ,μ ≥ –, then

⎧
⎨

⎩

DαJαf (x) = f (x), if x > ,

JαDαf (x) = f (x) –
∑m–

k= f (k)(+) xk

k! , if m –  < α < m.

We use the Caputo fractional derivative because it allows traditional initial and bound-
ary conditions to be included in the formulation of our work.

3 Analysis of the FRDTM
We present the methodology of the FRDTM as follows. Consider a function u(x, t) which
is analytic and k-times continuously differentiable with respect to time t and space x in the
domain of the interest. Now one can represent u(x, t) as a product of two single-variable
functions such as u(x, t) = f (x).g(t). Thus the function can be represented as

u(x, t) =

( ∞∑

i=

F(i)xi

)( ∞∑

j=

G(j)tj

)

=
∞∑

k=

Uk(x)tk . (.)

Definition . If u(x, t) is analytic and continuously differentiable with respect to space
variable x and time t in the domain of interest, then the t-dimensional spectrum function

Uk(x) =


�(αk + )

[
∂αk

∂tαk u(x, t)
]

t=t

(.)

is the reduced transformed function of u(x, t), where α is a parameter which describes the
order of time-fractional derivative.

Throughout this paper, u(x, t) represents the original function and Uk(x) represents the
reduced transformed function. The differential inverse transform of Uk(x) is given by

u(x, t) =
∞∑

k=

Uk(x)(t – t)αk . (.)

From Eqs. (.) and (.) one can deduce

u(x, t) =
∞∑

k=


�(αk + )

[
∂αk

∂tαk u(x, t)
]

t=t

(t – t)αk . (.)

Note that when t = , Eq. (.) becomes

u(x, t) =
∞∑

k=


�(αk + )

[
∂αk

∂xαk u(x, t)
]

t=
tαk . (.)
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Table 1 Basic operations of the FRDTM [39]

Functional form Transformed form

u(x, t) 1
�(kα+1) [

∂αk

∂tαk
u(x, t)]t=0

γ u(x, t)± βv(x, t) γUk(x)± βVk (x), where γ and β are constants

u(x, t).v(x, t)
∑k

i=0 Ui(x)Vk–i(x)

u(x, t).v(x, t).w(x, t)
∑k

i=0
∑i

j=0 Uj(x)Vi–j(x)Wk–i(x)
∂nα

∂tnα u(x, t) �(kα+nα+1)
�(kα+1) Uk+n(x)

∂n

∂xn u(x, t)
∂n

∂xn Uk(x)

xmtnu(x, t) xmUk–n(x)

xmtn xmδ(kα – n), where δ(kα – n) =
{
1, αk = n
0, αk �= n

}

Some basic operations of the reduced differential transformation [–] obtained from
Eqs. (.) and (.) are given in Table , and the proofs of some of the properties can be
found in [].

Remark . In Table , � represents the gamma function, where �(z + ) = z�(z), z > .

3.1 Methodology
To explain how the FRDTM works, we consider the general fractional nonlinear nonho-
mogeneous partial differential equation

L
(
u(x, t)

)
+ R

(
u(x, t)

)
+ N

(
u(x, t)

)
= L

(
h(x, t)

)
(.)

subject to the initial conditions

u(x, ) = f (x), ut(x, ) = g(x). (.)

Here the L = Dα
t , R is the linear differential operator, N represents the general nonlinear

operator and h(x, t) is the nonhomogeneous source term.
From Table  and Eq. (.), we can get the following:

�(αk + α + )
�(αk + )

Uk+(x) = Hk(x) – R
(
Uk(x)

)
– N

(
Uk(x)

)
, (.)

where Uk(x), R(Uk(x)), N(Uk(x)) and Hk(x) are the transformations of the functions
L(u(x, t)), R(u(x, t)), N(u(x, t)) and L(h(x, t)), respectively.

Now from Eq. (.) we can get

U(x) = f (x); U(x) = g(x). (.)

To find all other iterations, we first substitute Eq. (.) into Eq. (.) to find the remaining
values of Uk(x). Finally, we apply the inverse transformation to all the values of {Uk(x)}n

k=
to obtain

�
u (x, t) =

n∑

k=

Uk(x)tαk . (.)



Rawashdeh Advances in Difference Equations  (2017) 2017:99 Page 5 of 14

Finally, the exact solution of the problem is given by u(x, t) = limn→∞
�
u (x, t).

4 Worked examples
We shall employ the FRDTM to three different applications to illustrate the accuracy and
efficiency of the method.

4.1 The time-fractional Burgers equation
We consider the following time-fractional Burgers equation []:

∂αu
∂tα

– ν
∂u
∂x + εu

∂u
∂x

= , x > , t > ,  < α ≤ , (.)

subject to the initial condition

u(x, ) =
μ + σ + (σ – μ)eγ

 + eγ
, (.)

where γ = μ

ν
(x – λ), and the parameters μ,σ ,λ and ν are arbitrary constants.

Using Table , Eq. (.) and Eq. (.) become

Uk+(x) =
�(kα + )

�(αk + α + )

(

ν
∂

∂x Uk(x) – ε

( k∑

i=

Ui(x)
∂

∂x
Uk–i(x)

))

, (.)

where

U(x) =
μ + σ + (σ – μ)eγ

 + eγ
. (.)

Substitute Eq. (.) into Eq. (.) to get

U(x) =
eγ μ(σ ( + eγ ))
ν( + eγ )(α + )

,

U(x) =
eγ μ(σ (eγ – )( + eγ ))
ν(α + )(α + )( + eγ ) .

(.)

We proceed in this way to get

∞∑

k=

Uk(x)tαk = U(x) + U(x)tα + U(x)tα + · · · . (.)

Thus, we have the solution of Eq. (.) in a series form for α =  and ε = 

u(x, t) =
μ + σ + (σ – μ)eγ

 + eγ
+

eγ μ(σ ( + eγ ))
ν( + eγ )(α + )

t

+
eγ μ(σ (eγ – )( + eγ ))
ν(α + )(α + )( + eγ ) t + · · · . (.)

Hence

u(x, t) =
μ + σ + (σ – μ) exp[ μ

ν
(x – σ t – λ)]

 + exp[ μ

ν
(x – σ t – λ)]

. (.)
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Figure 1 The approximate solutions for Example 4.1 when α = 0.25, α = 0.5, α = 0.75 and α = 0.90,
respectively.

This is the exact solution given by the ADM in [] and the VIM in [], where γ = μ

ν
(x – λ)

and the parameters μ,σ ,λ and ν are arbitrary constants.
For a special case, we consider the case when ν = .,μ = ., σ = .,λ = ., ε =  to

obtain

U(x) =
 + .e(x–.)

 + e(x–.) ,

U(x) =
(.ex + .ex)�(α)

(. + ex)�( + α)
,

U(x) =
(–.ex – .ex – .ex)�(α)�(α)

(. + ex)�(α + )�(α + )

+
(.ex + .ex + .ex)�(α)�(α)

(. + ex)�(α + )�(α + )
.

If we proceed in this direction, the differential inverse transform of {Uk(x)}∞k= is given by

�
u (x, t) =

n∑

k=

Uk(x)tαk = U(x) + U(x)tα + U(x)tα + · · · . (.)

Thus, the exact solution of the problem is given by u(x, t) = limn→∞
�
un (x, t).

Remark . The sketches of the approximate solutions and the exact solution u(x, t) of Eq.
(.) given by Momani [] for the values of α = .,α = .,α = .,α =  and different
values of x and t are shown in Figure . Also from Figure  one can observe that the exact
and approximate solutions for Example . are very close when ν = .,μ = .,σ = .,λ =
.,η = .

4.2 The space-fractional Burgers equation
Consider the space-fractional Burgers equation []

∂u
∂t

+ η
∂βu
∂xβ

+ εu
∂u
∂x

– ν
∂u
∂x = , x > , t > ,  < β ≤ , (.)
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Figure 2 The exact and approximate solutions, respectively, for Example 4.1
ν = 0.1,μ = 0.4,σ = 0.6,λ = 0.125,η = 1.

where ε,ν,η are parameters, and the boundary conditions are as follows:

u(, t) = , ux(, t) =

t

–
π

νt . (.)

Apply the FRDTM operator to Eq. (.) and Eq. (.) to get

Uk+(t) =


ν(k + )(k + )

(

η
�(kβ + β + )

�(kβ + )
Uk+(t) +

∂

∂t
Uk(t)

)

+


ν(k + )(k + )

(

ε

k∑

i=

(i + )Ui+(t)Uk–i(t)

)

(.)

and

U(t) = , U(t) =

t

–
π

t . (.)

Substitute Eq. (.) into Eq. (.) to obtain

U(t) =
(t – π)η�(β + )

tν
,

U(t) =
(πt( – ε) + t(ε – ) + επ)ν + t(t – π)η�(β + )

tν .
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We proceed, and after the th iteration we get the following approximate solution:

�
u (x, t) =

n∑

k=

Uk(t)xβk = U(t) + U(t)xβ + U(t)xβ + U(t)xβ + · · · .

Thus, when β =  and ε = , the approximate solution becomes

�
u (x, t) =

(

t

–
π

t

)

x +
(

(t – π)η
tν

)

x +
(

πν + t(t – π)η

tν

)

x

+
(

η((π – πt + t)ν + (πν + (t – πt)η))
tν

)

x

+ · · · .

This is the approximate solution of Eq. (.) in a series form. Thus the exact solution in
the special case when η =  is given by

u(x, t) =
∞∑

k=

Uk(t)xk

= U(t) + U(t)x + U(t)x + · · ·

=
(


t

–
π

t

)

x +
(

π

tν

)

x + · · ·

=
x
t

–
π

t
tanh

(
πx
νt

)

.

This is the exact solution of Eq. (.) which was given in [].

Remark . The sketches of the approximate solutions and the exact solution u(x, t) of
Eq. (.) given by Momani [] for the values of β = .,β = .,β = .,β = . and
different values of x and t when η = ,ν = , ε =  are shown in Figure  and .

4.3 The time-fractional Cahn-Allen equation
Consider the following nonlinear time-fractional Cahn-Allen equation [, ]:

∂αu
∂tα

–
∂u
∂x + u – u = , t > ,  < α ≤ , (.)

subject to

u(x, ) =


 + e( x√


)
. (.)

Apply the FRDTM to Eq. (.) to get

Uk+(x) =
�(kα + α + )

�(kα + )

(

Uk(x) +
∂Uk(x)

∂x

)

–
�(kα + α + )

�(kα + )

( k∑

i=

i∑

j=

Ui–j(x)Uj(x)Uk–i(x)

)

. (.)
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Figure 3 The approximate solutions for Example 4.2 when β = 0.25, β = 0.5, β = 0.75 and β = 0.90,
respectively.

Figure 4 The exact and approximate solutions for Example 4.2, respectively, when η = 0,ν = 1,ε = 1.

Using Table  and Eq. (.), we conclude

U(x) =


 + e( x√


)
. (.)

Substitute Eq. (.) into Eq. (.) to obtain

U(x) =


α( + cosh( x√
 ))

, U(x) =
 csch( x√

 ) sinh( x

√

 )

α ,
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U(x) =
(cosh( x√

 ) – ) sech( x

√

 )

α ,

U(x) =
(cosh( x√

 ) – ) sech( x

√

 ) tanh( x

√

 )

α .

We proceed in this way, and after the th iteration the approximate solution is given by

�
u (x, t) =

∞∑

k=

Uk(x)tαk

= U(x) + U(x)tα + U(x)tα + U(x)tα + · · · .

Thus

u(x, t) =


 + e( x√


)
+

tα

α( + cosh( x√
 ))

+
 csch( x√

 ) sinh( x

√

 )

α tα

+
(cosh( x√

 ) – ) sech( x

√

 )

α tα + · · · . (.)

Hence the exact solution when α =  is given by

�
u (x, t) =

∞∑

k=

Uk(x)xk

=


 + e( x√


)
+

t
( + cosh( x√

 ))

+
 csch( x√

 ) sinh( x

√

 )


t + · · ·

=


 + e( x√


– t
 )

. (.)

This is the exact solution of Eq. (.) which was given in [, ].

Remark . The sketches of the approximate solutions and the exact solution u(x, t) of
Eq. (.) are given in Figures  and  for a constant value of a =  and for the values
of α = .,α = .,α = .,α = . and for different values of x and t. Note that the
accuracy increases as the order of approximation increases.

5 Tables of numerical calculations
In this section, we present tables to show the comparison of results of the FRDTM ap-
proximate solutions and the exact solution for different values of α and β . In Table  we
use different values of x and t and ν = .,μ = .,σ = .,λ = .,η = , and in Table 
we use different values of x and t and η = ,ν = , ε = . Finally, we present Table  for dif-
ferent values of x and t and different values for α with only four iterations. It is important
to mention that for Example . we only used n = , i.e., four iterations, and we obtained
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Figure 5 The approximate solutions when α = 0.25, α = 0.5, α = 0.75 and α = 0.90, respectively.

Figure 6 The exact and approximate solutions, respectively, when α = 1.

better approximate values, while in [] the authors used five iterations. This shows that
the FRDTM converges faster than the existing methods in the literature.

6 Conclusion
In this paper, we successfully implemented the FRDTM to find approximate solutions of
the space-time fractional Burgers equations and the time-fractional Cahn-Allen equation
for different values of α and β and the results we obtained in Examples ., . and .
were in excellent agreement with the exact solutions. The FRDTM introduces a significant
improvement in the field over the existing methods.
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Table 2 The results obtained by the FRDTM for different values of α for Example 4.1

x t α = 0.25 α = 0.5 α = 0.75 α = 1

Numerical Numerical Numerical Numerical Exact

–10 2 1 1 1 1 1
4 1 1 1 1 1
6 1 1 1 1 1
8 1 1 1 1 1

–5 2 1.00014 1.00014 1 1 1
4 1.02059 1.00261 1.00001 1 1
6 1.37155 1.02059 1.00014 1.00002 1
8 3.86303 1.02059 1.00112 1.00014 1

5 2 0.200786 0.20001 0.200001 0.2 0.2
4 0.280682 0.200786 0.200059 0.20001 0.20004
6 1.48828 0.211558 0.200786 0.200123 0.204848
8 9.53999 0.280682 0.205256 0.200786 0.540446

10 2 0.2 0.2 0.2 0.2 0.2
4 0.2 0.2 0.2 0.2 0.2
6 0.2 0.2 0.2 0.2 0.2
8 0.2 0.2 0.2 0.2 0.2

Table 3 The results obtained by the FRDTM for different values of β for Example 4.2

x t β = 0.25 β = 0.5 β = 0.75 β = 1

Numerical Numerical Numerical Numerical Exact

0.1 2 –0.0764845 –0.0764173 –0.0765568 –0.076893 –0.073117
3 –0.0224361 –0.0224164 –0.0224575 –0.0225564 –0.0214477
4 –0.00609528 –0.00608992 –0.00610107 –0.00612793 –0.00582667
6 0.00309842 0.00309573 0.00310145 0.00311518 0.00296201

0.3 2 –0.243822 –0.24332 –0.244843 –0.248451 –0.21341
3 –0.0721999 –0.0720561 –0.0725197 –0.0736135 –0.0631537
4 –0.0195606 –0.019521 –0.0196462 –0.019942 –0.0171018
6 0.0102373 0.0102193 0.0102888 0.0104509 0.008961

0.5 2 –0.419375 –0.418177 –0.4228 –0.433774 –0.336983
3 –0.126549 –0.126227 –0.127726 –0.131255 –0.101393
4 –0.034099 –0.0340076 –0.0344084 –0.0353558 –0.0272609
6 0.0188912 0.0188622 0.0191169 0.0197044 0.0151832

0.6 2 –0.505904 –0.504266 –0.511001 –0.527077 –0.389893
3 –0.154611 –0.154193 –0.156467 –0.161845 –0.118574
4 –0.0414992 –0.041377 –0.0419815 –0.0434176 –0.0317049
6 0.0238959 0.0238714 0.0242898 0.0252544 0.0184231

Table 4 The results obtained by the FRDTM for different values of α for Example 4.3

x t α = 0.25 α = 0.5 α = 0.75 α = 1

Numerical Numerical Numerical Numerical Exact

0.1 0.002 0.768025 0.515858 0.487054 0.483079 0.483079
0.003 0.79101 0.523384 0.488734 0.483453 0.483453
0.004 0.807412 0.529721 0.490276 0.483828 0.483828
0.006 0.830055 0.540329 0.493102 0.484577 0.484577

0.3 0.002 0.7419 0.480518 0.451845 0.447907 0.447907
0.003 0.766709 0.488048 0.453511 0.448278 0.448278
0.004 0.784528 0.494401 0.455041 0.448649 0.448649
0.006 0.809302 0.505062 0.457846 0.449391 0.449391

0.5 0.002 0.713958 0.445372 0.417112 0.413248 0.413248
0.003 0.740586 0.452832 0.418748 0.413612 0.413612
0.004 0.759881 0.459137 0.420251 0.413976 0.413976
0.006 0.787034 0.469743 0.423008 0.414704 0.414704

0.6 0.002 0.699334 0.427979 0.400028 0.396214 0.396214
0.003 0.726851 0.435377 0.401642 0.396573 0.396573
0.004 0.746891 0.441635 0.403127 0.396932 0.396932
0.006 0.775296 0.452175 0.40585 0.397651 0.397651
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