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Abstract
In this paper, we propose a new three-level implicit method based on a half-step
spline in compression method of order two in time and order four in space for the
solution of one-space dimensional quasi-linear hyperbolic partial differential equation
of the form utt = A(x, t,u)uxx + f (x, t,u,ux ,ut). We describe spline in compression
approximations and their properties using two half-step grid points. The new method
for one-dimensional quasi-linear hyperbolic equation is obtained directly from the
consistency condition. In this method we use three grid points for the unknown
function u(x, t) and two half-step points for the known variable ‘x’ in x-direction. The
proposed method, when applied to a linear test equation, is shown to be
unconditionally stable. We have also established the stability condition to solve a
linear fourth-order hyperbolic partial differential equation. Our method is directly
applicable to solve hyperbolic equations irrespective of the coordinate system, which
is the main advantage of our work. The proposed method for a scalar equation is
extended to solve the system of quasi-linear hyperbolic equations. To assess the
validity and accuracy, the proposed method is applied to solve several benchmark
problems, and numerical results are provided to demonstrate the usefulness of the
proposed method.
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1 Introduction
We consider a one-space dimensional quasi-linear hyperbolic equation of the type

utt = A(x, t, u)uxx + f (x, t, u, ux, ut),  < x < , t > , (.)

with the following initial conditions:

u(x, ) = p(x), ut(x, ) = q(x),  ≤ x ≤ , (.)
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and boundary conditions

u(, t) = r(t), u(, t) = r(t), t ≥ . (.)

We assume that the functions A(x, t, u) and u(x, t) are sufficiently smooth, the required
higher order partial derivatives of A(x, t, u) and u(x, t) exist in the solution domain � ≡
{(x, t)| < x < , t > }, and the conditions (.) and (.) are given with sufficient smooth-
ness to maintain the order of accuracy in the numerical method under consideration.
Further, we assume that the initial and boundary value problem (.)-(.) has a unique
smooth solution u(x, t) in the solution domain �. The details of existence and uniqueness
of the above initial boundary value problem have already been discussed in [].

A wave is a time evolution phenomenon that we generally model mathematically using
partial differential equations (pdes) which have a dependent variable u(x, t), which repre-
sents the wave value, an independent variable, time t and one or more independent spatial
variables. The actual form that the wave takes is strongly dependent upon the system’s ini-
tial conditions, boundary conditions and disturbances in the system.

Wave equation is an important second-order linear partial differential equation for the
description of waves as they occur in real life such as ripples on a lake, wind waves on
water, tidal surges in estuaries, transverse waves travelling on a long string, transverse
vibrations of strings and membranes, traffic density waves, seismic waves, acoustic waves
and electromagnetic wave currents in coaxial cables.

Problems involving the propagation of nonlinear waves have become of increasing in-
terest in various branches of science and engineering. In general, waves of finite ampli-
tude governed by a nonlinear evolution equation are called nonlinear waves. As is well
known, the principle of superposition of solutions is not valid in nonlinear equations.
Therefore the methods familiar to physicists and engineers, like the use of Fourier or
Laplace transforms, are no longer applicable with the result that the study of nonlinear
waves has not yet become well established. However, in recent years, a number of inter-
esting phenomena involving nonlinear waves have been found, and with the development
of digital computers remarkable progress has been made in the research into nonlinear
waves.

There has been a consistent effort in developing efficient and high accuracy finite differ-
ence methods to solve quasi-linear hyperbolic equations. In  to , Bickley and
Fyfe [, ] developed a cubic spline method for two-point boundary value problems.
Papamichael and Whiteman [] also developed a cubic spline technique for the solution
of one-dimensional heat conduction equation. Raggett and Wilson [] used a cubic spline
technique to give a fully implicit finite difference approximation to the one-dimensional
wave equation. Fleck Jr. [] proposed a cubic spline method for solving a wave equation
of nonlinear optics. Jain and Aziz [, ] studied spline function approximations and a cu-
bic spline solution of two-point boundary value problems with significant first derivative
terms. Jain et al. [] discussed difference schemes based on splines in compression for the
solution of conservation laws. Kadalbajoo and Patidar [, ] analyzed numerical methods
of singularly perturbed two-point boundary value problems by spline in compression and
tension approximations. Khan and Aziz [] derived a parametric cubic spline approach to
the solution of system of two-point boundary value problems. Kadalbajoo and Aggarwal
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[] discussed a cubic spline method for solving singular two-point boundary value prob-
lems. Mohanty et al. [–] gave spline in compression methods for singularly perturbed
two-point singular boundary value problems and gave convergent spline in tension meth-
ods for singularly perturbed two-point singular boundary value problems. Rashidinea et
al. [, ] discussed spline methods for the solution of hyperbolic and parabolic equa-
tions. Islam et al. [, ] studied non-polynomial spline approximations for the solu-
tion of boundary value problems. Ding and Zhang [] studied parametric spline meth-
ods for the solution of hyperbolic equations. Mohanty and Jain [] studied the use of
a cubic spline method for the solution of D quasilinear parabolic equations. Recently,
Mohanty et al. [, ] derived numerical methods based on non-polynomial spline ap-
proximations for the solution of D quasilinear hyperbolic equations. In these methods,
they have used full-step grid points, hence these methods are not directly applicable to
problems in polar coordinates. Mohanty et al. [–] have also used different techniques
for the solution of one-dimensional nonlinear wave equations. Most recently, Mohanty
and Khurana [] have proposed a high accuracy numerical method based on off-step
discretization for the solution of D quasilinear hyperbolic equations. To the authors’
knowledge, no numerical method based on half-step spline in compression approxima-
tion has been developed for the one-dimensional quasi-linear hyperbolic equation from
the consistency condition so far. In this paper, we propose a method derived from the con-
sistency condition, which is applicable to hyperbolic equations irrespective of coordinate
systems.

Our paper is arranged as follows. In Section , we discuss the properties of spline in
compression approximations. In Section , we discuss a detailed derivation of a new half-
step three-level implicit method based on spline in compression approximations. In Sec-
tion , we extend our technique to solve the system of nonlinear second-order quasi-linear
hyperbolic equations. In Section , we discuss the stability analysis when the method is
applied to a telegraphic equation, and we show it to be unconditionally stable. We also
establish the stability condition to solve fourth-order linear hyperbolic partial differential
equation. In Section , we solve some benchmark problems and compare our results with
other existing methods. In Section , we give concluding remarks.

2 Spline in compression approximations
We discretize the solution domain [, ]× [, J] into (N +)× J by a set of grid points (xl, tj),
where  = x < x < · · · < xN+ = , and  = t < t < · · · < tJ = J , N being a positive integer
with uniform mesh spacing h = xl – xl–, k = tj – tj–; l = ()N + , j = ()J . Let uj

l and Uj
l

be the approximate and exact solutions of u(x, t) at the grid point (xl, tj), respectively.
Now, for each subinterval [xl–, xl], l = ()N + , we define the non-polynomial spline in

compression function Sj(x) of the function u(x, t) at the mesh point (xl, tj) as follows:

Sj(x) = aj
l + bj

l(x – xl) + cj
l sinω(x – xl)

+ dj
l cosω(x – xl), l = ()N + , x ∈ [xl–, xl], (.)

where aj
l , bj

l , cj
l and dj

l are unknown coefficients and ω is an arbitrary parameter to be
determined. Here Sj ∈ C[, ] and it interpolates u(x, t) at the mesh point (xl, tj) at jth
time level.
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The derivatives of function Sj at x are given by

S′
j(x) = bj

l + ωcj
l cosω(x – xl) – ωdj

l sinω(x – xl), (.)

S′′
j (x) = –ω[cj

l sinω(x – xl) + dj
l cosω(x – xl)

]
. (.)

We denote

Mj
l = S′′

j (xl) = Uj
xxl

, Mj
l±/ = S′′

j (xl±/) = Uj
xxl± 


. (.)

Using the notations of (.) and putting x = xl and xl–/ in (.), we get the following
values of aj

l , bj
l , cj

l and dj
l :

aj
l = Uj

l +
Mj

l
ω , bj

l =
Uj

l – Uj
l–

h
+

Mj
l

ωθ
–

Mj
l–/
ωθ

cos θ ,

cj
l =

Mj
l–/ – Mj

l cos θ

ω sin θ
, dj

l =
–Mj

l
ω ,

(.)

where θ = ωh
 .

Substituting the values of (.) in (.), we get

S′
j(x) =

Uj
l – Uj

l–
h

+
Mj

l
ωθ

–
Mj

l–/
ωθ

cos θ +
(Mj

l–/ – Mj
l cos θ )

ω sin θ
cosω(x – xl)

+
Mj

l
ω

sinω(x – xl), x ∈ [xl–, xl]. (.)

Similarly,

S′
j(x) =

Uj
l+ – Uj

l
h

–
Mj

l
ωθ

+
Mj

l+/
ωθ

cos θ +
(Mj

l cos θ – Mj
l+/)

ω sin θ
cosω(x – xl)

+
Mj

l
ω

sinω(x – xl), x ∈ [xl, xl+]. (.)

From the condition of continuity S′
j(xl–) = S′

j(xl+), we obtain the following consistency
condition:

Uj
l+ – Uj

l + Uj
l– = h[αMj

l+/ + βMj
l + αMj

l–/
]

+ O
(
h), l = ()N , (.)

where

α =


θ

(
θ

sin θ
– cos θ

)
=




–
θ


+ O

(
θ), (.a)

β =


θ ( – θ cot θ ) =



+
θ


+ O

(
θ). (.b)

Equating the coefficient of Mj
l , from (.), we obtain the condition

(α + β) = . (.)
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Substituting the values of (.a)-(.b) in (.) and neglecting O(θ) terms, we get

tan
θ


=

θ


. (.)

The above equation has infinitely many roots, the smallest positive non-zero root is given
by

θ = .. (.)

When ω → , i.e., when θ → , then (α,β) → ( 
 , 

 ), and relation (.) reduces to a cubic
spline relation.

Now, we give two important properties of non-polynomial spline in compression

mj
l–/ = S′

j(xl–/)

=
Uj

l – Uj
l–

h
+

(Mj
l – Mj

l–/ cos θ )
ωθ

+
(Mj

l–/ – Mj
l cos θ ) cos θ

ω sin θ
–

Mj
l sin θ

ω
, (.)

mj
l+/ = S′

j(xl+/)

=
Uj

l+ – Uj
l

h
–

(Mj
l – Mj

l+/ cos θ )
ωθ

+
(Mj

l cos θ – Mj
l+/) cos θ

ω sin θ
+

Mj
l sin θ

ω
. (.)

On simplifying (.) and (.), we get

S′
j(xl–/) =

Uj
l – Uj

l–
h

+
h(βMj

l–/ – αMj
l)


, (.)

S′
j(xl+/) =

Uj
l+ – Uj

l
h

+
h(αMj

l – βMj
l+/)


. (.)

Relations (.) and (.) are two important properties of non-polynomial spline in com-
pression function Sj(x).

3 Method based on non-polynomial spline in compression approximations
For the sake of simplicity, we first consider the one-space dimensional nonlinear hyper-
bolic partial differential equation

utt = A(x, t)uxx + f (x, t, u, ux, ut),  < x < , t > , (.)

with the initial and boundary conditions prescribed by (.) and (.), respectively. At
the grid point (xl, tj), we define Aj

l = A(xl, tj), Uj
tl = ut(xl, tj), Uj

ttl = utt(xl, tj), Uj
xl = ux(xl, tj),

Uj
xxl = uxx(xl, tj) = Mj

l , and we may rewrite differential equation (.) at the grid point (xl, tj)
as

Uj
ttl – Aj

lU
j
xxl

= f
(
xl, tj, Uj

l , Uj
xl

, Uj
tl

) ≡ Fj
l (say). (.)

Similarly, at the grid point (xl±/, tj), we can write differential equation (.) as

Uj
ttl±/ – Aj

l±/Uj
xxl±/

= f
(
xl±/, tj, Uj

l±/, Uj
xl±/

, Uj
tl±/

) ≡ Fj
l±/. (.)
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Now we simplify the consistency condition (.) with the aid of differential equation (.)
to get its modified form.

By the help of (.), (.), (.), we may rewrite (.) as

Uj
l+ – Uj

l + Uj
l– = h

[
α

Aj
l+/

(
Uj

ttl+/ – Fj
l+/

)
+

β

Aj
l

(
Uj

ttl – Fj
l
)

+
α

Aj
l–/

(
Uj

ttl–/ – Fj
l–/

)
]

+ O
(
h). (.)

We use the following expansions:


Aj

l± 


=


Aj
l

[
 ∓ h



(
Aj

xl

Aj
l

)
–

h

Aj
l

(
Aj

xxl
– 

Aj
xl



Aj
l

)
∓ O

(
h)

]
, (.)

Uj
ttl±/ = Uj

ttl ± h


Uj
ttxl +

h


Uj

ttxxl ± O
(
h). (.)

With the aid of (.a), (.b), (.), (.), from (.), we obtain

Aj
l
(
Uj

l+ – Uj
l + Uj

l–
)

= h
[

(α + β)Uj
ttl –

αh

Aj
l

(
Aj

xxl
– 

Aj
xl



Aj
l

)
Uj

ttl

–
αh


Aj

xl

Aj
l

Uj
ttxl +

αh


Uj

ttxxl

]

– h
[(




–
θ



)(
 –

h


Aj
xl

Aj
l

–
h

Aj
l

(
Aj

xxl
– 

Aj
xl



Aj
l

))
Fj

l+ 


+
(




–
θ



)(
 +

h


Aj
xl

Aj
l

–
h

Aj
l

(
Aj

xxl
– 

Aj
xl



Aj
l

))
Fj

l– 


+
(




+
θ



)
Fj

l

]
+ O

(
h). (.)

Now, using (.a) and (.b) in (.), we get

Aj
l
(
Uj

l+ – Uj
l + Uj

l–
)

=
h



[
Uj

ttl –
h

Aj
l

(
Aj

xxl
– 

Aj
xl



Aj
l

)
Uj

ttl

– h Aj
xl

Aj
l

Uj
ttxl + hUtt

j
xxl

]

–
h



[(
 –

h


Aj
xl

Aj
l

)
Fj

l+ 


+
(

 +
h


Aj
xl

Aj
l

)
Fj

l– 


+ Fj
l

]

+
h

Aj
l

[(
Aj

xxl
– 

Aj
xl



Aj
l

)
(
Fj

l+ 


+ Fj
l– 



)
]

+
hθ



[(
 –

h


Aj
xl

Aj
l

)
Fj

l+ 


+
(

 +
h


Aj
xl

Aj
l

)
Fj

l– 


– Fj
l

]

+ O
(
h). (.)
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Now we use the following approximations:

hUj
ttxl = Uj

ttl+ – Uj
ttl– + O

(
h), (.a)

hUj
ttxxl = Uj

ttl+ – Uj
ttl + Uj

ttl– + O
(
h), (.b)

Fj
l+/ + Fj

l–/ = Fj
l + O

(
h) = 

(
Uj

ttl – Aj
lU

j
xxl

)
+ O

(
h), (.c)

Fj
l+/ – Fj

l–/ = hFj
xl

+ O
(
h), (.d)

hUj
xxl

= Uj
l+ – Uj

l + Uj
l– + O

(
h). (.e)

Using the approximations (.a)-(.d) in (.) and neglecting high order terms, we
get

Aj
l
(
Uj

l+ – Uj
l + Uj

l–
)

=
h



[
Uj

ttl –
h

Aj
l

(
Aj

xxl
– 

Aj
xl



Aj
l

)
Uj

ttl

– h
Aj

xl

Aj
l

(
Uj

ttl+ – Uj
ttl–

)
+

(
Uj

ttl+ + Uj
ttl–

)
]

–
h



[(
 –

h


Aj
xl

Aj
l

)
Fj

l+ 


+
(

 +
h


Aj
xl

Aj
l

)
Fj

l– 


+ Fj
l

]

+
h

Aj
l

[(
Aj

xxl
– 

Aj
xl



Aj
l

)(
Uj

ttl – Aj
lU

j
xxl

)]
+ O

(
h). (.)

Using approximation (.e) and re-arranging the terms in (.), we obtain a modified
version of the consistency condition

[
Aj

l +
h



(
Aj

xxl
– 

Aj
xl

Aj
l

Aj
xl

)](
Uj

l+ – Uj
l + Uj

l–
)

=
h



[(
 – h

Aj
xl

Aj
l

)
Uj

ttl+ +
(

 + h
Aj

xl

Aj
l

)
Uj

ttl– + Uj
ttl

]

–
h



[(
 –

h


Aj
xl

Aj
l

)
Fj

l+ 


+
(

 +
h


Aj
xl

Aj
l

)
Fj

l– 


+ Fj
l

]
+ O

(
h). (.)

Since Fj
l contains the term utt and first derivative terms, then from (.) the spline in

compression method for hyperbolic equation (.) can be written as

[
Aj

l +
h



(
Aj

xxl
– 

Aj
xl

Aj
l

Aj
xl

)]
(
Uj

l+ – Uj
l + Uj

l–
)

=
h



[(
 – h

Aj
xl

Aj
l

)
Uj

ttl+
+

(
 + h

Aj
xl

Aj
l

)
Uj

ttl–
+ Uj

ttl

]

–
h



[(
 –

h


Aj
xl

Aj
l

)
F̂ j

l+ 


+
(

 +
h


Aj
xl

Aj
l

)
F̂ j

l– 


+ F̂ j
l

]
+ T̂ j

l , (.)
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where T̂ j
l = O(kh + kh + h) and we use the following approximations:

Uj
l±/ =

Uj
l± + Uj

l


, (.a)

Uj
tl

=
Uj+

l – Uj–
l

k
, (.b)

Uj
tl±

=
Uj+

l± – Uj–
l±

k
, (.c)

Uj
tl±/

=
Uj

tl±
+ Uj

tl


, (.d)

Uj
ttl

=
Uj+

l – Uj
l + Uj–

l
k , (.e)

Uj
ttl±

=
Uj+

l± – Uj
l± + Uj–

l±

k , (.f)

Uj
ttl±/

=
Uj

ttl±
+ Uj

ttl


, (.g)

Uj
xl

=
Uj

l+ – Uj
l–

h
, (.h)

Uj
xl±/

=
Uj

xl±
+ Uj

xl


, (.i)

Uj
xxl

=
Uj

l+ – Uj
l + Uj

l–
h . (.j)

Simplifying (.a)-(.j), we obtain

Uj
l±/ = Uj

l±/ +
h


Uj

xxl
± O

(
h), (.a)

Uj
tl

= Uj
tl + O

(
k), (.b)

Uj
tl±

= Uj
tl± + O

(
k), (.c)

Uj
tl±/

= Uj
tl±/ +

h


Uj

xxtl + O
(
k ± h), (.d)

Uj
ttl

= Uj
ttl + O

(
k), (.e)

Uj
ttl±

= Uj
ttl± + O

(
k + kh + h), (.f)

Uj
ttl±/

= Uj
ttl±/ +

h


Uj

xxttl + O
(
k ± h) (.g)

Uj
xl

= Uj
xl

+
h


Uj

xxxl
+ O

(
h), (.h)

Uj
xl±/

= Uj
xl±/

+
h


Uj

xxxl
± O

(
h), (.i)

Uj
xxl

= Uj
xxl

+
h


Uj

xxxxl
+ O

(
h). (.j)
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We define the following approximations:

Fj
l = f

(
xl, tj, Uj

l , Uj
xl

, Uj
tl

)
, (.a)

Fj
l±/ = f

(
xl±/, tj, Uj

l±/, Uj
xl±/

, Uj
tl±/

)
. (.b)

Then, using the approximations (.b), (.h) in (.a) and (.a), (.d), (.i) in
(.b), respectively, we get

Fj
l = Fj

l + O
(
h + k), (.a)

Fj
l±/ = Fj

l±/ + O
(
h + k). (.b)

Let

Mj
l =


Aj

l

(
Uj

ttl
– Fj

l
)
, (.a)

Mj
l±/ =


Aj

l±/

(
Uj

ttl±/
– Fj

l±/
)
. (.b)

Then, using the approximations (.e), (.a) in (.a), and (.g), (.b) in (.b),
respectively, we get

Mj
l = Mj

l + O
(
h + k), (.a)

Mj
l±/ = Mj

l±/ + O
(
h + k). (.b)

Next we define

Ûj
xl+/

=
Uj

l+ – Uj
l

h
+

h(αMj
l – βMj

l+/)


, (.a)

Ûj
xl–/

=
Uj

l – Uj
l–

h
+

h(βMj
l–/ – αMj

l)


. (.b)

Then, using the approximations (.a), (.b) in (.a) and (.b), we get

Ûj
xl+/

= Uj
xl+/

+ O
(
k + h), (.a)

Ûj
xl–/

= Uj
xl–/

+ O
(
k + h). (.b)

We further define

F̂ j
l± 


= f

(
xl± 


, tj, Uj

l± 


, Ûj
xl± 


, Uj

tl± 


)
. (.)

Then, using the approximations (.a), (.d), (.a), (.b) in (.) and simplifying,
we get

F̂ j
l±/ = Fj

l±/ +
h


(
Uj

xxl
f j
ul

+ Uj
xxtl f

j
utl

)
+ O

(
k ± h). (.)
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Now we define

Ûj
l = Uj

l + ahŪj
xxl

, (.a)

Ûj
tl = Uj

tl
+ c

(
Ūj

tl+ – Uj
tl

+ Uj
tl–

)
, (.b)

where ‘a’ and ‘c’ are parameters to be determined. Then, using the approximations (.j)
in (.a) and (.b), (.c) in (.b), respectively, we get

Ûj
l = Uj

l + ahUj
xxl

+ O
(
h), (.a)

Ûj
tl = Uj

tl + chUj
xxtl + O

(
k + h). (.b)

Further, let

Ûj
xl

= Uj
xj

+ αbh
(
Mj

l+/ – Mj
l–/

)
, (.)

where α = 
 + O(θ), and ‘b’ is a parameter to be determined.

Then, using the approximations (.h), (.b) in (.), we get

Ûj
xl

= Uj
xl

+
h


( + αb)Uj

xxxl
+ O

(
k + h). (.)

Thus,

Ûj
xl

= Uj
xl

+ O
(
k + h) (.)

if b = –
 .

Let

F̂ j
l = F

(
xl, tj, Ûj

l , Ûj
xl

, Ûj
tl

)
. (.)

Then, using the approximations (.a), (.b), (.) in (.), we get

F̂ j
l = Fj

l + h(aUj
xxl

f j
ul + cUj

xxtl f
j

utl

)
+ O

(
h + k). (.)

Using the approximations (.e), (.f), (.), (.) in (.), we obtain

[
Aj

l +
h



(
Aj

xxl
– 

Aj
xl

Aj
l

Aj
xl

)]
(
Uj

l+ – Uj
l + Uj

l–
)

=
h



[(
 – h

Aj
xl

Aj
l

)
Uj

ttl+ + Uj
ttl +

(
 + h

Aj
xl

Aj
l

)
Uj

ttl–

]

–
h



[(
 –

h


Aj
xl

Aj
l

){
Fj

l+/ +
h


(
Uj

xxl
f j
ul

+ Uj
xxtl f

j
utl

)
}

+
{

Fj
l + h(aUj

xxl
f j
ul

+ cUj
xxtl f

j
utl

)}

+
(

 +
h


Aj
xl

Aj
l

){
Fj

l–/ +
h


(
Uj

xxl
f j
ul

+ Uj
xxtl f

j
utl

)}]
+ T̂ j

l . (.)
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Comparing (.) and (.), we obtain the local truncation error

T̂ j
l =

h


[
( + a)Uj

xxl
f j
ul

+ ( + c)Uj
xxtl f

j
utl

]
+ O

(
kh + kh + h). (.)

Now the local truncation error of the proposed method to be O(kh + kh + h), the
coefficients of h in (.) must vanish, that is,

 + a = ,  + c = . (.)

On solving (.), we get a = c = –/.
Now, we consider the numerical method of O(k + kh + h) for the solution of quasi-

linear hyperbolic equation (.). Here, we use the techniques discussed in [–]. Scheme
(.) has to be modified suitably when the coefficient A = A(x, t, u). In order to understand
the concept in devising the method for the quasi-linear case, we consider the following
differential equation:

u′′ = A(x),  < x < . (.)

A fourth-order method for differential equation (.) is given by

Ul+ – Ul + Ul– =
h


[
Al + hAxxl

]
+ O

(
h), (.)

where

Ul = U(xl), Al = A(xl), Axxl = Axx(xl).

Whenever differential equation (.) is of the form u′′ = A(x, u), the evaluation of Axx is
difficult and formula (.) needs to modified suitably. Substituting hAxxl = Al+ – Al +
Al– + O(h) in (.), we obtain the modified version of (.) due to Numerov as follows:

Ul+ – Ul + Ul– =
h


[Al+ + Al– + Al] + O

(
h), (.)

where Al = A(xl, Ul). Note that (.) is consistent with the differential equation u′′ =
A(x, u).

Now, we use the above concept to derive the numerical method for quasi-linear equa-
tion (.). Since the coefficient A is not only the function of x and t, but also of the depen-
dent variable u, difference scheme (.) cannot be applied directly as the first and second
derivatives of u are unknown at the internal grid points. Thus, further discretizations of
ux and uxx are required in method (.) without affecting its order. For this purpose, we
need the following estimates:

Aj
xl

=
Aj

l+/ – Aj
l–/

h
+ O

(
h), (.a)

Aj
xxl

=
(Aj

l+/ – Aj
l + Aj

l–/)
h + O

(
h), (.b)

where Aj
l = A(xl, tj, Uj

l ), Aj
l±/ = A(xl±/, tj, Uj

l±/).
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Substituting the above approximations (.a) and (.b) into (.), the order of
method (.) is retained, and hence we obtain the required numerical method of O(k +
kh + h) based on spline in compression approximations (see [–]) for differential
equation (.).

Note that the initial and Dirichlet boundary conditions are given by (.) and (.), re-
spectively. Incorporating the initial and boundary conditions, we can write the spline in
compression method in a tridiagonal form. If differential equation (.) is linear, we use
the Gauss elimination (tridiagonal solver) method; in the nonlinear or quasilinear case,
we can use the Newton-Raphson iterative method (see [–]).

4 Method extended to a system of quasi-linear hyperbolic equations
Next, we consider the system of one-space dimensional hyperbolic equations of the form:

∂u(i)

∂t = A(i)(x, t)
∂u(i)

∂x

+ f (i)(x, t, u(), u(), . . . , u(M), u()
x , u()

x , . . . , u(M)
x , u()

t , u()
t , . . . , u(M)

t
)
,

 < x < , t > , i = ()M, (.)

subject to the initial and boundary conditions

u(i)(x, ) = u(i)
 (x), u(i)

t (x, ) = u(i)
 (x),  ≤ x ≤ , (.)

u(i)(, t) = g(i)
 (t), u(i)(, t) = g(i)

 (t), t ≥ , i = ()M, (.)

which is defined in a semi-infinite region � = {(x, t)| < x < , t > }.
For i = ()M, we need the following approximations:

U (i)j
l± 


=

U (i)j
l± + U (i)j

l


, (.)

U (i)j
tl

=
U (i)j+

l – U (i)j–
l

k
, (.)

U (i)j
tl±

=
U (i)j+

l± – U (i)j–
l±

k
, (.)

U (i)j
tl± 


=

U (i)j
tl±

+ U (i)j
tl


, (.)

U (i)j
ttl

=
U (i)j+

l – U (i)j
l + U (i)j–

l
k , (.)

U (i)j
ttl±

=
U (i)j+

l± – U (i)j
l± + U (i)j–

l±

k , (.)

U (i)j
ttl± 


=

U (i)j
ttl±

+ U (i)j
ttl


, (.)

U (i)j
xl

=
U (i)j

l+ – U (i)j
l–

h
, (.)

U (i)j
xl± 


=

±(U (i)j
l± – U (i)j

l )
h

, (.)
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U (i)j
xxl

=
U (i)j

l+ – U (i)j
l + U (i)j

l–
h . (.)

We define

F (i)j
l = f (i)(xl, tj, U ()j

l , U ()j
l , . . . , U (M)j

l , U ()j
xl

, U ()j
xl

, . . . ,

U (M)j
xl

, U ()j
tl

, U ()j
tl

, . . . , U (M)j
tl

)
, (.)

F (i)j
l± 


= f (i)(xl± 


, tj, U ()j

l± 


, U ()j
l± 


, . . . , U (M)j

l± 


, U ()j
xl± 


, U ()j

xl± 


, . . . ,

U (M)j
xl± 


, U ()j

tl± 


, U ()j
tl± 


, . . . , U (M)j

tl± 


)
, (.)

M(i)j
l =


A(i)j

l

[
U (i)j

ttl
– F (i)j

l
]
, (.)

M(i)j
l± 


=


A(i)j

l± 


(
U (i)

ttl± 


– F (i)j
l±/

)
, (.)

Û (i)j
l = U (i)j

l –



hU (i)j
xxl

, (.)

Û (i)j
xl

= U (i)j
xl

–
αh


(
M(i)j

l+ 


– M(i)j
l– 



)
, (.)

Û (i)j
tl = U (i)j

tl
–




(
U (i)j

tl+
– U (i)j

tl
+ U (i)j

tl–

)
, (.)

Û (i)j
xl+ 


=

U (i)j
l+ – U (i)j

l
h

+
h


(
αM(i)j

l – βM(i)j
l+ 



)
, (.)

Û (i)j
xl– 


=

U (i)j
l – U (i)j

l–
h

+
h


(
βM(i)j

l– 


– αM(i)j
l

)
, (.)

where the values of α and β are defined in Section .
Further, we define

F̂ (i)j
l± 


= f (i)(xl± 


, tj, U ()j

l± 


, U ()j
l± 


, . . . , U (M)j

l± 


, Û ()j
xl± 


, Û ()j

xl± 


, . . . ,

Û (M)j
xl± 


, U ()j

tl± 


, U ()j
tl± 


, . . . , U (M)j

tl± 


)
, (.)

F̂ (i)j
l = f (i)(xl, tj, Û ()j

l , Û ()j
l , . . . , Û (M)j

l , Û ()j
xl

, Û ()j
xl

, . . . ,

Û (M)j
xl

, Û ()j
tl , Û ()j

tl , . . . , Û (M)j
tl

)
. (.)

Then the new method based on spline in compression approximations for the system of
equations (.) may be written as

[
A(i)j

l +
h



(
A(i)j

xxl
– 

A(i)j
xl

A(i)j
l

A(i)j
xl

)](
U (i)j

l+ – U (i)j
l + U (i)j

l–
)

=
h



[(
 –

hA(i)j
xl

A(i)j
l

)
U (i)j

ttl+
+

(
 +

hA(i)j
xl

A(i)j
l

)
U (i)j

ttl–
+ U (i)j

ttl

]

–
h



[(
 –

hA(i)j
xl

A(i)j
l

)
F̂ (i)j

l+ 


+
(

 +
hA(i)j

xl

A(i)j
l

)
F̂ (i)j

l– 


+ F̂ (i)j
l

]
+ T̂ (i)j

l , (.)
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where T̂ (i)j
l = O(kh + kh + h). Using the technique discussed in the previous section,

we can obtain the spline in compression method of O(k + kh + h) for the solution of
the system of quasi-linear hyperbolic equations.

5 Application to a telegraphic equation and stability analysis
In this section we first discuss the background of ‘telegraphic equation’, application of the
proposed method to the telegraphic equation with forcing function say f and stability
analysis.

It would be difficult to imagine a world without communication systems. A plethora
of guided fixed line telephones as well as a multitude of unguided systems to serve cel-
lular phones are evident in our surrounding world. In order to optimize guided commu-
nication systems, it is necessary to determine or project power and signal losses in the
system since all systems have such losses. To determine these losses and eventually en-
sure a maximum output, it is necessary to formulate some kind of equation with which
to calculate these losses. We give mathematical derivation for the telegraphic equation in
terms of voltage and current for a section of a transmission line. The telegraphic equa-
tions are a pair of linear differential equations which describe the voltage and current on
an electrical transmission line with distance and time. The equations come from Oliver
Heaviside who developed the transmission line model in the s. The theory applies
to high-frequency transmission lines (such as telegraph wires and radio frequency con-
ductors), but it is also important for designing high-voltage energy transmission lines. In
order to be able to model the telegraphic equations, it is necessary to understand the ba-
sic principles of electricity. Ohm’s law describes the relationship between voltage, current
and resistance in an electrical circuit. Ohm’s law states that if one volt is applied to one
ohm resistance, the current that flows will be one ampere.

It states that:

V = I · R,

where:
V = voltage measured in volts,
I = current measured in ampere,
R = resistance measured in ohm.

Kirchhoff’s first law states that the current flowing into a junction, in a circuit or node,
must be equal to the current flowing out of the junction or node. The current flow is
described by

Itotal = I + I + I.

Kirchhoff’s second law states that, for any closed loop path around a circuit, the sum of
voltage gains and voltage drops equals zero. This implicates that no energy can be lost or
gained by the circuit, with result that the total voltage change must be zero. The voltage
in a closed circuit is described by

Vin = V + V + V.
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Figure 1 Telegraph wire with leakage.

The challenge is to model an infinite small piece of telegraph wire as an electric circuit
since it has a load and a source as indicated by Ohm’s and Kirchhoff’s laws. The char-
acteristics of a small piece of telegraph wire and that of a long transmission line are the
same, thus it is sufficient to model an infinite small piece of telegraph wire to represent a
transmission line over distance.

Assume that the cable is imperfectly insulated so that there are both capacitance and
current leakage to ground as shown in Figure . No two conductors can be perfectly insu-
lated due to the current that flows through them as well as the potential difference in the
conductors.

Let
x = distance from sending end of the cable,
e(x, t) = potential at any point on the cable at any time,
i(x, t) = current at any point on the cable at any time,
R = resistance of the cable,
L = inductance of the cable,
G = conductance to ground,
C = capacitance to ground.

Voltage drop across the resistor, according to Ohm’s law, is given by

V = I · R. (.)

According to Ohm’s law, voltage drop across the capacitor, where a capacitor gives an
integrator circuit, is given by

V =

C

∫
i dt, (.)

and voltage drop across the inductor, where an inductor gives a differentiator circuit, is
given by

V = L
di
dt

. (.)
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The potential at Q is equal to the potential at P, minus the drop in potential along the
element PQ. Therefore, if (.)-(.) are combined, it leads to the following equation:

e(x + dx, t) = e(x, t) – (R dx)i – L(dx)
∂i
∂t

.

Thus

e(x + dx, t) – e(x, t) = –(R dx)i – L(dx)
∂i
∂t

. (.)

Dividing the above equation by dx and letting dx → , we get

∂e
∂x

= –Ri – L
∂i
∂t

. (.)

Likewise, the current at Q is equal to the current at P minus the current loss through
leakage to ground. Using the equation for current through the capacitor,

i = C
de
dt

, (.)

the equation for current now becomes

i(x + dx, t) = i(x, t) – (G dx)i – (C dx)
∂e
∂t

.

Thus

i(x + dx, t) – i(x, t) = –(G dx)i – (C dx)
∂e
∂t

. (.)

Dividing the above equation by dx and letting dx → , we get

∂i
∂x

= –Gi – C
∂e
∂t

. (.)

If (.) is now differentiated with respect to x and (.) with respect to t, the respective
results are

∂e
∂x = –R

∂i
∂x

– L
∂i

∂x ∂t
(.)

and

∂i
∂t ∂x

= –G
∂e
∂t

– C
∂e
∂t . (.)

Using (.) in (.), we get

∂e
∂x = –R

∂i
∂x

– L
(

–G
∂e
∂t

– C
∂e
∂t

)
. (.)

Using (.) in (.), we get

∂e
∂x = LC

∂e
∂t + (RC + LG)

∂e
∂t

+ (GR)e. (.)
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Similarly, we can obtain

∂i
∂x = LC

∂i
∂t + (RC + LG)

∂i
∂t

+ (GR)i. (.)

Two equations (.) and (.) are known as the telegraphic equations.
Now we apply the proposed method to the following telegraphic equation with the forc-

ing functionf to study the stability of the proposed method

ϕtt + (α + β)ϕt + αβϕ = ϕxx + f (x, t),  < x < , t > , (.)

where α > , β ≥  are real parameters. For β = , equation (.) represents a damped
wave equation. The initial and boundary conditions of type (.) and (.) are prescribed.

We denote a = (α+β)k

 , b = αβk, λ = k
h and f j

l = f (xl, tj).
Applying method (.) to differential equation (.) and neglecting local truncation

error, we obtain a numerical approximation of O(k + h) as

δ
t ϕ

j
l +

√
a(μtδt)ϕ

j
l +

√a


(
δ

xμtδt
)
ϕ

j
l +

(
b


– λ

)
δ

xϕ
j
l + bϕ

j
l +

δ
xδ


t


ϕ

j
l

=
k


[
f j
l+/ + f j

l + f j
l–/

]
, (.)

where

δ
t ϕ

j
l = ϕ

j+
l – ϕ

j
l + ϕ

j–
l , δ

xϕ
j
l = ϕ

j
l+ – ϕ

j
l + ϕ

j
l–,

μxδxϕ
j
l = ϕ

j
l+ – ϕ

j
l–, μtδtϕ

j
l = ϕ

j+
l – ϕ

j–
l .

The above scheme is conditionally stable (see [, ]).
In order to obtain an unconditionally stable scheme, we may rewrite the above scheme

as

(
 + ηb


)
δ

t ϕ
j
l +

√
a(μtδt)ϕ

j
l +

√a


(
δ

xμtδt
)
ϕ

j
l +

(
b


– λ

)
δ

xϕ
j
l + bϕ

j
l

+
δ

xδ

t


ϕ

j
l – γ λδ

xδ

t ϕ

j
l =

k


[
f j
l+/ + f j

l + f j
l–/

]
, (.)

where ‘η’ and ‘γ ’ are free parameters to be determined.
The additional terms are of high order and do not affect the accuracy of the scheme.
The exact solution 


j
l satisfies

(
 + ηb


)
δ

t 

j
l +

√
a(μtδt)


j
l +

√a


(
δ

xμtδt
)



j
l +

(
b


– λ

)
δ

x

j
l + b


j
l

+
δ

xδ

t





j
l – γ λδ

xδ

t 


j
l =

k


[
f j
l+/ + f j

l + f j
l–/

]
+ Tj

l , (.)

where Tj
l = O(kh + h).
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Let ε
j
l = 


j
l –ϕ

j
l be the discretization error at the grid point (xl, tj). Then subtracting (.)

from (.), we get the error equation

(
 + ηb


)
δ

t ε
j
l +

√
a(μtδt)ε

j
l +

√a


(
δ

xμtδt
)
ε

j
l +

(
b


– λ

)
δ

xε
j
l + bε

j
l

+
δ

xδ

t


ε

j
l – γ λδ

xδ

t ε

j
l = Tj

l . (.)

For stability, we put ε
j
l = ξ jeiψ l in the homogeneous part of the error equation; we get the

characteristic equation

Aξ  + Bξ + C = , (.)

where

A =  + ηb
 +

√
a –

√a


sin

(
ψ



)
–




sin
(

ψ



)
+ γ λ sin

(
ψ



)
, (.a)

B = – – ηb
 + 

(
λ –

b



)
sin

(
ψ



)
+ b +




sin
(

ψ



)

– γ λ sin
(

ψ



)
, (.b)

C =  + ηb
 –

√
a +

√a


sin

(
ψ



)
–




sin
(

ψ



)
+ γ λ sin

(
ψ



)
. (.c)

Using the transformation ξ = +z
–z , the characteristic equation (.) reduces to

(A – B + C)z + (A – C)z + (A + B + C) = . (.)

According to the Routh-Hurwitz criterion, the necessary and sufficient conditions for |ξ | <
 are A + B + C > , A – C > , A – B + C > .

Thus for stability we have the conditions

A + B + C = b cos
(

ψ



)
+ λ sin

(
ψ



)
+

b


sin

(
ψ



)
> ,

A – C = 
√

a

[
cos

(
ψ



)
+




sin
(

ψ



)]
> ,

A – B + C =  + ηb
 – b +

b


sin

(
ψ



)
+ 

[
(γ – )λ –




]
sin

(
ψ



)
> .

The first two conditions are satisfied for all choices of variable angle ψ . Multiplying the
third condition by η, we get

(η – ) + (ηb – ) +
ηb


sin

(
ψ



)

+ η

[
(γ – )λ –




]
sin

(
ψ



)
> . (.)
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Thus the scheme is stable if η ≥ 
 , γ ≥ +λ

λ , α > , β ≥  for all ψ except ψ =  and
π (when b = ). We treat this case separately.

For ψ =  or π (when b = ), we have the characteristic equation

( +
√

a)ξ  – ξ + ( –
√

a) = , (.)

whose roots are ξ, = , –√a
+√a

. In this case also |ξ | ≤ .

Hence, for α > , β ≥ , η ≥ 
 , γ ≥ +λ

λ , scheme (.) is stable for all choices of
h >  and k > .

Now we consider the fourth-order hyperbolic equation

(
∂

∂t –
∂

∂x

)

u = f (x, t),  < x < , t > . (.)

The initial values of u, ut , utt , uttt at t =  are known and the boundary values of u, uxx are
known at x =  and x = .

Equation (.) in a coupled form can be written as

(
∂

∂t –
∂

∂x

)
u = v,  < x < , t > , (.a)

(
∂

∂t –
∂

∂x

)
v = f (x, t),  < x < , t > . (.b)

Since the grid lines are parallel to coordinate axis, the successive tangential derivatives of
u and its normal derivatives are known on the boundary, that is, the values of ut , utt , . . .
are known at x =  and x = , and the values of uxx, uxxt , . . . are known at t = . Hence the
initial values of u, ut , v, vt are known at t = , and the values of u, v are known at x =  and
x = . Thus, applying scheme (.) to the system of equations (.a) and (.b), we get
the following two equations:

Uj
l+ – Uj

l + Uj
l– =

h


[
Uj

ttl+
+ Uj

ttl
+ Uj

ttl–

]

–
h


[
V j

l+/ + V̂ j
l + V j

l–/
]

+ T̂ j
l, (.a)

V j
l+ – V j

l + V j
l– =

h


[
V j

ttl+
+ V j

ttl
+ V j

ttl–

]

–
h


[
f j
l+/ + f j

l + f j
l–/

]
+ T̂ j

l, (.b)

where Uj
l and V j

l are the exact solutions of (.a) and (.b), respectively, and T̂ j
l and

T̂ j
l are of O(kh + kh + h).
Multiplying throughout by p = (k/h), we may write the above system of equations in

an operator form

(
 + δ

x
)
δ

t Uj
l = pδ

x Uj
l + k( + δ

x
)
V j

l + pT̂ j
l, (.a)

(
 + δ

x
)
δ

t V j
l = pδ

x V j
l + k(f j

l+/ + f j
l + f j

l–/
)

+ pT̂ j
l. (.b)
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Let uj
l and vj

l be the approximate solutions of (.a) and (.b), respectively, which satisfy

(
 + δ

x
)
δ

t uj
l = pδ

x uj
l + k( + δ

x
)
vj

l, (.a)
(
 + δ

x
)
δ

t vj
l = pδ

x vj
l + k(f j

l+/ + f j
l + f j

l–/
)
. (.b)

Let (εu)j
l = Uj

l – uj
l and (εv)j

l = V j
l – vj

l be the errors at the grid point (xl, tj).
Subtracting (.a) from (.a) and (.b) from (.b), we get the following two error

equations:

(
 + δ

x
)
δ

t (εu)j
l = pδ

x (εu)j
l + k( + δ

x
)
(εv)j

l + pT̂ j
l, (.a)

(
 + δ

x
)
δ

t (εv)j
l = pδ

x (εv)j
l + pT̂ j

l. (.b)

Substituting (εv)j
l = eiψjeiθl into the homogeneous part of error equation (.b), we get

sin
(

ψ



)
=

p sin( θ
 )

 – sin( θ
 )

. (.)

Since  ≤ sin( ψ
 ) ≤ , from (.), we have

p sin
(

θ



)
≤  – sin

(
θ



)
. (.)

The above inequality holds if

max

[
p sin

(
θ



)]
≤ min

[
 – sin

(
θ



)]
, (.)

that is, if

 < p ≤
√




≈ .. (.)

Hence scheme (.b) is stable for  < p ≤ ..
Numerically, first we compute (.b) using the value  < p ≤ . and then (.a).

Assume that the value of (εv)j
l is known in (.a). Then substituting (εu)j

l = eiφjeiβl into
the homogeneous part of (.a), we get

sin
(

φ



)
=

p sin( β
 )

 – sin( β
 )

. (.)

Proceeding as above, it is easy to verify that scheme (.a) is also stable for  < p ≤ ..

6 Numerical results
In this section, we have computed some benchmark problems using the proposed scheme
and compared our results obtained by the existing methods for the solution of D quasi-
linear wave equation. The exact solutions are provided in each case. The right-hand side
homogeneous functions, initial and boundary conditions may be obtained by using the
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exact solution as a test procedure. The linear difference equations have been solved us-
ing tridiagonal solver, whereas nonlinear difference equations have been solved using the
Newton-Raphson method. While using the Newton-Raphson method, the iterations were
stopped when absolute error tolerance ≤– had been achieved. All computations were
carried out using MATLAB codes.

The proposed scheme is a three-level scheme. The value ofuatt =  is known from the
initial condition. To begin the computation, we need the numerical value of u of required
accuracy at t = k, so we discuss an explicit method of O(k) for calculating the value of u at
first time level in order to solve the differential equation (.) using the proposed scheme
(.) which is applicable to problems both in Cartesian and polar coordinates.

Since the values of u and ut are known explicitly at t = , so the values of successive
tangential derivatives u, ux, uxx, . . . , utx, utxx, . . . etc. are known at t = . An approximation
for u at t = k may be written as

u
l = u

l + k(ut)
l +

k


(utt)

l + O
(
k). (.)

From equation (.), we have

(utt)
l =

[
A(x, t, u)uxx + f (x, t, u, ux, ut)

]
l . (.)

Then, using the initial values and their successive tangential derivative values from (.),
we obtain the value of utt at t = , and then subsequently from (.), we can compute the
value of u at first time level, i.e., at t = k.

The relation between the exact solutionuexactand the approximate solution u(h) is given
by the following equation:

uexact = u(h) + Mhp + · · ·higher order terms,  < x, y < , (.)

where h is the measure of the mesh discretization, M is a constant and p is the order (rate)
of convergence. If the meshes are to be refined sufficiently, the higher order terms can be
neglected. Then the maximum absolute errors Eh can be approximated as

Eh = Max
∣∣uexact – u(h)

∣∣ ∼= Mhp. (.)

Taking the logarithm of both sides of (.), we obtain

log(Eh) = log(M) + p log(h). (.)

For two different refined mesh spacing h and h, we have the following two relations:

log(Eh ) = log(M) + p log(h), (.a)

log(Eh ) = log(M) + p log(h), (.b)

where Eh and Eh are maximum absolute errors for two uniform mesh sizes h and h,
respectively. For computation of order of convergence, we have considered h = / and
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Table 1 Order of convergence

Problem no. Parameters and time Order

6.1 α0 = 12, β0 = 8, η = γ = 1, t = 1, σ = 3.2 3.9834
α0 = β0 = π , η = 0.75, γ = 1.5, t = 1, σ = 3.2 4.0000
α0 = 3π , β0 = π , η = 2.5, γ = 0.25, t = 1, σ = 3.2 3.9932

6.2 σ = 0.8, ε = 0.01, t = 1 4.0017
σ = 0.8, ε = 0.01, t = 2 4.0017
σ = 0.8, ε = 0.001, t = 1 4.0017
σ = 0.8, ε = 0.001, t = 2 4.0016

6.3 γ = 0.5, t = 1, σ = 3.2 3.9967
γ = 2, t = 1, σ = 3.2 3.9944

6.4 γ = 2, t = 1, σ = 3.2 4.0429
γ = 20, t = 1, σ = 3.2 3.9492

6.5 α = 0.5, t = 1, σ = 1.6 3.9399
α = 0.05, t = 1, σ = 1.6 3.9987

Table 2 Problem 6.1: The maximum absolute errors

h Proposed method (5.16) Method discussed in [33]

α0 = 12,
β0 = 8,
η = γ = 1

α0 = β0 = π ,
η = 0.75,
γ = 1.5

α0 = 3π ,
β0 = π ,
η = 2.5,
γ = 0.25

α0 = 12,
β0 = 8,
η = γ = 1

α0 = β0 = π ,
η = 0.75,
γ = 1.5

α0 = 3π ,
β0 = π ,
η = 2.5,
γ = 0.25

1/16 7.4557(–07) 2.0167(–06) 1.6177(–06) 5.6408(–06) 4.4195(–06) 1.1784(–06)
1/32 5.7283(–08) 1.2715(–07) 1.0973(–07) 6.6551(–07) 5.4996(–07) 1.5953(–07)
1/64 3.6216(–09) 7.9466(–09) 6.8903(–09) 7.2547(–08) 6.4606(–08) 2.0470(–08)

h = / for all five problems, for a fixed value of σ = k/(h), and results are reported
in Table . Assume |E(h)| to be the maximum absolute error for u at a certain time level
for a fixed value of σ = k/(h), then the error behaves like |E(h)| ∼= |Mhp|, implying that
log |E(h)| ∼= log(M) + p log |h|. Thus, on log-log scale the error behaves linearly with a slope
that is equal to p, the order of convergence.

Problem . (Telegraphic equation)

utt + (α + β)ut + αβu = uxx + f (x, t),  < x < , t > . (.)

The exact solution is given by u = e–t sinh x. The maximum absolute errors (MAE) are
tabulated in Table  at t =  for different values of α, β, η, γ for a fixed value of σ = ..
Figures (a) and (b) represent the exact vs numerical solution at t = , σ = ., α = ,
β = , η = , γ = , h = /, and log-log error plot at t = , α = π , β = π , η = ., γ = .,
σ = ., respectively.

Problem . (Van-der-Pol type nonlinear wave equation)

utt = uxx + ε
(
u – 

)
ut + f (x, t),  < x < , t > . (.)

The exact solution is given by u = e–t sin(πx). The MAE at t =  and  are tabulated in
Table  for a fixed value of σ = . and ε = ., .. Figures (a) and (b) represent
the exact vs numerical solution at t = , ε = ., h = / and log-log error plot at t = ,
ε = ., respectively.
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(a) Numerical vs exact solution at t =  (b) log-log error plot of Problem .

Figure 2 Plots of Problem 6.1.

Table 3 Problem 6.2: The maximum absolute errors

h Proposed method (3.12) Method discussed in [28]

ε = 0.01 ε = 0.001 ε = 0.01 ε = 0.001

t = 1 t = 2 t = 1 t = 2 t = 1 t = 2 t = 1 t = 2

1/8 0.4935(–4) 0.3139(–4) 0.4843(–4) 0.3063(–4) 0.1381(–3) 0.8668(–4) 0.1385(–3) 0.8748(–4)
1/16 0.3068(–5) 0.1951(–5) 0.3011(–5) 0.1904(–5) 0.8596(–5) 0.5395(–5) 0.8620(–5) 0.5445(–5)
1/32 0.1915(–6) 0.1218(–6) 0.1879(–6) 0.1189(–6) 0.5367(–6) 0.3368(–6) 0.5382(–6) 0.3399(–6)

(a) Numerical vs exact solution at t =  (b) log-log error plot of Problem .

Figure 3 Plots of Problem 6.2.

Problem . (Nonlinear wave equation)

utt = uxx + γ u(ux + ut) + f (x, t),  < x < , t > . (.)

The exact solution is given by u = e–t cosh x. The MAE are tabulated in Table  at t = 
for γ = . and  for a fixed value of σ = .. Figures (a) and (b) represent the exact
vs numerical solution at t = , γ = , h = / and log-log error plot at t = , γ = .,
respectively.
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Table 4 Problem 6.3: The maximum absolute errors

h Proposed method (3.12) Method discussed in [35]

γ = 0.5 γ = 2 γ = 0.5 γ = 2

1/8 5.0419(–04) 9.3631(–04) 2.1822(–03) 1.5863(–03)
1/16 3.1579(–05) 5.8584(–05) 1.6354(–04) 1.1132(–04)
1/32 1.9734(–06) 3.6602(–06) 1.1177(–05) 7.6658(–06)
1/64 1.2362(–07) 2.2966(–07) 8.6172(–07) 5.8284(–07)

(a) Numerical vs exact solution at t =  (b) log-log error plot of Problem .

Figure 4 Plots of Problem 6.3.

Table 5 Problem 6.4: The maximum absolute errors

h Proposed method (3.12) Method discussed in [35]

γ = 2 γ = 20 γ = 2 γ = 20

1/8 2.2955(–04) 1.8526(–03) 7.4446(–04) 5.2318(–03)
1/16 1.3364(–05) 1.0955(–04) 5.7172(–05) 3.3478(–04)
1/32 8.2180(–07) 6.9282(–06) 3.6105(–06) 2.1633(–05)
1/64 4.9859(–08) 4.4854(–07) 2.3129(–07) 1.4261(–06)

Problem . (Quasi-linear equation)

utt =
(
 + u)uxx + γ uux + f (x, t),  < x < , t > . (.)

The exact solution is given by u = e–t sin(πx). The MAE are tabulated in Table  at t = 
for γ =  and  for a fixed value of σ = .. Figures (a) and (b) represent the exact vs
numerical solution at t = , γ = , h = / and log-log error plot at t = , γ = , respec-
tively.

Problem . (Fourth-order nonlinear hyperbolic equation)

(
∂

∂t –
∂

∂x

)

u = αuux + f (x, t),  < x < , t > . (.)

The initial values (at t = ) of u, ut , utt , uttt are known and the values of u, uxx are known
at x =  and x = .
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(a) Numerical vs exact solution at t =  (b) log-log error plot of Problem .

Figure 5 Plots of Problem 6.4.

Table 6 Problem 6.5: The maximum absolute errors

h Proposed method (4.25) Method discussed in [28]

α = 0.5 α = 0.05 α = 0.5 α = 0.05

1/8 2.7548(–04) 2.7548(–04) 9.2520(–04) 9.2520(–04)
1/16 1.7425(–05) 1.7424(–05) 6.1778(–05) 6.1776(–05)
1/32 1.0947(–06) 1.0924(–06) 3.9018(–06) 3.8992(–06)
1/64 7.1330(–08) 6.8337(–08) 2.5636(–07) 2.4124(–07)

In order to solve (.), we put

(
∂

∂t –
∂

∂x

)
u = v. (.)

Hence (.) reduces to a system of coupled nonlinear equations of the form

(
∂

∂t –
∂

∂x

)
u = v,  < x < , t > , (.)

(
∂

∂t –
∂

∂x

)
v = αuux + f (x, t),  < x < , t > . (.)

Since the grid lines are parallel to coordinate axis, successive tangential derivatives of u
and its normal derivatives are known on the boundary. Hence the initial values of u, ut , v,
vt are known at t = , and the values of u, v are known at x =  and x = . Thus applying
scheme (.), we can solve the system of equations (.) and (.).

The exact solution is u = e–t sin(πx). The maximum absolute errors for u are tabulated
in Table  at t =  for α = . and . for a fixed value of σ = .. Figures (a) and (b)
represent the exact vs numerical solution at t = , α = ., h = / and log-log error plot
at t = , α = ., respectively.

7 Concluding remarks
In this paper, using two half-step points and a central point, we have derived a new stable
half-step spline in compression method of O(k + h) accuracy for the solution of quasi-
linear hyperbolic equation (.). Our method has been derived directly from the consis-
tency condition which is fourth-order accurate, and we have used properties of spline in
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(a) Numerical vs exact solution at t =  (b) log-log error plot of Problem .

Figure 6 Plots of Problem 6.5.

compression function in derivation of the method. For a fixed parameter σ = k/h, the
proposed method behaves like a fourth-order method. The accuracy and efficiency of the
proposed method are exhibited from the numerical computations. The proposed method
for scalar equation has been extended in a vector form to solve the system of quasi-linear
hyperbolic pdes. For the telegraphic equation, the method is shown to be uncondition-
ally stable, and the stability condition for solving a fourth-order linear hyperbolic pde has
also been established. The method is directly applicable to quasilinear hyperbolic pdes
irrespective of the coordinate system, which brings an edge over other existing methods.
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