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Abstract
In this paper, we propose a fractional order epidemic model for obesity contagion.
The population size is assumed to be nonconstant, which is more realistic. The model
considers vertical transmission of obesity and also obesity-related death rate. We give
local stability analysis of the model. Finally, some numerical examples are presented.
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1 Introduction
Overweight and obesity are defined as abnormal and excessive fat accumulation that
presents a risk to health []. Obesity is measured by using a number called body mass
index (BMI) which is calculated by using the formula

BMI =
W
H ,

where W is the weight of a person in kilograms and H is the height of a person in meters. If
 ≤ BMI < , then the person is said to be overweight, and if BMI ≥ , then the person
is said to be obese.

Obesity is one of the major risk factors for many chronic, fatal diseases including cancer,
diabetes mellitus and cardiovascular disorders. According to the World Health Organiza-
tion, worldwide obesity has doubled since , and in , % of adults aged  and
over were obese [].

Although there are some other reasons (e.g. genetic reasons, endocrine disorders), the
main reason for obesity is excessive food intake and lack of physical activity. These rea-
sons are closely related to the life-styles of the individuals within a population. Therefore,
obesity can be considered as socially contagious. In [] a detailed analysis of the obesity
epidemic in the U.S. is given. Santonja et al. [] and Ejima et al. [] also considered obesity
as an epidemic disease and gave mathematical models to explain the spread of obesity. In
both of these models integer order differential equations are used and the total population
size is assumed to be constant.

The epidemic models where the total population is assumed to be constant are classical
models given for short-term epidemics. When the epidemic disease arises and vanishes in
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a short time like influenza, this kind of models give realistic results. But in the case of long-
term effective diseases like hepatitis, rabies, rubella and so on, limiting the population to
be constant would be a very strong assumption that affects the realism of the model. In
this paper, we propose a new mathematical model in which we assume that the population
is nonconstant. What is more, with a particular choice of the natural death rate function
in the model, it gives a classical logistic growth for the population.

We also consider the memory dependence on the obesity contagion. The memory ef-
fect in the spread of obesity is discussed in detail in []. In recent years, it has frequently
been observed in modeling memory-dependent processes of physical and life sciences that
models based on fractional order derivatives provide better agreement between solutions
and real data [–]. Therefore, it is reasonable to use fractional order models to under-
stand the spread of obesity in a population. Also note that the fractional order model we
give is a generalization of an integer order model, and if the order of the fractional model
is one, it reduces to its integer order counterpart.

In this paper, we consider continuous fractional differential equation systems to under-
stand the spread of obesity in a population. Discrete fractional systems are also being used
to model some real life problems, and their stability results are given in recent years [,
]. Stability of the proposed model in this paper is examined using the method given by
Matignon []. Some other stability results can be found in [–].

This paper is organized as follows. Section  is devoted to the model construction. In this
section we propose a new fractional order epidemic model including disease-dependent
death rate within a nonconstant population size. We also consider the tendency to obesity
at birth as a result of bad nutritional habits during pregnancy, by means of vertical trans-
mission. In Section , a detailed local stability analysis for the model is given. Finally, in
Section , we give some numerical examples to illustrate our results.

2 Mathematical model
We first give some basic definitions of fractional calculus.

Definition  The fractional integral of order μ >  of a function f : R+ → R is defined by

Iμf (t) =


�(μ)

∫ t


(t – τ )μ–f (τ ) dτ .

Here and elsewhere � denotes the gamma function.

Fractional derivative has several different definitions []. In this paper we use the Ca-
puto definition due to its advantages in applied problems. The Caputo definition of frac-
tional derivative allows us to use initial conditions of the classical form, avoiding solvability
problems.

Definition  Caputo fractional derivative of order μ >  of the function f : R+ → R is
defined by (if exists)

Dμf (t) = In–μDnf (t),

where n is the integer part of μ and D = d
dt .
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Figure 1 The schematic diagram of the model.

In our model, we assume that the total population N(t) is partitioned into three classes
W(t), W(t), W(t) denoting normal weight, overweight and obese individuals at time t,
respectively. For the model we study in this paper, we consider both horizontal and ver-
tical transmission of the disease. We treat excess weight gain as an epidemic disease that
spreads via social contact. We also take into account the fact that overweight babies may
be born because of bad nutritional habits during the pregnancy periods. The parameters
we use in our model are as follows:

p: probability of having an overweight baby;
b: natural birth rate;
d(·): natural death rate function (dependent on the total population);
α: transmission rate of the disease by social contact;
β : rate at which an overweight individual moves to the obese class;
k, r: treatment rates for overweight and obese individual, respectively;
θ : obesity-related (from the diseases that are caused by obesity) death rate.

We assume that b,α,β , k, r and θ are all nonnegative constants. Let the natural death rate
function be a continuous and nondecreasing function of N . Also assume that there exists
a positive constant M such that d(M) = b.

The schematic diagram of our model can be seen in Figure . The system of fractional
order nonlinear ordinary differential equations for the proposed model is given by:

DμW = ( – p)bN + kW –
αWW

N
– d(N)W,

DμE = pbN +
αWW

N
+ rW – W

(
β + k + d(N)

)
, ()

DμI = βW –
(
r + d(N) + θ

)
W,

where μ ∈ (, ] and N = W + W + W, (W, W, W) ∈ R
+. The fractional order model

Equation () is in fact obtained by modifying the classical integer order model. Equation ()
includes a free parameter μ that may help the theoretical formulation of the solution fit
better with the real data [–]. To the best of our knowledge, this model (also the integer
order counterpart) is a new model for the obesity contagion.

Adding up the equations given in (), we have

DμN =
(
b – d(N)

)
N – θW. ()

We should note that for the disease-free case (i.e. W = ), if d is a linear function, then
the total population has logistic growth.
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Theorem  There is a unique solution for the initial value problem given by () and the
initial conditions

W() = W, W() = W, W() = W, ()

and the solution remains in R
+.

Proof It is easy to see the existence and uniqueness of the solution of the initial value
problem ()-() in (,∞). We will show that the domain R

+ remains positively invariant.
Since

DμW|W= = ( – p)b(W + W) + kW ≥ ,

DμW|W= = pb(W + W) +
αWW

W + W
+ rW ≥ ,

DμW|W= = βW ≥ ,

on each hyperplane bounding the nonnegative orthant, the vector field points into R
+. �

3 Equilibrium points and stability
For simplicity in calculations, we will consider the system

DμW = ( – p)bN + k(N – W – W) –
αWW

N
– d(N)W,

DμW = β(N – W – W) –
(
r + d(N) + θ

)
W, ()

DμN =
(
b – d(N)

)
N – θW

with the initial conditions

W() = W, W() = W, N() = N,

where  < μ < . The disease-free equilibrium (DFE) F = (M, , M) of system () exists
only if p = . The basic reproductive number of the given system is

R =
k + α – θ

(k + b)(β + r + b + θ )
. ()

Theorem  The DFE of system () (if exists) is asymptotically stable if R < .

Proof The characteristic equation of system () is

f (λ) =
(
d′(M)M + λ

)(
Aλ + Bλ + C

)
= , ()

where

A = –,

B = –(k + b + β + r + θ ),
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C = β(α + k – θ ) – (k + b)(β + r + b + θ ).

The DFE of system () is asymptotically stable if all of the roots of the characteristic equa-
tion () λi, i = , , , satisfy the following condition [, ]:

|Argλi| > μ
π


. ()

From (),

λ = –d′(M)M < 

and

λ, =
–B ± √

B – AC
A

. ()

It is easy to show that if k+α–θ
(k+b)(β+r+b+θ ) < , then the eigenvalues given with () satisfy condi-

tion (). �

We now discuss the existence and stability of positive equilibrium. Positive equilibrium
of system () is F = (W ∗

 , W ∗
 , N∗), where

W ∗
 = N∗

[
 –

(β + r + d(N∗) + θ )(b – d(N∗))
βθ

]
,

W ∗
 =

(b – d(N∗))N∗

θ

and d(N∗) is the positive root of the polynomial

Ãd(N∗) + B̃d(N∗) + C̃ d
(
N∗) + D̃ ()

with

Ã = α – θ ,

B̃ = θ (b – θ – β – k – r) + α(β + r + θ – b),

C̃ = θ(b – β – k) + αb
(
b – (β + r + θ )

)
+ θ

(
β(α + b) + k(b – r) + br

)
,

D̃ = bθ(k + β – pβ) + αb(β + r + θ ) + θb(kr – αβ).

We shall note that if Ã × D̃ is negative, then () has at least one positive root. Also if b > θ

then for

 < d
(
N∗) < A and d

(
N∗) > A,

there exists positive W ∗
 , where

A, =
–(X + X) ± √

(X + X) – (X + X)


,
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X = r + θ + β ,

X = –b,

X = θβ .

The Jacobian matrix J(F) evaluated at the endemic equilibrium is given by

J(F) =

⎛
⎜⎝

–k – αB
θ

– d(N∗) –k –  + BB
βθ

( – p)b + k + ( αB
θ

– N∗)( – BB
βθ

)
–β –B β – BB

θ

 –θ B – B

⎞
⎟⎠ ,

where

B = b – d
(
N∗),

B = β + r + d
(
N∗) + θ ,

B = N∗d′(N∗).

Then the characteristic equation of the linearized system is in the form

aλ
 + aλ

 + aλ + a =  ()

with

a = –,

a = –
((

α

θ
– 

)
B + k + d

(
N∗) + B + B

)
,

a =
(

B +
α

θ
B

)
(B – B) +

(
d
(
N∗) + k

)
(B – B – B)

+ BB + β( + k – θ ) +
BB

θ
( + α),

a = (Bθ + Bβ)
(

 + k –
BB

βθ

)
+

αB

θ
(BB – BB + BB)

+ θβ

[
B – N∗ – pb –

B

θ

(
αBB

βθ
– α –

BN∗

β

)]
.

()

Corollary  Let a be as given in (). If a > , then the positive equilibrium point of system
() is unstable.

Proof Using Descartes’ rule of signs, it is clear that if a >  then the characteristic equa-
tion () has at least one positive root. So, the positive equilibrium F of system () is
unstable. �

4 Numerical results
In this section we consider four sets of parameters to discuss different cases. We use the
solution technique given in [] to evaluate the numerical solutions of the system for μ

values , . and .. Two main theorems about this technique are given below.
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Theorem  ([]) Let ‖ · ‖ denote any convenient norm on Rn. Assume that f ∈ C[R, Rn],
where R = [(t, X) :  ≤ t ≤ a and ‖X – X‖ ≤ b], f = (f, f, . . . , fn)T , X = (x, x, . . . , xn)T , and
let ‖f (t, X)‖ ≤ S on R. Then there exists at least one solution for the system of FDEs given
by

DαX(t) = f
(
t, X(t)

)
()

with the initial conditions

X() = X ()

on  ≤ t ≤ β , where β = min(a, [ b
S �(α + )] 

α ),  < α < .

Theorem  ([]) Consider the initial value problem given by () and () of order α,
 < α < . Let

g
(
v, X∗(v)

)
= f

(
t –

(
tα – v�(α + )

)/α , X
(
t –

(
tα – v�(α + )

)/α))

and assume that the conditions of Theorem  hold. Then a solution of () and () can be
given by

X(t) = X∗
(
tα/�(α + )

)
,

where X∗(v) is a solution of the system of integer order differential equations

d(X∗(v))
dv

= g
(
v, X∗(v)

)

with the initial conditions

X∗() = X.

We use the corresponding parameter values given in Table  for each case. Population
data for Turkey are used in numerical simulations. Some of the values given in Table 
are taken from real data. A linear, population-dependent death rate function is evaluated

Table 1 Parameter values for Case 1-4

Case 1 Case 2 Case 3 Case 4

p = 0.2 0.2 0.2 0.0
[22] b = 0.017 0.017 0.017 0.017
M = 243.926 243.926 243.926 243.926
α = 0.3 0.3 0.3 0.01
β = 0.2 0.2 0.2 0.2
k = 0.005 0.05 0.1 0.008
r = 0.002 0.02 0.2 0.2
[23] θ = 0.009 0.009 0.009 0.009
N(0) = 76 76 76 76
[24] S(0) = 26.676 26.676 26.676 26.676
[24] I(0) = 22.8 22.8 22.8 22.8



Demirci Advances in Difference Equations  (2017) 2017:79 Page 8 of 13

using the data in [] as d(N) = (. + .N)–. M value is calculated using
the function d and the value b.

This linear death rate function lets the total population N have logistic growth. For the
exact solution of a fractional logistic equation, [] used the Carleman embedding tech-
nique, but there is a controversy between the results of West and Area et al. []. However,
in this paper we use a totally different technique [] to find the solution of the system in-
cluding the logistic equation.

Case : System () has a positive fixed point F∗
, = (., ., .). The roots

of the characteristic polynomial of the given system at F∗
, are

λ = –.,

λ = –. + .i,

λ = –. – .i.

For all μ ∈ (, ], F∗
, is asymptotically stable.

Case : In Case , we use the same parameter values with the previous case except for
k and r which are the control parameters. These parameters can be adjusted according
to the disease prevention and control strategies. Using the new k and r parameter values,
the positive fixed point of system () can be evaluated as F∗

, = (., ., .).
As k and r increase, I∗ decreases. The roots of the characteristic polynomial of the given
system at F∗

, are

λ = –.,

λ = –. – .i,

λ = –. – .i.

So, even for this case, the positive equilibrium point is asymptotically stable for all μ ∈
(, ].

Case : In this case, we use greater k and r values compared to the previous cases. The
positive fixed point in this case is F∗

, = (., ., .). The roots of the char-
acteristic polynomial at F∗

, are

λ = –.,

λ = . + .i,

λ = . – .i.

For μ = , F∗
, is unstable. Using (), it can be shown that for μ value less than .,

F∗
, is asymptotically stable.
Case : We now consider the case where vertical transmission of the disease does not

exist, i.e. p = . The value of p is also related to the disease control and prevention strate-
gies. For this case, the DFE exists. For F∗

 = (., , .), the basic reproductive
number R = ., which states that F∗

 is asymptotically stable for all μ ∈ (, ].
The graphics of the solutions for each case can be seen in Figures -.
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Figure 2 Normal-weight class for Case 1.

Figure 3 Obese class for Case 1.

Figure 4 Total population for Case 1.

5 Conclusions
In this paper, a fractional order mathematical model of obesity epidemic, including vertical
transmission within a nonconstant population size, is proposed. The order of the proposed
system is a free parameter which can be used to have a better fit between the real data and a
theoretical formulation of the solutions. We should also note that fractional order models
give more realistic predictions in modeling procedures with short memory effect [, ].
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Figure 5 Normal-weight class for Case 2.

Figure 6 Obese class for Case 2.

Figure 7 Total population for Case 2.

Since epidemic dynamics of obesity can be considered as a memory-dependent process,
fractional order systems may be good tools for modeling the contagion of obesity. Obesity
is one of the major health problems all over the world. Because of the economic impact of
obesity-related diseases, the dynamics of obesity epidemic is important for countries. In
the United States, nationwide excess medical costs for obesity is as much as $ billion
annually for adults and $. billion annually for children []. Due to these economic
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Figure 8 Normal-weight class for Case 3.

Figure 9 Obese class for Case 3.

Figure 10 Total population for Case 3.

reasons, disease control is very important for countries. The parameters k and r in our
model are control parameters for disease control. In the final part of the paper, we simu-
lated the system for different parameter values given in Table . We should point out that
by adjusting the control parameters r and k, disease can be kept under control.
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Figure 11 Normal-weight class for Case 4.

Figure 12 Obese class for Case 4.

Figure 13 Total population for Case 4.
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