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Abstract
In this paper, we study anti-periodic boundary value problems for systems of
generalized Sturm-Liouville and Langevin fractional differential equations. Existence
and uniqueness results are proved via fixed point theorems. Examples illustrating the
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Fractional differential equations have attracted the attention of many researchers working
in a variety of disciplines due to the development and applications of these equations in

http://dx.doi.org/10.1186/s13662-017-1114-5
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-017-1114-5&domain=pdf
http://orcid.org/0000-0001-8185-3539
mailto:jessada.t@sci.kmutnb.ac.th


Muensawat et al. Advances in Difference Equations  (2017) 2017:63 Page 2 of 15

This paper investigates the existence of solutions for the following system of fractional
differential equations:

�
�

�
D�  ([p(t)D�  + r(t)]x(t)) = f (t , x(t), y(t)),  < t < T ,

D�  ([q(t)D�  + s(t)]y(t)) = g(t , x(t), y(t)),  < t < T ,
(.)

subject to anti-periodic boundary conditions
�
�

�
x() = –x(T ), D� x() = –D� x(T ),

y() = –y(T ), D� y() = –D� y(T ),
(.)

where D� is the Caputo fractional derivative of orders � � { � , � , � , � } with  <
� , � , � , �  < , f , g � C([, T ] × R

,R), p, q � C([, T ],R \ { }) with |p(t)| � K, |q(t)| �
K, K, K >  and r , s� C([, T ],R).

Note that system (.) is a generalization of Sturm-Liouville and Langevin fractional
differential systems. If r(t), s(t) �  for all t � [, T ], then (.) is reduced to

�
�

�
D�  (p(t)D� x(t)) = f (t , x(t), y(t)),  < t < T ,

D�  (q(t)D� y(t)) = g(t , x(t), y(t)),  < t < T ,
(.)

which are Sturm-Liouville fractional differential equations. If p(t) = q(t) �  and r(t) � � ,
s(t) = �  for all t � [, T ], then system (.) is reduced to

�
�

�
D�  [D�  + � ]x(t) = f (t , x(t), y(t)),  < t < T ,

D�  [D�  + � ]y(t) = g(t , x(t), y(t)),  < t < T ,
(.)

which are Langevin fractional differential equations.
The paper is organized as follows. In Section , we recall definitions from fractional

calculus and present an auxiliary lemma. The main results for the coupled system of gen-
eralized Sturm-Liouville and Langevin fractional differential equations with anti-periodic
boundary conditions are discussed in Section . We give an existence and uniqueness re-
sult with the help of Banach’s contraction mapping principle and an existence result via
the Leray-Schauder alternative. Our results are well illustrated with the aid of examples
presented in Section .

2 Preliminaries
In this section, we introduce some notations and definitions of fractional calculus (see [])
and present preliminary results needed in our proofs later.

Definition . For an (n – )-times absolutely continuous function f : [, � ) � R, the
Caputo derivative of fractional order � >  is defined as

D� f (t) =


� (n – � )

� t


(t – s)n–� –f (n)(s) ds, n –  < � < n,

where n = [� ] + , [� ] denotes the integer part of the positive real number � , and � (·) is
the gamma function.



Muensawat et al. Advances in Difference Equations  (2017) 2017:63 Page 3 of 15

Definition . The Riemann-Liouville fractional integral of order � of a function f :
[, � ) � R is defined as

I � f (t) =


� (� )

� t



f (s)
(t – s)–�

ds, � > , (.)

provided the integral exists.

Lemma . For� > , the general solution of the fractional di�erential equation D� x(t) = 
is given by

x(t) = c + ct + · · · + cn–tn–, (.)

where ci � R, i = , , , . . . , n –  (n = [� ] + ).

In view of Lemma ., it follows that

I � D� x(t) = x(t) + c + ct + · · · + cn–tn– (.)

for some ci � R, i = , , , . . . , n – .

Lemma . Let u, v � C([, T ],R) be two given functions. Then the following linear system

of fractional di�erential equations subject to anti-periodic boundary conditions

�
������

������

D�  ([p(t)D�  + r(t)]x(t)) = u(t),  < t < T ,

D�  ([q(t)D�  + s(t)]y(t)) = v(t),  < t < T ,

x() = –x(T ), D� x() = –D� x(T ),

y() = –y(T ), D� y() = –D� y(T ),

(.)

is equivalent to the following integral equations:

x(t) = I � 

�

p

I � u
�

(t) – I � 

�
r
p

x
�

(t)

+
�

–� 

�  + 
I � u(T ) +

� 

�  + 
x(T )

�
I � 

�

p

�
(t)

–



	
I � 

�

p

I � u
�

(T ) – I � 

�
r
p

x
�

(T )

+
�

–� 

�  + 
I � u(T ) +

� 

�  + 
x(T )

�
	 



(.)

and

y(t) = I � 

�

q

I � v
�

(t) – I � 

�
s
q

y
�

(t)

+
�

–� 

�  + 
I � v(T ) +

� 

�  + 
y(T )

�
I � 

�

q

�
(t)
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–



	
I � 

�

q

I � v
�

(T ) – I � 

�
s
q

y
�

(T )

+
�

–� 

�  + 
I � v(T ) +

� 

�  + 
y(T )

�
	 



, (.)

where

�  =
p()
p(T )

, �  =
q()
q(T )

, �  = � r(T ) – r(), �  = � s(T ) – s(),

	  = I � 

�

p

�
(T ), 	  = I � 

�

q

�
(T ).

Proof Taking the Riemann-Liouville fractional integral of orders � , �  into the first two
equations of system (.), we have

D� x(t) =
I � u(t) – r(t)x(t) + c

p(t)
, (.)

D� y(t) =
I � v(t) – s(t)y(t) + k

q(t)
, (.)

where c, k � R. From the boundary conditions of (.), we obtain

c =
–� 

�  + 
I � u(T ) +

� 

�  + 
x(T )

and

k =
–� 

�  + 
I � v(T ) +

� 

�  + 
y(T ).

Taking the Riemann-Liouville fractional integral of orders � , �  into (.), (.), respec-
tively, we get

x(t) = I � 

�

p

I � u
�

(t) – I � 

�
r
p

x
�

(t) + cI � 

�

p

�
(t) + c (.)

and

y(t) = I � 

�

q

I � v
�

(t) – I � 

�
s
q

y
�

(t) + kI � 

�

q

�
(t) + k, (.)

where c, k � R. Using the boundary conditions of (.), we have

c = –



	
I � 

�

p

I � u
�

(T ) – I � 

�
r
p

x
�

(T ) +
�

–� 

�  + 
I � u(T ) +

� 

�  + 
x(T )

�
	 




and

k = –



	
I � 

�

q

I � v
�

(T ) – I � 

�
s
q

y
�

(T ) +
�

–� 

�  + 
I � v(T ) +

� 

�  + 
y(T )

�
	 



.

Substituting the values of constants c, c, k and k into (.) and (.), we obtain the
integral equations (.) and (.), respectively. The converse follows by a direct computa-
tion. This completes the proof. �
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3 Main results
Throughout this paper, for convenience, we use the following expression:

I 
 h
�
s, x(s), y(s)

�
(i) =


� (
 )

� i



h(s, x(s), y(s))
(i – s)–


ds,

where 
 � { � , � , � � }, i � { t , T}, h = {f , g}. Let us introduce the space X = {x(t)|x(t) �

C([, T ],R)} endowed with the norm � x� = sup{|x(t)|, t � [, T ]}. It is obvious that (X, � · � )
is a Banach space. In addition, the product space (X × X, � (x, y)� ) is a Banach space with
the norm � (x, y)� = � x� + � y� . In view of Lemma (.), we define an operator A : X × X �

X × X by

A(x, y)(t) =


A(x, y)(t)
A(x, y)(t)

�

,

where

A(x, y)(t) = I � 

�

p

I �  f
�
s, x(s), y(s)

�
�

(t) – I � 

�
r
p

x
�

(t)

+
�

–� 

�  + 
I �  f

�
s, x(s), y(s)

�
(T ) +

� 

�  + 
x(T )

�
I � 

�

p

�
(t)

–



	
I � 

�

p

I �  f
�
s, x(s), y(s)

�
�

(T ) – I � 

�
r
p

x
�

(T )

+
�

–� 

�  + 
I �  f

�
s, x(s), y(s)

�
(T ) +

� 

�  + 
x(T )

�
	 




and

A(x, y)(t) = I � 

�

q

I � g
�
s, x(s), y(s)

�
�

(t) – I � 

�
s
q

y
�

(t)

+
�

–� 

�  + 
I � g

�
s, x(s), y(s)

�
(T ) +

� 

�  + 
y(T )

�
I � 

�

q

�
(t)

–



	
I � 

�

q

I � g
�
s, x(s), y(s)

�
�

(T ) – I � 

�
s
q

y
�

(T )

+
�

–� 

�  + 
I � g

�
s, x(s), y(s)

�
(T ) +

� 

�  + 
y(T )

�
	 



.

We set the following constants:

p	 = inf
t � [,T ]

�
�p(t)

�
� , q	 = inf

t � [,T ]

�
�q(t)

�
� , r 	 = sup

t � [,T ]

�
�r(t)

�
� , s	 = sup

t � [,T ]

�
�s(t)

�
�

and

h =
T � +� 

p	 � ( + �  + � )
, h =

r 	 T � 

p	 � ( + � )
,

h =
� T � +� 

p	 (�  + )� ( + � )� ( + � )
, h =

|� |T � 

p	 (�  + )� ( + � )
,
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h =
T � +� 

q	 � ( + �  + � )
, h =

s	 T � 

q	 � ( + � )
,

h =
� T � +� 

q	 (�  + )� ( + � )� ( + � )
, h =

|� |T � 

q	 (�  + )� ( + � )
.

Theorem . Assume that f, g : [, T ] × R
 � R are continuous functions, and there exist

constants mi , ni , i = ,  such that for all t � [, T ] and xi , yi � R, i = , ,

(H) |f (t , x, y) – f (t , x, y)| 
 m|x – x| + m|y – y|,
(H) |g(t , x, y) – g(t , x, y)| 
 n|x – x| + n|y – y|.

In addition , let

L + L < ,

where

M  =



(h + h), M =



(h + h), M =



(h + h), M =



(h + h),

L = (m + m)M  + M, L = (n + n)M + M.

Then problem(.)-(.) has a unique solution on[, T ].

Proof To show that problem (.)-(.) has a unique solution on [, T ], we will use Banach’s
contraction mapping principle. In the first step, we define supt � [,T ] f (t , , ) = N < � ,
supt � [,T ] g(t , , ) = N < � and choose a positive real number w such that

w �
NM  + NM

 – L – L
.

Now, we show thatABw � Bw, where Bw = {(x, y) � X× X : � (x, y)� 
 w}. For any (x, y) � Bw,
we have

�
�A(x, y)(t)

�
�


 sup
t � [,T ]

�
I � 

�

p	

I � 
�
�f

�
s, x(s), y(s)

� ��
�

(t) + I � 

�
r 	

p	

�
�x(s)

�
�
�

(t)

+
�

� 

�  + 
I � 

�
�f

�
s, x(s), y(s)

� ��(T ) +
|� |

�  + 
�
�x(T )

�
�
� �

�
�
�I

� 

�

p

�
(t)

�
�
�
�

+



	
I � 

�

p	

I � 
�
�f

�
s, x(s), y(s)

� ��
�

(T ) + I � 

�
r 	

p	

�
�x(s)

�
�
�

(T )

+
�

� 

�  + 
I � 

�
�f

�
s, x(s), y(s)

� ��(T ) +
|� |

�  + 
�
�x(T )

�
�
�

|	 |

�


 I � 

�

p	

I � 
�
�f

�
s, x(s), y(s)

�
– f (s, , )

�
� +

�
�f (s, , )

�
�
�

(T )

+ I � 

�
r 	

p	

�
�x(s)

�
�
�

(T ) +
�

� 

�  + 
I � 

� ��f
�
s, x(s), y(s)

�
– f (s, , )

�
�

+
�
�f (s, , )

�
�� (T ) +

|� |
�  + 

�
�x(T )

�
�
� �

�
�
�I

� 

�

p

�
(T )

�
�
�
�
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+



	
I � 

�

p	

I � 
�
�f

�
s, x(s), y(s)

�
– f (s, , )

�
� +

�
�f (s, , )

�
�
�

(T )

+ I � 

�
r 	

p	

�
�x(s)

�
�
�

(T ) +
�

� 

�  + 
I � 

� ��f
�
s, x(s), y(s)

�
– f (s, , )

�
�

+
�
�f (s, , )

�
�� (T ) +

|� |
�  + 

�
�x(T )

�
�
�

|	 |




 I � 

�
�
m� x� + m� y� + N

� 
p	

I �  ()
�

(T ) +
�

r 	

p	

�
� x� I �  ()(T )

+
�

� 

�  + 
�
m� x� + m� y� + N

�
I �  ()(T ) +

|� |
�  + 

� x�
� �

�
�
�I

� 

�

p

�
(T )

�
�
�
�

+



	
I � 

�
�
m� x� + m� y� + N

� 
p	

I �  ()
�

(T ) +
�

r 	

p	
� x�

�
I �  ()(T )

+
�

� 

�  + 
�
m� x� + m� y� + N

�
I �  ()(T ) +

|� |
�  + 

� x�
�

|	 |





�
m� x� + m� y� + N

� T � +� 

p	 � ( + �  + � )
+

r 	 T � 

p	 � ( + � )
� x�

+
�
m� x� + m� y� + N

� � T � +� 

p	 (�  + )� ( + � )� ( + � )

+
|� |T � 

p	 (�  + )� ( + � )
� x� +




|� |T � 

p	 (�  + )� ( + � )
� x�

+



�
m� x� + m� y� + N

� T � +� 

p	 � ( + �  + � )
+




r 	 T � 

p	 � ( + � )
� x�

+



� T � +� 

p	 (�  + )� ( + � )� ( + � )
�
m� x� + m� y� + N

�

=



�
m� x� + m� y� + N

�
(h + h) +




(h + h)� x�

= (mM  + M)� x� + mM � y� + NM 


 (mM  + M)w + mM w + NM 

= Lw + NM .

Similarly, we obtain

�
�A(x, y)(t)

�
�



�
n� x� + n� y� + N

� T � +� 

q	 � ( + �  + � )
+

s	 T � 

q	 � ( + � )
� y�

+
�
n� x� + n� y� + N

� � T � +� 

q	 (�  + )� ( + � )� ( + � )

+
|� |T � 

q	 (�  + )� ( + � )
� y� +




|� |T � 

q	 (�  + )� ( + � )
� y�

+



�
n� x� + n� y� + N

� T � +� 

q	 � ( + �  + � )
+




s	 T � 

q	 � ( + � )
� y�

+



� T � +� 

q	 (�  + )� ( + � )� ( + � )
�
n� x� + n� y� + N

�
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=



�
n� x� + n� y� + N

�
(h + h) +




(h + h)� y�

= nM� x� + (nM + M)� y� + NM


 nMw + (nM + M)w + NM

= Lw + NM.

Therefore, we deduce that

� A(x, y)� = � A(x, y)� + � A(x, y)� 
 (L + L)w + NM  + NM < w,

which implies ABw � Bw.
Next, for (x, y), (x, y) � X × X and for any t � [, T ], we have

�
�A(x, y)(t) – A(x, y)(t)

�
�


 I � 

�

p

I � 
�
�f

�
s, x(s), y(s)

�
– f

�
s, x(s), y(s)

� ��
�

(T )

+ I � 

�
r 	

p	

�
�x(s) – x(s)

�
�
�

(T )

+ (
� 

�  + 
I � 

� �
�f

�
s, x(s), y(s)

�
– f

�
s, x(s), y(s)

� ��(T )

+
|� |

�  + 
�
�x(T ) – x(T )

�
�
� �

�
�
�I

� 

�

p

�
(T )

�
�
�
�

+



	
I � 

�

p

I � 
�
�f

�
s, x(s), y(s)

�
– f

�
s, x(s), y(s)

� ��
�

(T )

+ I � 

�
r 	

p

�
�x(s) – x(s)

�
�
�

(T ) + (
� 

�  + 
I � 

� �
�f

�
s, x(s), y(s)

�

– f
�
s, x(s), y(s)

� ��(T ) +
|� |

�  + 
�
�x(T ) – x(T )

�
�
�

|	 |





T � +� 

p	 � ( + �  + � )
�
m� x – x� + m� y – y�

�
+

r 	 T � 

p	 � ( + � )
� x – x�

+
� T � +� 

p	 (�  + )� ( + � )� ( + � )
�
m� x – x� + m� y – y�

�

+
|� |T � 

p	 (�  + )� ( + � )
� x – x� +




|� |T � 

p	 (�  + )� ( + � )
� x – x�

+



T � +� 

p	 � (�  + � )
�
m� x – x� + m� y – y�

�
+




r 	 T � 

p	 � (� )
� x – x�

+



� T +� +� 

p	 (�  + )� (� )� (� )
�
m� x – x� + m� y – y�

�

=



(h + h)
�
m� x – x� + m� y – y�

�
+




(h + h)� x – x�

= (mM  + M)� x – x� + mM � y – y� ,
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which leads to

�
� A(x, y) – A(x, y)

�
� 
 L

�
� x – x� + � y – y�

�
. (.)

Similarly, we obtain

�
� A(x, y) – A(x, y)

�
� 
 L

�
� x – x� + � y – y�

�
. (.)

Hence, from (.) and (.), we deduce that

�
� A(x, y) – A(x, y)

�
� 
 (L + L)

�
� x – x� + � y – y�

�
.

Since L + L < , A is a contraction operator. Thus, by Banach’s fixed point theorem, the
operator A has a unique fixed point, which is the unique solution of problem (.)-(.)
on [, T ]. This completes the proof. �

If r(t), s(t) �  for all t � [, T ], then we have � , �  = .

Corollary . Suppose that conditions(H)-(H) hold. If (m + m)M  + (n + n)M < ,
then system(.) with (.) has a unique solution on[, T ].

If p(t), q(t) �  and r(t) � � , s(t) = �  for all t � [, T ], then we get that p	 , q	 = , r 	 = |� |,
s	 = |� |, � , �  = , � , �  = . Let

a =



T � +� 

� ( + �  + � )
+




T � +� 

� ( + � )� ( + � )
,

a =



|� |
T � 

� ( + � )
,

a =



T � +� 

� ( + �  + � )
+




T � +� 

� ( + � )� ( + � )
,

a =



|� |
T � 

� ( + � )
.

Corollary . Assume that conditions(H)-(H) are satis“ed. If

�
a(m + m) + a

�
+

�
a(n + n) + a

�
< ,

then system(.) with (.) has a unique solution on[, T ].

In the next result, we will show the existence of solutions of problem (.)-(.) by ap-
plying the Leray-Schauder alternative.

Lemma . (Leray-Schauder alternative []) Let G be a normed linear space and F: G �
G be a completely continuous operator(i .e., a map restricted to any bounded set in G is
compact). Let

J (F) =
�
x � G : x = � F(x) for some < � < 

�
.

Then either the setJ (F) is unbounded, or F has at least one “xed point.
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Theorem . Assume that f, g : (, T ) × R
 � R are two continuous functions and there

exist real constants Ci , Di �  (i = , ) and C, D >  such that� xi , yi � R, (i = , ) satis-

fying

(H) |f (t , x, x)| 
 C + C|x| + C|x| and
(H) |g(t , y, y)| 
 D + D|y| + D|y|.

In addition , it is assumed that

J <  and J < ,

where

J =  – (CM  + M + DM), and J =  – (CM  + DM + M).

Then there exists at least one solution of problem(.)-(.) on [, T ].

Proof Firstly, we show that the operator A : X × X � X × X is completely continuous.
Note that A is continuous, since the functions f , g are continuous. Let U � X × X be
a bounded set. Then there exists a positive constant �w such that � (x, y)� 
 �w for any
(x, y) � U . Also there exist S and S such that

�
�f

�
t , x(t), y(t)

� �� 
 S,
�
�g

�
t , x(t), y(t)

� �� 
 S, � (x, y) � U .

Therefore, for any (x, y) � U , we have

�
�A(x, y)(t)

�
�


 I � 

�

p

I � 
�
�f

�
s, x(s), y(s)

� ��
�

(T ) + I � 

�
r 	

p	

�
�x(s)

�
�
�

(T )

+
�

� 

�  + 
I � 

�
�f

�
s, x(s), y(s)

� ��(T ) +
|� |

�  + 
�
�x(T )

�
�
� �

�
�
�I

� 

�

p

�
(T )

�
�
�
�

+



	
I � 

�

p

I � 
�
�f

�
s, x(s), y(s)

� ��
�

(T ) + I � 

�
r 	

p	

�
�x(s)

�
�
�

(T )

+
�

� 

�  + 
I � 

�
�f

�
s, x(s), y(s)

� ��(T ) +
|� |

�  + 
�
�x(T )

�
�
�

|	 |





T � +� 

p	 � ( + �  + � )
S +

r 	 T � 

p	 � ( + � )
�w +

� T � +� 

p	 (�  + )� ( + � )� ( + � )
S

+
|� |T � 

p	 (�  + )� ( + � )
�w +




T � +� 

p	 � ( + �  + � )
S +




r 	 T � 

p	 � ( + � )
�w

+



� T � +� 

p	 (�  + )� ( + � )� ( + � )
S +




|� |T � 

p	 (�  + )� ( + � )
�w

=



(h + h)S +



(h + h) �w

= M S + M �w.

Thus � A(x, y)� 
 M S + M �w.
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Similarly, we deduce that

�
�A(x, y)(t)

�
� 


T � +� 

q	 � ( + �  + � )
S +

s	 T � 

q	 � ( + � )
�w

+
� T � +� 

q	 (�  + )� ( + � )� ( + � )
S +

|� |T � 

q	 (�  + )� ( + � )
�w

+



T � +� 

q	 � ( + �  + � )
S +




s	 T � 

q	 � ( + � )
�w

+



� T � +� 

q	 (�  + )� ( + � )� ( + � )
S +




|� |T � 

q	 (�  + )� ( + � )
�w

=



(h + h)S +



(h + h) �w

= MS + M �w,

and therefore � A(x, y)� 
 MS + M �w. Consequently, � A(x, y)� 
 M S + MS + (M +
M) �w, which means that the operator A is uniformly bounded.

Next, we prove that A is equicontinuous. For given t, t � [, T ], with t < t, we get

�
�A(x, y)(t) – A(x, y)(t)

�
�




�
�
�
�I

� 

�

p	

I �  f
�
s, x(s), y(s)

�
�

(t) – I � 

�

p	

I �  f
�
s, x(s), y(s)

�
�

(t)
�
�
�
�

+
�
�
�
�I

� 

�
r 	

p	
x(s)

�
(t) – I � 

�
r 	

p	
x(s)

�
(t)

�
�
�
�

+
�
�
�
�

� 

�  + 
I �  f

�
s, x(s), y(s)

�
(T ) +

� 

�  + 
x(T )

�
�
�
�

�
�
�
�I

� 

�

p

�
(t) – I � 

�

p

�
(t)

�
�
�
�



S

p	 � (�  + � )

	 � t



�
�(t – s)� +� – – (t – s)� +� –�� ds+

� t

t

(t – s)� +� – ds



+
r 	 �w

p	 � (� )

	 � t



�
�(t – s)� – – (t – s)� –�� ds+

� t

t

(t – s)� – ds



+
�

� T � S

(�  + )� ( + � )
+

|� | �w
�  + 

�


� (� )

	 � t



�
�(t – s)� – – (t – s)� –�� ds

+
� t

t

(t – s)� – ds





S

p	 � ( + �  + � )
�
(t – t)� +�  +

�
�t � +� 

 – t � +� 


�
��

+


� ( + � )

�
r 	 �w
p	

+
� T � S

(�  + )� ( + � )
+

|� | �w
�  + 

�
�
(t – t)�  +

�
�t � 

 – t � 


�
�� .

Hence we have

�
� A(x, y)(t) – A(x, y)(t)

�
� � , as t � t.

Analogously, we can obtain

�
� A(x, y)(t) – A(x, y)(t)

�
� � , as t � t.



Muensawat et al. Advances in Difference Equations  (2017) 2017:63 Page 12 of 15

Therefore, the operator A is equicontinuous, and thus the operator A is completely con-
tinuous.

Finally, it will be verified that the set

J = {(x, y) � X × X|(x, y) = � A(x, y), for some  < � < }

is bounded. Let (x, y) � J , then (x, y) = � A(x, y). For any t � [, T ], we have

x(t) = � A(x, y)(t), y(t) = � A(x, y)(t).

Then

�
�x(t)

�
� =

�
� � A(x, y)(t)

�
�


 I � 

�
�
C + C� x� + C� y�

� 
p	

I �  ()
�

(T ) +
�

r 	

p	

�
� x� I �  ()(T )

+
�

� 

�  + 
�
C + C� x� + C� y�

�
I �  ()(T ) +

|� |
�  + 

(T )� x�
�

I � 

�

p	

�
(T )

+



	
I � 

�
�
C + C� x� + C� y�

� 
p

I �  ()(T )
�

+
�

r 	

p	
� x�

�
I �  ()(T )

+
�

� 

�  + 
�
C + C� x� + C� y�

�
I �  ()(T ) +

|� |
�  + 

� x�
�

|	 |



=
�
C + C� x� + C� y�

�
M  + M� x�

and

�
�y(t)

�
� =

�
�� A(x, y)(t)

�
�


 I � 

�
�
D + D� x� + D� y�

� 
q

I �  ()(T )
�

+
�

s	

q	

�
� y� I �  ()(T )

+
�

� 

�  + 
�
D + D� x� + D� y�

�
I �  ()(T ) +

|� |
�  + 

(T )� y�
�

I � 

�

q	

�
(T )

+



	
I � 

�
�
D + D� x� + D� y�

� 
q	

I �  ()(T )
�

+
�

s	

q	
� y�

�
I �  ()(T )

+
�

� 

�  + 
�
D + D� x� + D� y�

�
I �  ()(T ) +

|� |
�  + 

� y�
�

|	 |



=
�
D + D� x� + D� y�

�
M + M� y� .

Hence

� x� 

�
C + C� x� + C� y�

�
M  + M� x� ,

� y� 

�
D + D� x� + D� y�

�
M + M� y� .

Then we have

� x� + � y� 
 CM  + DM + (CM  + M + DM)� x� + (CM  + DM + M)� y� .
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Consequently,

�
� (x, y)

�
� 


CM  + DM

J	
,

for any t � [, T ], where J	 = min{ – J,  – J}, which proves that J is bounded. Hence, by
Lemma ., the operator A has at least one fixed point. So, problem (.)-(.) has at least
one solution on [, T ]. The proof is completed. �

Let J =  – (CM  + DM), J =  – (CM  + DM), J =  – (aC + a + aD) and
J =  – (aC + a + aD). We have the following results.

Corollary . Suppose that conditions(H) and (H) of Theorem. hold. If J <  and
J < , then system(.) with (.) has at least one solution on[, T ].

Corollary . Assume that conditions(H) and (H) of Theorem. are ful“lled . If J < 
and J < , then system(.) with (.) has at least one solution on[, T ].

4 Examples
In this section, we present two examples to illustrate our results.

Example . Consider the following system of generalized Sturm-Liouville and Langevin
fractional di�erential equations subject to anti-periodic boundary conditions:

�
������������

������������

D/([(t/ + )D/ + (t/ – )]x(t)) = |x| sin(� t)
(–t) ( |x|

|x|+ + ) + |y|+
(–t) ,

 < t < ,

D/([(t/ + )D/ + (t/ – )]y(t)) = |x|
(+t) + cos(� t)

(–t) ( |y|
|y|+ + ),

 < t < ,

x() = –x(), D/x() = –D/x(),

y() = –y(), D/y() = –D/y().

(.)

Here �  = /, �  = /, �  = /, �  = /, T = , p(t) = t/ + , q(t) = t/ + , r(t) = t/ –
, s(t) = t/ – , f (t , x, y) = ((|x| sin(� t))/( – t))(|x|/(|x| + ) + ) + ((|y| + )/( – t)) and
g(t , x, y) = (|x|/( + t)) + (cos(� t)/( – t))((|y|/(|y| + )) + ). From the above information,
we can find that p	 = , q	 = , r 	 = ., s	 = ., �  = ., �  = ., �  =
., �  = .. Since

�
�f (t , x, y) – f (t , x, y)

�
� 





|x – x| +



|y – y|

and

�
�g(t , x, y) – g(t , x, y)

�
� 





|x – x| +



|y – y|,

the assumptions of Theorem . are satisfied with m = /, m = /, n = /, n =
/, M  = ., M = ., M = ., M = .. Thus

L = (m + m)M  + M = ., L = (n + n)M + M = ..



Muensawat et al. Advances in Difference Equations  (2017) 2017:63 Page 14 of 15

Therefore, we have L + L = . < . Hence, by Theorem ., problem (.) has a
unique solution on [, ].

Example . Consider the following system of generalized Sturm-Liouville and Langevin

fractional di�erential equations subject to anti-periodic boundary conditions:

�
������������

������������

D/([(t/ + )D/ + (t/ – )]x(t)) =  +


|x| cos(� t)
(–t) +


� |y|

(� –t) ( |y|
|y|+ + ),

 < t < � ,

D/([(t/ + )D/ + (t/ – )]y(t)) = 
 +


� |x|

(� –t) ( |x|
|x|+ + ) + |y| sin(� t)

(–t) ,

 < t < � ,

x() = –x(� ), D/x() = –D/x(� ),

y() = –y(� ), D/y() = –D/y(� ).

(.)

Here �  = /, �  = /, �  = /, �  = /, T = � , p(t) = t/ + , q(t) = t/ + , r(t) =
t/ – , s(t) = t/ – , f (t , x, y) =  + ((


|x| cos(� t))/(( – t))) + ((


� |y|)/(� –

t))((|y|/(|y| + ) + )) and g(t , x, y) = (/) + ((


� |x|)/((� – t)))((|x|/(|x| + ) + )) +
(sin(� t)/). From all the information, we can find that p	 = , q	 = , r 	 = . and
s	 = .. It is obvious that

�
�f (t , x, x)

�
� 
  +





|x| +




�
|x|

and

�
�g(t , x, x)

�
� 





+



�

|x| +



|x|.

Then the assumptions of Theorem . are satisfied with C = , C =


/, C =


/� ,
D = /, D =


/� , D = /, and

J =  – (CM  + M + DM) = . < ,

J =  – (CM  + M + DM) = . < .

Therefore, all the conditions of Theorem . hold true; and consequently, by the conclu-
sion of Theorem ., problem (.) has at least one solution on [, � ].
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