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Abstract

In this article, we investigate some uniqueness and Ulam’s type stability concepts
for the Darboux problem of partial functional differential equations with
noninstantaneous impulses and delay in Banach spaces. The main techniques rely
on fractional calculus, integral equations and inequalities. Two examples are also
provided to illustrate our results.
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1 Introduction

The fractional calculus deals with extensions of derivatives and integrals to noninteger or-
ders. It represents a powerful tool in applied mathematics to study a myriad of problems
from different fields of science and engineering, with many break-through results found
in mathematical physics, finance, hydrology, biophysics, thermodynamics, control the-
ory, statistical mechanics, astrophysics, cosmology, and bioengineering. There has been a
significant development in ordinary and partial fractional differential equations in recent
years; see the monographs of Abbas et al. [1], Kilbas et al. [2], Miller and Ross [3], Zhou
[4, 5], the papers [6—25], and the references therein.

In [9], Abbas et al. studied some existence, uniqueness and stability results for functional
partial impulsive differential equations. In [26], Wang et al. studied the stability of first-
order impulsive evolution equations.

In pharmacotherapy, the above instantaneous impulses cannot describe the certain dy-
namics of evolution processes. For example, one considers the hemodynamic equilibrium
of a person, the introduction of the drugs in the bloodstream and the consequent absorp-
tion for the body are gradual and continuous process. From the viewpoint of general the-
ories, Herndndez and O’Regan [27] initially offered to study a new class of abstract semi-
linear impulsive differential equations with noninstantaneous impulses in a PC-normed
Banach space. Meanwhile, in [27, 28] the authors continue to study other new classes of
differential equations with noninstantaneous impulses.
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However, Ulam-Hyers-Rassias stability of fractional differential equations with this kind
of impulses has not been studied. Motivated by recent work [29, 30], we investigate the
uniqueness and Ulam-Hyers-Rassias stability of the following partial fractional differential
equations with noninstantaneous impulses and finite delay:

Cngu(t, x)=f(t,xuey); iftx)el,k=0,...,m,

u(t,x) = gt x,u(t,x)); if(t,x)€liuk=1...,m,

u(t,x) = p(t,x);  if (t,%) €] := [-a,a] x [-B,b] \ (0,a] x (0,b],
u(t,0) = p(t); te[0,al,

u(0,x) =y (x); «€[0,b],

¢(0) = ¥(0),

@)

where Iy = [0,#] x [0, ], Iy := (Sk, trs1] X [0,D), Jic := (¢, 8] x [0,b]; k=1,...,m,a,b,a,B >
0, 0 = (s4,0); k=0,...,m, ”ng is the fractional Caputo derivative of order r = (r, 1) €
(0,1] x (0,1, 0=so <y <s1 <tr <+ <Spy1 <t <SSy <twn=a,f : I xC— E; k =
0,....m, g : ik XxE— E;k=1,...,m,¢ :J — Eare given continuous functions, ¢ : [0,a] —
E and v : [0,b] — E are given absolutely continuous functions with ¢(£) = ®(¢,0), ¥ (x) =
®(0,x) for each (¢,x) € J := [0,a] x [0, b], E is a complete Banach space, and C is the Banach
space defined by

C=Cap
= {u: [-a,0] x [-B,0] — E: continuous
and there exist 7, € (-, 0) with u(rk‘,fc) and u(t,:,ic); k=1,...,m,

exist for any X € [-,0] with u(t;, %) = u(t, %)},
with the norm

lulc= " sup  Jult, )],
(t,x)e[-a,0] x[-B,0]

We denote by ) the element of C defined by
u(t,x)(fxé:) = M(t +T,X+ 5)’ (f’g) € [—Ol, 0] X [_,37 0]!

here 1 ,)(-, -) represents the history of the state from time ¢ — « up to the present time ¢
and from time x — 8 up to the present time x.

Next, we consider the following partial fractional differential equations with noninstan-
taneous impulses and infinite delay:

Cngu(t,x) =f(t,x%uey); if(tx)el,k=0,...,m,

u(t, x) = g (t, %, u(t,x); if(6,x) €ik=1,...,m,

u(t,x) = p(t,x) if (t,x) € J' := (—00,a] x (o0, b] \ (0,a] x (0,b],
u(t,0) = ¢(t); tel0,al,

u(0,x) =¥ (x); x€l0,b],

9(0) = v(0),

(2)
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where J, ¢, ¢ areasin problem (1), f : [ x B— E; k=0,...,m, g : Jy xE— E; k=1,...,m,
¢ :]' — E are given continuous functions and B is called a phase space that will be speci-
fied in Section 4.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this paper. Denote L!(J) the space of Bochner-integrable functions u : ] — E
with the norm

a pb
s = [ [ Jute0)] vt
0 0

where || - || denotes a suitable complete norm on E. As usual, by AC(J) we denote the
space of absolutely continuous functions from J into E, and C(J) is the Banach space of all
continuous functions from J into E with the norm || - |5 defined by

lulloo = sup |ut,x)|
(tx)€]
Let 6 = (0,0), r1,7, > 0 and r = (r1, r2). For u € L'(J), the expression

()69 = s / [ e o= ey g e,

is called the left-sided mixed Riemann-Liouville integral of order r, where I'(-) is the (Eu-
ler) Gamma function defined by I'(¢) = [y~ t"'e™' dt; ¢ > 0.
In particular,

(Igu) (t, %) = u(t, x), (Igu)(t,x) = /t /x u(t,&)dé dr; for almostall (¢,x) €/,
o Jo

where o = (1,1). For instance, Iju exists for all r1,7; € (0,00), when u € L'(J). Note also
that when u € C(J), then ({ju) € C(J), moreover,

(I(Su)(t,O) = (I(;u)(O,x) =0; tel0,a]l,xe€]0,b].

Example 2.1 Let L, € (-1,0) U (0,00), r = (r,72), 11,2 € (0,00) and h(t,x) = t'x®
(t,x) € J. We have k € L}(J), and we get

r . TA+MI(1+o)
(Ioh)(t,x) = TA+A+rT(1+w+r)

@2 for almost all (¢, %) € /.

By 1-rwemean (1-r;,1-r;) €[0,1) x [0,1). Denote by D?, := m the mixed second-

order partial derivative.

Definition 2.2 ([17]) Let r € (0,1] x (0,1] and u € L'(J). The Caputo fractional-order
derivative of order r of u is defined by the expression

cry _(711-rn2 Téur 3)3
Dpute) = (PR3 = 5~ m/ /o ES IR
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The case o = (1,1) is included and we have
(CDg u)(t, x) = (D?xu)(t,x); for almost all (¢,x) € /.

Example 2.3 Let A,w € (-1,0) U (0,00) and r = (r, r3) € (0,1] x (0,1], then

ra+x)ra
CDgt)‘x“’ = L+ ML+ @) £ x®72; for almost all (£,x) € J.
FA+A-rmlQ+w-ry)

Let a, € [0,61], z" = (ﬂl)O) e]r]z = (aliﬂ] X [O;b]r r,ry > Oandr= (rlirZ)' Foru e Ll(]z)¢
the expression

r _ 1 L Vi1, gy2-1
(I)(6) = s / fo (6 - o) - £ u(r,£) dt d,

is called the left-sided mixed Riemann-Liouville integral of order r of u.

Definition 2.4 ([17]) For u € L'(J,) where D?u is Bochner integrable on J,, the Caputo
fractional-order derivative of order r of u is defined by the expression

(“Dyu)(t,%) = (L7 Diu) (¢, %).

Now, we consider the Ulam stability for our problems. Let € >0, ¥ > 0 and ®:/ —

[0, 00) be a continuous function. We consider the following inequalities:

”Cngu(trx) _f(trx’ u(t,x))”E <€ if (trx) € Ik’k =0,...,m,

3)
||u(t,x) _gk(trxr u(t!x))”E <€ lf (t7x) E]k,k = 1; e, m,
1°Dy, u(t, %) —f (&, %, u )l < P@x);  if (6,%) € L, k=0,...,m, @
||u(t’x) _gk(tyx; M(t,x))”E < lI"; lf (t)x) e]k,k = 1; ey m,
”Cngu(trx) _f(trx’ u(t,x))”E = e@(t,x); if (t:x) € Ik,k =0,...,m, (5)

||u(t¢x) _gk(trxr u(t:x))”E <eVY; if (t,x) e]k;k =1,...,m.

Definition 2.5 ([9, 29]) Problem (1) is Ulam-Hyers stable if there exists a real number
¢t > 0 such that for each € > 0 and for each solution u € PC of the inequality (3) there
exists a solution v € PC of problem (1) with

”u(t,x) —v(t,x) ||E <ecrg; (L) el

Definition 2.6 ([9, 29]) Problem (1) is generalized Ulam-Hyers stable if there exists cf,
C([0, 00), [0, 00)) with cf4, (0) = 0 such that for each € > 0 and for each solution u € PC of
the inequality (3) there exists a solution v € PC of problem (1) with

|ut,x) - v(t,2)|| ; < crg(€);  (Hx) €.

Definition 2.7 ([9, 29]) Problem (1) is Ulam-Hyers-Rassias stable with respect to (®, ¥)
if there exists a real number ¢y, o > 0 such that for each € > 0 and for each solution z € PC
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of the inequality (5) there exists a solution v € PC of problem (1) with
”u(t,x) —v(t,x) ”E < €crg.0 (\I/ + dD(t,x)); (t,x) €].

Definition 2.8 ([9, 29]) Problem (1) is generalized Ulam-Hyers-Rassias stable with re-
spect to (P, V) if there exists a real number cfg ¢ > 0 such that for each solution z € PC
of the inequality (4) there exists a solution v € PC of problem (1) with ||u(¢,x) — v(t,x)|| g <
cr oW+ O(t,x)); (t,x) €.

Remark 2.9 It is clear that: (i) Definition 2.5 = Definition 2.6, (ii) Definition 2.7 = Def-
inition 2.8, (iii) Definition 2.7 for ®(-,-) = ¥ =1 = Definition 2.5.

Remark 2.10 A function u € PC is a solution of the inequality (3) if and only if there exist
a function G € PC and a sequence Gy; k =1,...,m in E (which depend on #) such that
(i) 1G@Ex)e <eand [Gille <€ k=1,...,m,
(ii) Cngu(t,x) = f(t,x,u(t,x)) + G(¢,x); if ((,x) € I, k=0,...,m,
(i) u(t,x) = g(t, %, u(t,x)) + Gy if (£,x) € i, k=1,...,m,

One can have similar remarks for the inequalities (4) and (5). So, the Ulam stabilities of
the impulsive fractional differential equations are some special types of data dependence
of the solutions of impulsive fractional differential equations.

In the sequel we will make use of the following generalization of Gronwall’s lemma for

two independent variables and singular kernel.

Lemma 2.11 (Gronwall lemma [31]) Let v :J — [0,00) be a real function and w(-,-) be a
nonnegative, locally integrable function on J. If there are constants ¢ >0 and 0 <ry,ry <1
such that

v(t,x) < w(t,x) +c// U(TE ————dé& dr,

(t—Tt)t(x— &)

then there exists a constant § = 5(ry, 1) such that

v(t,x) < w(t,x) +6c/f = Trff)g) dé dr,

forevery (¢,x) €.

3 Uniqueness and Ulam stabilities results for finite delay
In this section, we present conditions for the uniqueness and Ulam stability of problem (1).

Consider the Banach space

PC = {u: [~a,a] x [-B,b] > E:uc C((tk,tk+1] X [O,b]);k =0,1,...,m
and there exist u(t;,x) and u(t},x);k=1,...,m

with u(t,:,x) = u(ty,x) for each x € [O,b]},
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with the norm

llullpc = sup |ut,)| -
(tx)el-a,alx[-p,b]

By Lemma 2.14 in [1], we conclude to the following lemma.

Lemma 3.1 Let r,ry € (0,1], u(t,x) = ¢(t) + ¥ (x) — ¢(0). A function u € PC is called a
solution of the problem (1), if u satisfies

u(t, x) = pu(t, x)
fo fo %ﬂt & uqe)dsdr;  if(tx) €l
u(t, x) = @(t) + gr(sk,x, ulsi, x)) — g (sk, 0, u(s, 0))
b fl e e (1 6 ) dEdr; i (6x) €Lk =1,..m, (6)
u(t,x) = ge(t, %, u(t,x)); if(t,x) €Jik=1,...,m,
ult,x) = p(t,x);  if (t,x) €],
u(t,0)=p(t); tel0,a], u(0,x) =¥ (x); «x€[0,b] and ¢(0) = y(0).

Lemma 3.2 [fu € PC is a solution of the inequality (3) then u is a solution of the following

integral inequality:

l(t,0) — 10, 0) — [y [ CORSEE (0, 6, uge ) dE d

ea’lb2 .
= Faeramy 6% €lo,

llue(t, x) — () — gk (sk> %, u(si, %)) + gk (sk, 0, u(sk, 0))
e (6, e ) dE dT |

ea’lb2 . _
= Ty’ l'f(t,x EIk,k—l,...,m,

”M(t!x) _gk(t,x; M(t,x))”E <€ U((t;x) e]](,k = 1,...,m.

Proof By Remark 2.10 we have

”ngu(t,x) =f(t, % uex) + G(t,x); if(t,x) eli,k=0,...,m
u(t,x) = gt x,u(t,x) + G if (t,x) € Jiok=1,...,m.

Then

u(t,x) = u(t, x)

+ fo Iy (=x r1r1 r(m;rz - (f(z,&,upe) + G(r, &) de dv;  if (t,x) € I,
u(t, x) = (t) + gk (s, %, u(sk, x)) — g(sx, 0, u(sk, 0))

o o e (£ (¢ 6, g ) + G, £)) dE d;

if (t,x) eli,k=1,...,m
u(t,x) = ge(t, %, u(t,x) + G if (t,x) € i, k=1,...,m.
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Thus, it follows that

- r—l r -1
lu(t, x) — (e, x) fo x(tlrizf(f Euqg)dédr|e
=\ fy J3 ERe O G, ) d dr g i (6%) € Do,

I'(r T‘(rz)
l|u(t, x) — o(t) - gk(Sk,x, (Sk, %)) + gk (sx, 0, u(sx, 0))
‘L" 1 r -1
— fo Jo CR e (8 U ) dE dr e
= fo fo %G(T &)dédr|g if(t,x)el,k=1,....,m
||u(t¢x) _gk(trxr (t:x))”E = ”Gk”E; if (tvx) E]k,k =1...,m

Hence, we obtain (7). O
Remark 3.3 We have similar results for the solutions of the inequalities (4) and (5).

Theorem 3.4 Assume that the following hypotheses hold:

(Hy) There exists a constant ly > 0 such that

If &, u) = f(t20) | < lpllu — e,

foreach (t,x) € ], and each u,u € C.
(Hy) There exist constants ly, > 0; k=1,...,m, such that

Hgk(t’x; Lt) _gk(t:xrﬁ) ”E = lgk ”u - ﬁ”Er

foreach (t,x) € Jx, and each u,u € E, k=1,...,m.
If

lra" b

0i=2p + —————————
et ra+n»n)ra+ 7”2)

8)

.....

Furthermore, lf the following hypothesis holds:

(Hs) There exists Lo > 0 such that, for each (t,x) € ], we have
I;ké(t,x) <Aip®(t,x); k=0,...,m,
then the problem (1) is generalized Ulam-Hyers-Rassias stable.

Proof Consider the operator N : PC — PC defined by

(Nu)(t, x) = n(t,x)
+f0 Iy %ﬂr,f,u(ng))dé dr; if (¢,x) € Lo,
(Nu)(t, %) = @(t) + g (s, %, u(sk, %)) — gk (S, 0, u(s, 0))
[0 T e (b ) de dT; i (63) € Lk =1,.,m,

(Nu)(t,x) = gi(t, %, u(t,x);  if(t,x) €Ji,k=1,...,m,
(Nu)(t,x) = p(t,x); if (t,x) €].
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Clearly, the fixed points of the operator N are solution of the problem (1). We shall use
the Banach contraction principle to prove that N has a fixed point. N is a contraction. Let

u,v € PC, then, for each (t,x) € J, we have

1 (N2) (2, %) — (N)(2, %) £
< fy 5 L f(0, 8, e ) —f (1,6 vie ) dE |

(r)T(r2)
if (¢,x) € I,
|(Nu)(2, x) = (NV)(¢, %) || £
< llgk(sk, 2, sk, %)) — gk (s, %, V(sk, %)) || £
+ 1€k (sk, 0, u(sk, 0)) — gk (s, 0, v(sk, 0)) Il £
I R () — (T8, Vo) dE s
if (t,x) eli,k=1,...,m
[(Nu)(t, x) - (NV)(¢, %) || £
= llge (@, %, u(t, %) — gi(t, %, v(t, x)) s if (6,%) €k =1,...,m

Thus, we get

(Nu)(£, %) = (NV) (&%) [ £

t—7)1 1 r2 1
< Jo Jo EHmer S =l llu - vilc dt dr
a1
— T (@+r)C(1+r7)

||(NM)(t, x) - (NV)(trx)”E
) 1 ) 1
521 flu - V”PC"’f fx%lfnu—llﬂcdfdt
lra1b"2
<2+ m)”u vipe; if(tx) €l k=1,...,m,

(Nu)(£,%) = (NV)(&: %)l < Lgllu—vilpc;  if (%) € ok =1,...,m.

sl =vipe; i (¢,%) € Lo,

Hence
IN@) - N)| pe- < €llu—vlipc.

By the condition (8), we conclude that N is a contraction. As a consequence of Banach
fixed point theorem, we deduce that N has a unique fixed point v which is a solution of

the problem (1). Then we have

v(t, x) = pu(t,x)
+ [y %f(r E, v e)dEdr; if (£,x) € I,
v(t, %) = @(t) + gk (Sk, %, V(sk, %)) — gk (k5 0, v(s%, 0))
) ro—1 .
fSkfo %f(r Evep)dEdr; if (tx) el k=1,...,m,
V(trx) ng(t;x, (t;x))v lf (t,x) E]k;k = 1;~-~;
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Let u € PC be a solution of the inequality (4). By the differential of this inequality, for each
(t,x) € J, we have
x (t—1 r1—1 r2—1
et %) = 11t,%) - [ [ ,7f(f §,u(g)dE drlle
<, "“f’l,i"f’”cb(r §)dsdrls i (6x) €,
ll24(2, ) — @ (£) = gi (k> %, ulsK, %)) + G (s, 0, (s, 0))
)" 1 )" 1
[y S ey (€ ) dE dr g
) r 1
<1/ ks g D () dE drlles if (63) € ok =1,...m,
||M(t,x) _gk(t’xi (t’x))”E < \p; lf (t7x) e]k;k = 1)"')

Thus, by (H3) for each (£,x) € J, we get

(2, x) )~ fo iy S (1 6 ) d dit
E }"(DCD(t: x): lf (trx) [S 101
lu(t, x) — @(t) — g (sk, %, u(sk, %)) + gk (sx, 0, u(sx, 0))
r r 1
_fsk o ”rzrlizf(f & ue)dé drlle
<xo®(t,x); if(t,x)el,k=1,...,m,
lu(t,x) — ge(t, %, u(t, x) e < V;  if (%) €lik=1,...,m

Hence

llu(t, x) = v(t, %)l e
< Ao ®(t,x)
by T (0 6 ) — f (0,6, Ve ) 2 dE AT
if (¢,x) € I,
llu(t, x) — v(t, x) || £
< Xo®@(t, %) + 2 |lult, x) — v(t, %) ||
fx M If(t,& ue ) —f(T,6, v e) e dé dr;
if (¢,%) eIk,kz 1,...,
llu(t, x) — v(t, x) || £
< W+ [|gk (8, x, ult, %) — gi(t, %, v(E, x)) ||
SVt Lllu(t,x) —vE,x) e if(6x) elik=1,...,m

For each (t,x) € Iy, we have

t ‘L’ rl 1(x E)rz 1
['(r)C(r2)

Jutt ) e < ooty oy [ [ ey = Viesll d d.
We consider the function y defined by

y(t,x) = sup{”u(r,é)—v(r,é)“ @ <1 <t-B<E& §x}; (t,x) e].
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Let (t*,x*) € [-a,x] x [-B,y] be such that y(¢,x) = |lu(t*,x*) — v(t*,x*)||g. If (t*,2*) € 7,
then y(£,x) = 0. Now, if (t*,4*) € J, then by the previous inequality, we have, for (t,x) € J,

rl l(x g)rg -1
F(rl)l"( r2)

Y (6,%) < ko ®(t, x>+zf// J(6x) e d.

From Lemma 2.11, there exists a constant 8; := 6;(r1, r») such that

< Aip(l+ lf81k¢)d>(t,x)

= C1f g0 P(E, %)
Since for every (¢,%) € Iy, |uyllc <y (¢ x), we get
”u(t,x) —v(t,x) ”E < Cifg,® (\IJ + CD(t,x)).
Now, for each (¢,x) € I, k =1,...,m, we have

|| u(t,x) — v(t,x) ||E

< Ao ®(t,x) + 21 ||u(t,x) -t x)HE
r—1 ro—1
y / [ e - e 0] e
I'(ry)
Then we obtain
”u(t,x) —v(t,x) ”E
)\cb lf t px (t _ .L.)rl—l(x _ E)rz—l
< Ecb(t,x)+ 1—21gf NN ||u(r,§)—v(r,§)”5d§dr.

Again, from Lemma 2.11, there exists a constant §; := 8,(r1, 2) such that

l¢8y
||u(tx) V(L‘x)“E_1 2[( (&%) + -2, 9k©(t,x))

A [e8y
< ® 1+ 7o2%e O(t,x)
1-2, " 1-2
= Cgf,gk,qpcb(t,x).

Hence, for each (t,x) € Iy, k =1,...,m, we get
||u(t,x) —v(t,x) ||E < Cof g (\IJ + d>(t,x)).
Now, for each (¢,x) € Ji, k =1,...,m, we have

||u(t,x) —v(t,x) ||E <V + lg||u(t,x) - V(t,x)“E.
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This gives

v
1-1,

|| u(t,x) — v(t,x) ||E < =cfgoV.

Thus, for each (t,x) € Jy, k=1,...,m, we get
ua(t, %) — v(t, %) ||E < cpgo(V + Ot x)).
Set ¢r g0 := MaXe(123) Cif g, 0- Hence, for each (¢,x) € J, we obtain
”u(t,x) —v(t,x) ”E < cf,gk,qj(\ll + CID(t,x)).
Consequently, problem (1) is generalized Ulam-Hyers-Rassias stable. O

4 The phase space B

The notation of the phase space B plays an important role in the study of both qualitative
and quantitative theory for functional differential equations. A usual choice is a semi-
normed space satisfying suitable axioms, which was introduced by Hale and Kato [32].
For any (t,x) € J denote &) := [0,¢] x {0} U {0} x [0,x], furthermore in the case ¢ = a4,
x = b we write simply £. Consider the space (B, ||(-,-)||5) is a seminormed linear space of
functions mapping (—00, 0] x (=00, 0] into E, and satisfying the following fundamental ax-
ioms which were adapted from those introduced by Hale and Kato for ordinary differential
functional equations:

(A1) Ifz:(—o0,a] x (—oo,b] — E continuous on J and z( ) € B, for all (¢,x) € £, then there
are constants H, K, M > 0 such that for any (¢,x) € J the following conditions hold:
(i) 2@y isin B,
(iD) 12(t2)]) < Hlzen|l 5,
(i) llzgwmls <K SUD(z £)e[0,£] x [0,x] llz(z, )l +M5up(f,g)gg(m) lze.6) B,
(Az) for the function z(, -) in (A1), z(,» is a B-valued continuous function on J,
(A3) the space B is complete.

Now, we present some examples of phase spaces [33, 34].

Example 4.1 Let B be the set of all functions ¢ : (—00,0] x (-00,0] — E which are con-
tinuous on [-«, 0] x [-8,0], @, 8 > 0, with the seminorm

lpls= sup  [o(s0)].

(s,)€[-e,0]x[-p,0]

Then we have H = K = M = 1. The quotient space B-= B/|| - |5 is isometric to the space C,
this means that partial differential functional equations with finite delay are included in
our axiomatic model.

Example 4.2 Let y be a real constant and Let C,, be the set of all continuous functions
¢ : (—00,0] x (=00,0] — E for which a limit limjs)|— o0 €” “*? (s, £) exists, with the norm

lplic, = sup e’ (s, 1) .

(s,£)€(-00,0]x(~00,0]

Then we have H =1 and K = M = max{e @9 1}
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Example 4.3 Let o, 8,y > 0 and let

0 0
Iglcr, = swp o0 + / / &5 | (s, )| e ds

(s,t)€[-a,0]x [-B,0]

be the seminorm for the space CL, of all functions ¢ : (—00, 0] x (—00,0] — E which are
continuous on [—«, 0] x [-, 0] measurable on (—o0, —a] X (—00,0] U (00, 0] x (—00, —8],
and such that [¢||cz, < co. Then

0 0
H=1, K://ey(””dtds, M=2.
o

5 Uniqueness and Ulam stabilities results for infinite delay
In this section, we present conditions for the Ulam stability of problem (2). Consider the
space

Q= {u 1 (=00,a] x (=00,b] = E :u ) € Bfor (t,x) € £ and u|; € PC}.

Theorem 5.1 Assume that the following hypotheses hold:

(Hj) There exists a corzsmrztl} > 0 such that

If (&%) = f (6,2, 3) |, < bfllue — 2| 3,

foreach (t,x) € ], and each u,u € B.
(H}) There exist constants lék >0; k=1,...,m, such that

|kt u) — gt )|, < 1, N~ T,

foreach (t,x) € Jx,and eachu,u € E, k=1,...,m.
If

v Klanb
ol " 9
S T+ A+r) ©)

where l = maxy_; ml " then the problem (2) has a unique solution on (—00,a) x (—oo, b].

.....

Furthermore, if the hypothesis (Hs) holds, then the problem (2) is generalized Ulam-
Hyers-Rassias stable.

Proof Consider the operator N' : Q@ — Q2 defined by

(N'u)(t, %) = pu(t, x)
+f0 x%f(r E ueg))dédr; if (t,x) €Iy,
(N'u)(t,%) = (£) + g5k, %, ulsi, %)) — gk, 0, 1u(sk, 0))
L %ﬂf E,ue ) dede;  if (tx) € k=1,...,m,

(N'u)(t, %) = ge(t, %, u(t,x);  if (%) €Ji,k=1,...,m,
(N'u)(t,x) = p(t,x); if (£,x) €]
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Let v(-,-) : (—00,a] x (—o0,b] — E be a function defined by

v(t,x) = u(t,x);  if (4,x) €],
vt x) = ¢(t,x);  if(t,x)e].

Then v ) = ¢ for all (¢,x) € £. For each w € C(J) with w(¢,x) = 0; (¢£,x) € £ we denote by w
the function defined by

w(t,x) =w(t,x); if (t,x) €],
w(t,x)=0; if(tx)e].

If u(., -) satisfies

u(t,x) = u(t, x)

b fy T f( g ) d ;i (6,%) € Do,
u(t,x) = @(t) + gi(Sk, %, u(Si, x)) — gk (sk, 0, u(sk, 0))

[l T u ) dE dT; i (63) € ok =1,..,m
u(t,x) = ge(t, x,u(t,x)); if(t,x)€liuk=1...,m,

then we can decompose u(-,-) as u(t,x) = w(t,x) + v(t,x); (t,x) € J, which implies u ) =

W) + Vit,x), fOr every (¢,x) € /, and the function w(., -) satisfies

w(t,x) = fofo (o™ xg'z 1f(r & W) + Vi) dédr; if (t,x) € Iy,

['(r1)C(r2)
(t:x) = (p(t) +gk(5k,9C, W(Skr ) + V(Sk»x)) gk(skro W(Sk: O) + V(Sk, 0))

r r 1
+fofo ”@721%1 E, W) + Vi) dEdr;  if (t,x) elok=1,...,m
w(t, x) = ge(t,x, w(t, x) + v(t,x));  if (6x) €fik=1,...,m

Set
Co = {w € PC: w(t,x) = 0 for (t,x) € 5},

and let || - ||(4,5) be the seminorm in Cy defined by

Wllap = sup WexllB + (sup ”w(t x) ” = (sup ”w tx)|[; weCp.

(t,x)eE

Cy is a Banach space with norm || - || (4. Let the operator P: Cy — C; be defined by

(Pw)(t,x) = [y fi CEE T (0 6 Wy + v dEdrsif (6,x) € Do,
(Pw)(t,x) = @(t) + gk (sk, %, W(sk, %) + V(Sk, %)) — gk (8K, 0, W(s, 0) + v(sk, 0))
+ 3 o e (0, W) + View) dE s
if (t,x) e i,k=1,...,m,

(Pw)(t,x) = gi(t, 2, w(t, x) + v(t,x));  if (&,x) € Ji,k=1,...,m
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Then the operator N’ has a fixed point is equivalent to P has a fixed point. We shall show
that P: Cy — Cj is a contraction map. Indeed, consider w, w* € Cy. Then, for each (¢,x) €

J, we have

[(Pw)(£,x) — (Pw*)(¢,%) I
<1 fy Jiy R (2,8, Wiy + Vies) —f (T8, Wi gy + Vi) dE dT s
if (¢,x) € I,
[(Pw)(£,x) — (Pw*)(¢,%) | £
< Nl gk (s, %, Wsk, %) + V(sk, x)) = gic(sk %, W (1, %) + v(sx, %)) | £
+ [lgi(sk, 0, W(sk, 0) + V(sk, 0)) — gk(sk, 0, W* (sx, 0) + (s, 0))l| £
S S T (£(0, 8, T ) + Vi) — (1,6, W) + Vie) dE dT
if (%) € ok =1,...,m
[(Pw)(£,x) — (Pw*)(¢,%) I
= || gk (&, %, Wi, x) + v(t, %)) — gk (&, %, W (8, %) + v(E,x) || if (6,x) € Jik=1,...,m

Thus, we get

|(Pw)(t, x) — (Pw*)(t, %)l £
r1—-1 ro—1 _ —
< fo x Mﬁ ||W(r,g) _ W?T,E) || dt dt

)
1 ) -1
* (- ),1_ (i =
= fo : T x ) lfsuP (r.6)el0,6x [0 1W(z.6) — Wzkr,g)” dé dr
Kl/ rl 2
= T

[(Pw)(t, x) — (Pw*) (¢, %)l
<20 [z, 6) - (2,6)|
L 5 TSP ytoutos) IWtce) = Wil d T
<@+ %)uw T s 62 € lok=1,...,m,
(Pw)(t, %) — (Pw*)(&, %) £
< Llw(z, &) -w* (7, )l
S LW =W ll@ps;  if (&%) €k=1,...,m

IIW Will@ps  if (£,%) € Lo,

Therefore
”P(W) - P(w") H (@h) = 2 HW -w H(u,b)

By the condition (9), we conclude that P is a contraction. As a consequence of Banach

fixed point theorem, we deduce that P has a unique fixed point v. Then we have

()= [y f EEEE g W v v dEd i (1) € Do,
Pw)(t, %) = @(t) + gk (sk % W* (5, %) + V(s> %)) — k(Sk, 0, W* (sx, 0) + v(sx, 0))
1L.r l r 1
+f5k I %f(t E W), o) + Vieg) dE dT;
if (t,x) e i,k=1,...,m,

(Pw)(t,x) = gr(t, %, W (¢, %) + v(t,x));  if (t,x) € Jik=1,...,m
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Let w € C be a solution of the inequality (4). By differential this inequality, for each (£, x) €

J, we have

Iwt %)= [y Jo %f(r Eug)dédtle
< | fy 5 eRe  g(r, g)de de g if (1) € Lo,
l|u(t, x) — @(t) — gk (sk, %, u(sk, %)) + gi(sk, 0, u(sk, 0))
e (6, e ) dE dT |
< fy f EFSe (g, g)de dulg; if (6x) € ok =1,...,m

llee(t, x) — gi(t, 2, u(t, %) | < V;  if ((,x) €, k=1,...,m

Thus, by (H3) for each (¢, x) € J, we get

X T ro-1 _
lua(t, %) )= Jo o EE O (1 £ T g+ Vie ) dE dT g
S }"GDCD(t’ x)r lf (t»x) € IO)
llu(t, %) — @(t) — gr(Sks 2, WSk, %) + V(sk, %)) + gk (x5 0, W(sk, 0) + v(s, 0))
r r 1
‘fsk Jo %ﬂf E W) +Viee)dédrlle
<xe®(t,x); if(t,x)el,k=1,...,m,

lu(t,x) — ge(t, %, w(t, x) + v(t,x) e < ¥;  if (%) €eJi,k=1,...,m

Hence

lw(z, %) —w*(&, %)l
< Ao ®(t,x)
by T (£ T ) + V(e ) —f (06, W g+ Vie )l dE T
if (t,x) € I,
lw(, %) — w*(t, %) £
<ho®(t,x) + 2 [W(t, x) - W' (¢, x) ||
L0 T e (2,8, e ) + Viee) (1,6, W g+ Vie ) | dE dTs
if (t,x) eli,k=1,...,m
[[w(t, %) —w*(t, %)l
< W+ |\gk(8, %, Wit x) + v(t,x)) — gkt x, W (£, %) + v(t, %)) || £
SV LWt x) - Wi x0)|ls i (6%) €ek=1,...,m

For each (¢,x) € Iy, we have

”w(t,x) —w*(t,x) ||E

=< )@Cb(t,x)

t_ n 1 ro-1 . .
// ?(rl)lic(ﬁf) 8.0 + vien) = (2.6, Wiy + view) | g d d

-0 tx—&)rt —
<ho®(ta)+ lf/ f T (r)T (r2) [We.) = Wie )| g dE .
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However,

||W(M) - Wy ||B <K sup w(s, £).
GDel0,5]x[0,¢]

If we name z(s, t) the right hand side of this inequality, then we have

Wty = Wi | g < 2(t,%),

and therefore, for each (¢,x) € J we obtain

i , t px (t _ r)’l‘l(x _ E)rz—l
||w(t,x) —w¥(t,x) ||E <Ao®(t,x) + lf/o ; TGIT () z(t,&)dE dr.

Using the above inequality and the definition of z, for each (t,x) € J we have

t px r=1(,. _ £\r2-1
2(t,%) < Khod(t,2) + K1, /0 /0 -0 (rl)(lic(rj) 2(z,€) de dr.

From Lemma 2.11, there exists a constant 8; := 6;(r1, r2) such that

2(t,x) < Ko (®(t,x) + Kl:511; (¢, %))
< Kho(1+ Kif8120) (2, %)

= c’l,f’gk@(D(t, x).
Thus, for each (¢,x) € I, we obtain

||w(t,x) —w(t,x) ||E

t prx _ A \V1-1(, _ g\2-1
Skq’cp(t’x)”}/o /0 : Tl”)(n)(lic(rj) g (08 dEdr

<(ro+ l}cif,gk@)nqﬁd)(t,x)

= Cfg,0 P(6 %),
Hence, for each (t,x) € Iy, we get
”u(t,x) —v(t,x) ”E < Cifg® (\If + ®(t, x)).
Now, for each (¢,x) € I, k =1,...,m, we have

”w(t,x) —w(t, x) ”E
<Xlo®(t,x) + 21‘; ||W(t,x) - w'(t,x) ||E

t x(t_.[)rl—l(x_%-)rz—l
”f/sk o Tl

[ Wee ey = Wi e | s 46 .

Page 16 of 22
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Then we obtain

”w(t,x) —w(t, x) ||E

4

l t X _ -1, g\r2-1
' -1 (x-§)
=1- 21f P+ 1-21;/ T(r)T(r)

W) = Wie )| g 46 .

Again, from Lemma 2.11, there exists a constant 8, := §,(ry, ;) such that

Kia
t, <
4=

e J N
S ® 1+ A i qD(tix)
1-25, \" " 1-2],

KlfS
(d>(t x) + 57 I;kd)(t,x))

1= Oy f g0 P ),
and, then

|| w(t,x) — w*(t,x) ||E

l/ t x(t—l’)rl_l(x—g)rz_l
f /
o, ®(r,6)dEd
_1 21/ (6 1_21‘2/ I'(r)(r2) Cof o ®(T:§)dé dr
Ao + UAoC,
_rorhreSge o
1—2&
= C2f,gk,<1>q>(t» x).

Hence, for each (¢,x) € Iy, k = 1,...,m, we get
(e, ) = v(,2) ||, < oo (W + D(2,5)).
Now, for each (¢,x) € Ju, k = 1,...,m, we have
[wt, %) = w* (&) |, < W + L[ wit, %) - w* (6,) |

This gives

|| u(t,x) — v(t,x) ||E < =c g0V

v
1-1,
Thus, for each (¢,%) € Ji, k=1,...,m, we get

|u(t,x) = (£, 2)|| ; < capgo (W + (2, %)).
Set ¢r g0 := MaXe(123) Cif,q,0- Hence, for each (¢,x) € J, we obtain
|t ) — v ||E < g0 (¥ + (4,x)).

Consequently, problem (2) is generalized Ulam-Hyers-Rassias stable. O
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6 Examples
Example 6.1 Let E = ' = {w = (W, wa,...,Wy,...) : D oc; [W,| < 00}, be the Banach space

with norm

o0
Iwlle = lwal.
n=1

Consider partial fractional differential equations with noninstantaneous impulses and fi-
nite delay of the form

Engu(t,x) =f(t,x,u(t-1,x-2)); if (¢x) € ([0,1]U(2,3]) x [0,1],k € {0,1},
u(t,x) = g(t, x,u(t,x)); if(t,x) € (1,2] x [0,1],

u(t,x) =1+x%+¢; (t,x) e[-1,3] x [-2,1]\ (0,3] x (0,1], (10)
ut,0)=1+¢; te]0,3],

u(0,%) =2 +x% x€]0,1],

where r = (r,r3) € (0,1] x (0,1], 69 = (0,0), 0, =(2,0), 0 =-1,8=-2,0=50 <1 =1<s =
2<t2 :3:M:(M11u2;~~-rum~~)rf:(flr 2;'“)f;1,~~);g:(gng)'H;gn}'“))

(4 7 (4 7 4 4 (4 7
Dyu = ( Dy, “Dyus, ..., Deun,...),

t,x, = ;0 (¢ 0,11U (2,3 0,1 d N,
Bl ) = o st (62 € (0,1 UR,3) x (0.1 and n e
C:= C(1,2) and
__ 1 2, .2 .
gu(t, %, uy,) = 1+ 11055 arctan(t +x°+ |u,,|), (t,x) € (1,2] x [0,1] and n € N.

Clearly, the functions f and g are continuous. For each n € N, u,% € E and (¢,x) € ([0,1] U
(2,3]) x [0,1], we have

_ 1 _
lf;i(tfx’ un(t,x)) —ﬁ,(t,x, un(t,x))| < ﬁ ”un - un”C'

Thus, for each u,u € E and (¢,x) € ([0,1] U (2,3]) x [0,1] we get

00
“f(t! X, u(t,x)) _f(tr X, ﬁ(t,x)) ”E = Z lﬂl(tr X, M(t,x)) _fn(t: X, ﬁ(t,x))‘

n=1

1 o0
< u,—u
< 11;” = Unllc

—

1 _
= ﬁ”un —Uyllc.

Also, foreach n e N, u,u € E and (¢, x) € (1,2] x [0,1], we get

(6% u(t,2) - g (63 76 0) |, < — llu — @l
111
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Hence the conditions (H;) and (H,) are satisfied with [r = [, = ﬁ We shall show that

condition (8) holds with a = 3 and b = 1. Indeed, for each (r1,7;) € (0,1] x (0,1] we get

lra" b"
+ —_—
IF'd+r)TA+r)
2 31
= —+
111 111CA+r)TQA + 7o)

=2,

By Theorem 3.4, the problem (10) has a unique solution defined on [-1, 3] x [-2,1]. Finally,
the hypothesis (H3) is satisfied with ®(¢,x) = tx*> and Ao = W‘?@m) Indeed, for each
(¢,x) € [0,3] x [0,1] we get

. [(2)[(3)tl 12+ 2 x 3"¢x?
(I5®)(t%) = < = Lo ®(t,%).
Fr+rm)T'B+r) " TR2+rn)ITB+r)

Consequently, Theorem 3.4 implies that the problem (10) is generalized Ulam-Hyersdz-
Rassias stable.

Example 6.2 Consider now partial differential equations with noninstantaneous im-
pulses and infinite delay of the form

Cngu(t,x) =f(t, % uey); if (tx) € ([0,1]U(2,3]) x [0,1],k € {0,1},
u(t,x) = g(t, x,u(t,x); if(5,x) € (1,2] x [0,1],

ult,x) =t +x%  if (t,x) €] := [-00,3] x [~00,1]\ (0,3] x (0,1],
u(t,0)=t tel0,3],

u(0,x) =x% x¢€0,1],

©(0) = ¥(0),

where

r= (7’1,7’2) S (0, 1] X (O, 1], 9() = (O, 0), 91 = (2, 0),

O=sp<ti=1<s51=2<t=3,

Cet+x—y(t+x) ” U(r) ”

(e + e~ =) (L + |lasem) |

ft, %, uey) = ; if (5,x) € ([0,1] U (2,3]) x [0,1],

11x3"1

C= Ry ¥ > 0 and
1 )
g(t,x,u) = L1106+ arctan(t +x°+ |u|); (t,x) € (1,2] x [0,1].
Let

B, = {u IS C((—oo, 0] x (—oo,O],IR) : o Li)mnﬁooey(‘””)u(@, n) exists in R}.
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The norm of B, is given by

llull, = sup e? @+ |u(0, n)|.
(0,m)€(~00,0]x (~00,0]

Let
£:=10,1] x {0} U {0} x [0,1],
and u : (—00,3] x (—00,1] — R such that u,) € B, for (t,x) € £, then
lim ey<9+">u(,,x>(9, )= lim @1y,

1©m|—o0 1©ml—oc

=e’®)  lim u(9,n) < co.
1@,m)l—o00

Hence u,) € B,. Finally we prove that

e lly = K sup{|u(z,8)] : (z,6) € [0,2] x [0,x1} + Msup{llu)ly : (7. §) € Eem |,
where K=M=1and H=1.1If£t+6 <0,x +1n <0 we get

40|l = sup{|u(z, &) : (r,§) € (—00,0] x (-00,0]},
and if £+ 6 > 0, x + n > 0 then we have

lueolly, = sup  |u(z,§)|.
(t&)<l01x[04]

Thus for all (t + 6,x + n) € [0,3] x [0,1], we get

lumlly = sup lu(z,&)] +  sup  [u(z,8)].
(7,6)€(=00,0]x(-00,0] (z.6)€[0,£]x[0,x]
Then
luenll, = sup lugply +  sup  |ulst)].
(st)eE (s,£)€[0,6]x[0,2]
(B, |l - Ily) is a Banach space. We conclude that B, is a phase space.

For each u,u € B, and (¢,x) € ([0,1] U (2, 3]) x [0,1], we have

e lu —ullg

Lf(t,x, Uew) —f (6%, ﬁ(t,x))| = m

< —llu—uls.
c

Hence condition (H,) is satisfied with [y = % Also, foreach u,u € Rand (¢,x) € (1,2] x [0,1],
we have we get

’g(t,x,u(t,x)) —g(t,x, ﬁ(t,x))| < %m -ul.
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Hence the condition (H) is satisfied with [, = ﬁ We shall show that condition (9) holds
with a =3 and b = K = 1. Indeed,

Klf/a’lb’2
=2l 4y ———————
E TA+r)TA+719)
2 31

= —+
11 TFA+r)IA+7r)
2 1 3

<= +—=—<
1 11 1

1.

By Theorem 5.1, the problem (11) has a unique solution defined on (-o00,3] x (—00,1].
Moreover, the hypothesis (Hj) is satisfied with ®(¢,x) = £x> and Ag = #ﬁr@m) Indeed,
for each (z,x) € [0,3] x [0,1] we get

_ TQr3)e x> . 2X 31 tx?
TTR+mTB+r) ~TR+r)B+m)

(I;®)(t,x) = Ao D(t, %).

Consequently, Theorem 5.1 implies that the problem (11) is generalized Ulam-Hyers-
Rassias stable.
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