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Abstract
This study is concerned with the problem of finite-time state estimation for T-S fuzzy
stochastic jumping neural networks, where the communication links between the
stochastic jumping neural networks and its estimator are imperfect. By introducing
the fuzzy technique, both the nonlinearities and the stochastic disturbances are
represented by T-S model. Stochastic variables subject to the Bernoulli white
sequences are employed to determine the nonlinearities occurring in different sector
bounds. Some sufficient conditions for the existence of the state estimator are given
in terms of linear matrix inequalities, whose effectiveness are illustrated with the aid
of simulation results.
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1 Introduction
Over the past decades, an enormous number of works have been significant as regards
various neural networks because of wide applications, such as signal processing, pattern
recognition, solving nonlinear algebraic equations, and so on. Therefore, numerous works
which have been considered in the stability analysis performance behavior of neural net-
works [–]. Over the past decades, the stochastic jumping neural network (SJNN) has
been widely investigated due to random changes in the interconnections of dynamic net-
work nodes, and many works have been devoted to the study of SJNN [–]. It is well rec-
ognized that the time delays are frequently encountered in many practical systems, such as
communication systems, neural networks and engineering systems etc., which is the main
source of poor performance in the system. It is noted that, because of finite speed, the dis-
crete delay always involves the information processing. Therefore, the stability problem
for the discrete-time stochastic jumping neural network (DTSJNN) has attracted a con-
siderable amount of attention; see [–] and the references therein.

However, complexity and uncertainty as well as vagueness exist in the dynamic systems,
which can be described by fuzzy theory. It is noted that T-S fuzzy systems give a local
linear representation of the considered nonlinear dynamic system, which involve of a set
of IF-THEN rules. It is reasonable that nonlinear systems are modeled by a set of lin-
ear sub-models with the aid of a T-S fuzzy model [–]. Originally, the linear models

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13662-017-1108-3
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-017-1108-3&domain=pdf
mailto:huilingduan@sohu.com


Duan and Peng Advances in Difference Equations  (2017) 2017:54 Page 2 of 17

are introduced to represent the local dynamics of state space regions. Recently, various
previous results have been considered on the stability and other dynamical behaviors of
T-S fuzzy neural networks [–] and stochastic differential equations with fuzzy rules
[–]. However, in the existing literature, the proposed state estimator design methods
were based on knowledge of communication between the neural network and the esti-
mator are perfect. However, in many practical systems, the communication may be partly
available. It is necessary to study such general SJNN with unreliable communication links
(UCLs) [–], which was neglected in the aforementioned literature. On the other hand,
most obtained results concern an infinite-time interval. Compared with the infinite-time
one, a finite-time possesses performance of fast convergence and achieves better stability
properties. Therefore, many scholars have devoted their studies to the finite-time stability
problem for nonlinear systems without delay [] and with delay [–]. From [–,
–] and the references therein it is apparent that researchers in this field have not es-
tablished an estimation problem for fuzzy DTSJNN with UCLs so far. A natural question
is how to cope with the finite-time state estimation problem for T-S fuzzy DTSJNN with
UCLs. To the best of our knowledge, such a question has not been fully studied.

Motivated by the above discussion, we present a new and more relaxed technique to
study the finite-time state estimation for T-S fuzzy stochastic jumping neural networks
subject to UCLs. This paper gets more information as regards large and small activation
functions, which covers some existing activation functions as special cases. A new random
process is introduced to model the phenomenon of signal transmission, and some delay
dependent sufficient conditions are given by implementing the Lyapunov functional. Fi-
nally a numerical example has been offered to show the effectiveness of the proposed ap-
proach.

Notation: Rn denotes the n-dimensional Euclidean space; the superscripts – and T de-
note the inverse and transpose, respectively. · denotes the expectation operator with re-
spect to some probability measure. The symbol He(Q) is used to represent Q + Qᵀ. ∗ is
employed to represent a term that is induced by symmetry. ⊗ denotes the Kronecker prod-
uct. es = [n×(s–)n In n×(–s)n] (s = , , . . . , ).

2 Preliminaries
Given a probability space (�, F ,ρ) where � is the sample space, F is the algebra of events,
and ρ is the probability measure defined on F . The T-S fuzzy DTSJNNs over the space
(�, F ,ρ) are given by the following model:

Plant Rule i:

IF ξ is Mi and . . . and ξp is Mip

THEN
⎧
⎨

⎩

x(k + ) = Ai(rk)x(k) + Bi(rk)f (x(k)) + Ci(rk)g(x(k – τ (k))) + Di(rk)ω(t)

y(k) = Ci(rk)x(k) + Ci(rk)x(k – τ (k)),
()

where x(k) ∈ R
n and y(k) ∈ R

p represent state and output measured vector, respectively.
The external disturbance ω(k) ∈ R

q is a disturbance signal that belongs to l[,∞) and
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satisfies

E
{ N∑

k=

ωᵀ(k)ω(k) ≤ d

}

, d ≥ . ()

The stochastic jump process {rk , k ≥ } is a discrete-time, discrete-state Markov chain
taking values in a finite set L = {, , . . . , s} with transition probabilities πlm given by
∑s

m= πlm = , πlm > , l ∈ L. ξj and Mij (i = , , . . . , q, j = , , . . . , p) are, respectively, the
premise variables and the fuzzy sets, q is the number of IF-THEN rules. The fuzzy basis
functions are given by

hi
(
ξ (k)

)
=

∏p
j= μij(ξj(k))

∑q
i=
∏p

j= μij(ξj(k))
,

in which μij(ξj(k)) represents the grade of membership of ξj(k) in μij. It is obvious that
∑q

i= hi(ξ (k)) =  with hi(ξ (k)) > . The transmission delay τ (k) is time-varying and satisfies
 < τ ≤ τ (k) ≤ τ, where τ and τ are known constants. f (x(k)) and g(x(k – τ (k))) are the
neuron activation functions.

Utilizing the centroid method for defuzzification, the fuzzy system () is inferred as fol-
lows:

⎧
⎪⎪⎨

⎪⎪⎩

x(k + )

=
∑q

i= hi(ξ (k))[Ai(rk)x(k) + Bi(rk)f (x(k)) + Ci(rk)g(x(k – τ (k))) + Di(rk)ω(t)],

y(k) =
∑q

i= hi(ξ (k))[Ci(rk)x(k) + Ci(rk)x(k – τ (k))].

()

Throughout the paper, it is definitely understood that the actual input available to the
desired estimator is yas(k). In the early research of state estimation for neural networks,
the signals’ transmissions were assumed to be in an ideal communication link, that is,
yas(k) = y(k). However, there exists a spot with transmission from the sensor to the es-
timator in the real world. The missing data phenomenon was modeled by introducing a
stochastic Bernoulli approach, which is employed to described the UCL, and the relation-
ship between yas(k) and y(k) can be described by

yas(k) = � (k)y(k), ()

where the stochastic variable � (k) is Bernoulli-distributed white noise sequence specified
by the following law:

Pr
{
� (k)

}
= � , ()

where � ∈ [, ] is a known constant. Obviously, � =  means the information of com-
munication link (CL) is not available. Similarly, � =  means the information of CL is
available. For the stochastic variable � (k), it is easy to see that

E
{
� (k) – �

}
= , E

{∣
∣� (k) – �

∣
∣
}

= � ( – � ). ()
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For the T-S fuzzy SJNN (), the state estimator is presented as follows:

x̂(k + ) =
q∑

i=

hi
(
ξ (k)

)[
Ai(rk)x̂(k) + Bi(rk)f

(
x̂(k)

)
+ Ci(rk)g

(
x̂
(
k – τ (k)

))

+ Ki(rk)
(
yas(k) – Ci(rk)x̂(k) – Ci(rk)x̂

(
k – τ (k)

))]

=
q∑

i=

hi
(
ξ (k)

)[
Ai(rk)x̂(k) + Bi(rk)f

(
x̂(k)

)
+ Ci(rk)g

(
x̂
(
k – τ (k)

))

+ Ki(rk)
(
� (k)y(k) – Ci(rk)x̂(k) – Ci(rk)x̂

(
k – τ (k)

))]
, ()

where x̂(k) is the estimate of the state x(k) and for each rk ∈ L, Ki(rk) is the estimator
parameter to be determined.

Let x(k) = (e(k), e(k), . . . , en(k))ᵀ = x(k) – x̂(k) be the state error and the output estima-
tion error. f (e(k)) = f (x(k)) – f (x̂(k)) and g(e(k)) = g(x(k)) – g(x̂(k)). For convenience, we
denote Ai(rk) = Ai,l , and the other symbols are similarly represented. The resulting esti-
mation error is governed by

e(k + ) =
q∑

i=

hi
(
ξ (k)

)
q∑

i=

hj
(
ξ (k)

)[
(Ai,l – Ki,lCj,l)e(k) – Ki,lCj,le

(
k – τ (k)

)

+ Bi,lf
(
e(k)

)
+ Ci,lg

(
e
(
k – τ (k)

))
+ ( – � )Ki,lCj,lx(k)

–
(
� (k) – �

)
Ki,lCj,lx(k) + ( – � )Ki,lCj,lx

(
k – τ (k)

)

–
(
� (k) – �

)
Ki,lCj,lx

(
k – τ (k)

)
+ Di(rk)ω(t)

]
. ()

In the following, we introduce a new vector η(k) = [xᵀ(k) eᵀ(k)]ᵀ, f (η(k)) =
[f ᵀ(x(k)) f ᵀ(e(k))]ᵀ, and g(η(k – τ (k))) = [gᵀ(x(k – τ (k))) gᵀ(e(k – τ (k)))]ᵀ, the state es-
timation for SJNN can be represented as follows:

η(k + ) = Ai,lη(k) + Ai,lη
(
k – τ (k)

)
+ Bi,lf

(
η(k)

)
+ Ci,lg

(
η
(
t – τ (k)

))

+ Di,lω(k) +
(
� (k) – �

)
MKi,lCj,lNη(k)

+
(
� (k) – �

)
MKi,lCj,lNη

(
k – τ (k)

)
, ()

where

Ai,l =
q∑

i=

hi
(
ξ (k)

)
q∑

j=

hj
(
ξ (k)

)
[

Ai,l 
( – � )Ki,lCj,l Ai,l – Ki,lCj,l

]

,

Ai,l =
q∑

i=

hi
(
ξ (k)

)
q∑

j=

hj
(
ξ (k)

)
[

 
( – � )Ki,lCj,l –Ki,lCj,l

]

,

Bi,l =
q∑

i=

hi
(
ξ (k)

)
[

Bi,l 
 Bi,l

]

, Ci,l =
q∑

i=

hi
(
ξ (k)

)
[

Ci,l 
 Ci,l

]

,

Di,l =
q∑

i=

hi
(
ξ (k)

)
[

Di,l

Di,l

]

, M =

[

–I

]

, N = [I ].
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Definition . ([, ]) The augmented T-S fuzzy MJNN () with ω(k) =  is said to be
stochastically finite-time stable (SFTS) with respect to (c, c, R, N), if there exist a positive
matrix R and scalars c, c > , such that

E
{

xᵀ(k)Rx(k)
}≤ c ⇒ E

{
xᵀ(k)Rx(k)

}
< c,

∀t ∈ {–τ, . . . , –, }, t ∈ {, , . . . , N}.

Definition . ([, ]) The augmented T-S fuzzy MJNN () is said to be stochastically
finite-time bounded (SFTB) with respect to (c, c, R, N , d), if there exist a matrix R >  and
scalars c, c > , such that

E
{

xᵀ(k)Rx(k)
}≤ c ⇒ E

{
xᵀ(k)Rx(k)

}
< c,

∀t ∈ {–τ, . . . , –, }, t ∈ {, , . . . , N}.

Lemma . ([]) Let X = Xᵀ, Y and Z be real matrices of appropriate dimensions with L
satisfying LᵀL ≤ I , the following inequality holds:

X + YLZ + ZᵀLYᵀ < 

if and only if there exists a positive scalar ε >  such that

X + εYYᵀ + ε–ZᵀZ < .

Remark  In [], it is found that the neuron state-based nonlinear functions f (·) and g(·)
are related to η(k) and η(k – τ (k)), respectively, which cannot be handled directly by the
Matlab tool. Notice that f () = , g() = , one has

[
f (μ) – f (ν) – U(μ – ν)

]ᵀ[f (μ) – f (ν) – U(μ – ν)
]≤ ,

[
g(μ) – g(ν) – V(μ – ν)

]ᵀ[g(μ) – g(ν) – V(μ – ν)
]≤ ,

where U, U, V and V are real matrices with compatible dimensions. In this paper, f (·)
and g(·) are mode-dependent nonlinear functions:

[
f
(
η(k)

)
– Ulη(k)

]ᵀ[f
(
η(k)

)
– Ul

(
η(k)

)]≤ ,
[
g
(
η
(
k – τ (k)

))
– Vlη

(
k – τ (k)

)]ᵀ[g
(
η
(
k – τ (k)

))
– Vl

(
η
(
k – τ (k)

))]≤ ,
()

where Ul , Ul , Vl , and Vl are real matrices with appropriate dimensions. It will be used
in the proof of our results.

It is noted that tr(Ul) ≤ tr(Ul) and tr(Vl) ≤ tr(Vl). In such a case, one finds that
f (η(k)) ∈ [Ul, Ul] and g(η(k – τ (k))) ∈ [Vl, Vl]. One has

χ(k) =

⎧
⎨

⎩

 if f (η(k)) ∈ [Ul, Ul],

 if f (η(k)) ∈ [Ul, Ul],
χ(k) + χ(k) = ,

κ(k) =

⎧
⎨

⎩

 if g(η(k – τ (k))) ∈ [Vl, Vl],

 if g(η(k – τ (k))) ∈ [Vl, Vl],
κ(k) + κ(k) = ,



Duan and Peng Advances in Difference Equations  (2017) 2017:54 Page 6 of 17

where χ(k) and κ(k) are two independent Bernoulli-distributed sequences satisfying

Pr
{
χ(k) = 

}
= χ, Pr

{
χ(k) = 

}
=  – χ,

Pr
{
κ(k) = 

}
= κ, Pr

{
κ(k) = 

}
=  – κ,

which yields

[
f
(
η(k)

)
– Ulη(k)

]ᵀ[f
(
η(k)

)
– Ul

(
η(k)

)]≤ ,
[
f
(
η(k)

)
– Ulη(k)

]ᵀ[f
(
η(k)

)
– Ul

(
η(k)

)]≤ ,
[
g
(
η
(
k – τ (k)

))
– Vlη

(
k – τ (k)

)]ᵀ[g
(
η
(
k – τ (k)

))
– Vl

(
η
(
k – τ (k)

))]≤ ,
[
g
(
η
(
k – τ (k)

))
– Vlη

(
k – τ (k)

)]ᵀ[g
(
η
(
k – τ (k)

))
– Vl

(
η
(
k – τ (k)

))]≤ ,

()

where

f
(
η(k)

)
=

⎧
⎨

⎩

f (η(k)), χ(k) = ,

Ulη(k), χ(k) = ,
f
(
η(k)

)
=

⎧
⎨

⎩

f (η(k)), χ(k) = ,

Ulη(k), χ(k) = ,

g
(
η
(
k – τ (k)

))
=

⎧
⎨

⎩

g(η(k – τ (k))), κ(k) = ,

Vlη(k – τ (k)), κ(k) = ,

g
(
η
(
k – τ (k)

))
=

⎧
⎨

⎩

g(η(k – τ (k))), κ(k) = ,

Vlη(k – τ (k)), κ(k) = .

Therefore, f (η(k)) and g(η(k – τ (k))) can be replaced by

f
(
η(k)

)
= χ(k)f

(
η(k)

)
+ χ(k)f

(
η(k)

)
,

g
(
η
(
k – τ (k)

))
= κ(k)g

(
η
(
k – τ (k)

))
+ κ(k)g

(
η
(
k – τ (k)

))
.

()

3 Main results
The following is the main result of this paper.

Theorem . For given scalars N > , α > , c > , c >  and d > , the system () is SFTB
if there exist symmetric matrices Pl > , Qs >  (s = , , ), Rn >  (n = , ), Sl >  and
appropriately matrices Hs (s = , , ), Xnl > , Ynl >  (n = , ) such that, for any l ∈L, the
following LMIs hold:

⎡

⎢
⎣

�l ∗ ∗
�l �l ∗
�l  �l

⎤

⎥
⎦ < , ()

ψc + ψρ + λd < λcα
–N , ()



Duan and Peng Advances in Difference Equations  (2017) 2017:54 Page 7 of 17

where

�l = eᵀ (Q + Q + Q)e – eᵀ Qe – eᵀ Qe – eᵀ Qe + eᵀ (τQ + τR + τR)e

+ H(e – e) + H(e – e) + H(e – e) – (α – )eᵀ Ple – eᵀ Sle

– (e – Ule)ᵀXl(e – Ule) – (e – Ule)ᵀXl(e – Ule)

– (e – Vle)ᵀYl(e – Vle) – (e – Vle)ᵀYl(e – Vle),

�l =

[
�

()
l �

()
l

 �
()
l

]

, �l = diag
{

–P–
l , –P–

l , –P–
l , –P–

l , –P–
l , –P–

l
}

,

�l = [√τH
√

τH
√

τH]ᵀ, �l = diag
{

–R, –(R + R), –R
}

,

�
()
l =

⎡

⎢
⎣

√
Ai,l

√
Ai,l  √

� ( – � )MKi,lCj,lN   


√
� ( – � )MKi,lCj,lN  

⎤

⎥
⎦ ,

�
()
l =

⎡

⎢
⎣

   
√

Di,l

    
    

⎤

⎥
⎦ ,

�
()
l =

⎡

⎢
⎢
⎢
⎣

√
χBᵀ

i,l    


√
χBᵀ

i,l   
 

√
κCi,l  

  
√

κCi,l 

⎤

⎥
⎥
⎥
⎦

,

Pl =
q∑

m=

πlmPm, τ = τ – τ,

ψ = λ + τλ + τMλ + τMλ +


τ(τ + τ – )λ,

ψ =


[
τ(τ + τ – )λ + τ(τ – )λ

]
,

λ = max
l∈L

λmin(Pl), λ = max
l∈L

λmax(Pl), λ = λmax(Q), λ = λmax(Q),

λ = λmax(Q), λ = λmax(R), λ = λmax(R), λ = max
l∈L

λmax(Sl),

Pl = R– 
 PlR– 

 , Qs = R– 
 QsR– 

 (s = , , ), Rs = R– 
 RnR– 

 (n = , ).

Proof Let us construct the following Lyapunov functional of the form

V
(
η(k), rk

)
=

∑

n=

Vn(xk , rk), ()

where

V
(
η(k), rk

)
= xᵀ(k)Plx(k), ()

V
(
η(k), rk

)
=

k–∑

s=k–τ

ηᵀ(s)Qη(s) +
k–∑

s=k–τ (t)

ηᵀ(s)Qη(s) +
k–∑

s=k–τ

ηᵀ(s)Qη(s), ()
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V
(
η(k), rk

)
=

–τ∑

s=t–τ+

k–∑

s=k+t

ηᵀ(s)Qη(s) +
–τ–∑

t–τ

k–∑

s=k+t

ςᵀ(s)Rς (s)

+
–∑

t=–τ

k–∑

s=k+t

ςᵀ(s)Rς (s), ()

with ς (k) = η(k + ) – η(k).
Let E{�V (η(k), rk)} = E{V (η(k + ), rk+ = j) | rk = i – V (η(k), rk = i)}. Then we have

E
{
�V

(
η(k), rk

)}
=
{
ηᵀ(k + )Plη(k + ) – xᵀ(k)Plx(k)

}

= ϕᵀ(k)

{

[Ai,le + Ai,le + Di,le]ᵀPl[Ai,le + Ai,le + Di,le]

+ [Ai,le + Ai,le + Di,le]ᵀPl

×
(

Bi,l

∑

n=

χne+n + Ci,l

∑

s=

κse+s

)

+
∑

n=

χneᵀ+nB
ᵀ
i,lPlBi,le+n +

∑

s=

κseᵀ+sC
ᵀ
i,lPlCi,le+s

+ � ( – � )eᵀ (MKi,lCj,lN )ᵀPlMKi,lCj,lN e

+ � ( – � )eᵀ (MKi,lCj,lN )ᵀPlMKi,lCj,lN e

}

ϕ(k), ()

where ϕᵀ(k) = [ηᵀ(k) ηᵀ(k – τ (k)) ηᵀ(k – τ) ηᵀ(k – τ) f ᵀ (η(k)) f ᵀ (η(k)) gᵀ (η(k –
τ (k))) gᵀ (η(k – τ (k))) ωᵀ(k)].

Using Lemma .

ϕᵀ(k)[Ai,le + Ai,le + Di,le]ᵀPlBi,l

∑

n=

χne+nϕ(k)

≤ ϕᵀ(k)[Ai,le + Ai,le + Di,le]ᵀPl[Ai,le + Ai,le + Di,le]ϕ(k)

+ ϕᵀ(k)
∑

n=

χneᵀ+nB
ᵀ
i,lPlBi,le+nϕ(k), ()

ϕᵀ(k)[Ai,le + Ai,le + Di,le]ᵀPlCi,l

∑

s=

κse+sϕ(k)

≤ ϕᵀ(k)[Ai,le + Ai,le + Di,le]ᵀPl[Ai,le + Ai,le + Di,le]ϕ(k)

+ ϕᵀ(k)
∑

s=

κseᵀ+sC
ᵀ
i,lPlCi,le+nϕ(k), ()

E
{
�V

(
η(k), rk

)}
= E
{ k∑

s=k–τ+

ηᵀ(s)Qη(s) –
k–∑

s=k–τ

ηᵀ(s)Qη(s)

+
k∑

s=k–τ (t)+

ηᵀ(s)Qη(s) –
k–∑

s=k–τ (t)

ηᵀ(s)Qη(s)
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+
k∑

s=k–τ+

ηᵀ(s)Qη(s) –
k–∑

s=k–τ

ηᵀ(s)Qη(s)

}

≤ ϕᵀ(k)
{

eᵀ (Q + Q + Q)e – eᵀ Qe – eᵀ Qe – eᵀ Qe
}
ϕ(k)

+
k–τ∑

s=k–τ+

ηᵀ(s)Qη(s), ()

E
{
�V

(
η(k), rk

)}
= E
{ –τ∑

t=–τm+

[ k∑

s=k+t+

ηᵀ(s)Qη(s) –
k–∑

s=k+t

ηᵀ(s)Qη(s)

]

+
–τ–∑

t=–τm

[ k∑

s=k+t+

ςᵀ(s)Rς (s) –
k–∑

s=k+t

ςᵀ(s)Rς (s)

]

+
–∑

t=–τm

[ k∑

s=k+t+

ςᵀ(s)Rς (s) –
k–∑

s=k+t

ςᵀ(s)Rς (s)

]}

= ϕᵀ(k)eᵀ (τQ + τR + τR)eϕ(k) –
k–τm∑

s=k–τ+

ηᵀ(k)Qη(k)

–
k–τm–∑

s=k–τ

ςᵀ(k)Rς (k) –
k–∑

s=k–τ

ςᵀ(k)Rς (k). ()

On the other hand, for any appropriately dimensioned matrices Hs (s = , , ), the fol-
lowing inequalities hold:

 = ϕᵀ(k)H

[

(e – e)ϕ(k) –
k–∑

s=k–τ (k)

ς (s)

]

, ()

 = ϕᵀ(k)H

[

(e – e)ϕ(k) –
k–τ–∑

s=k–τ (k)

ς (s)

]

, ()

 = ϕᵀ(k)H

[

(e – e)ϕ(k) –
k–τ (k)–∑

s=k–τ

ς (s)

]

. ()

From (), for any matrix variables Xnl >  and Ynl >  (n = , ), one has

 ≤ –
(
f
(
η(k)

)
– Ulη(k)

)ᵀXl
(
f
(
η(k)

)
– Ulη(k)

)
,

 ≤ –
(
f
(
η(k)

)
– Ulη(k)

)ᵀXl
(
f
(
η(k)

)
– Ulη(k)

)
,

 ≤ –
(
g
(
η
(
k – τ (k)

))
– Vlη

(
k – τ (k)

))ᵀYl
(
g
(
η
(
k – τ (k)

))
– Vlη

(
k – τ (k)

))
,

 ≤ –
(
g
(
η
(
k – τ (k)

))
– Vlη

(
k – τ (k)

))ᵀYl
(
g
(
η
(
k – τ (k)

))
– Vlη

(
k – τ (k)

))
,

which can be rewritten as

 ≤ –ϕᵀ(k)(e – Ule)ᵀXl(e – Ule)ϕ(k), ()

 ≤ –ϕᵀ(k)(e – Ule)ᵀXl(e – Ule)ϕ(k), ()
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 ≤ –ϕᵀ(k)(e – Vle)ᵀYl(e – Vle)ϕ(k), ()

 ≤ –ϕᵀ(k)(e – Vle)ᵀYl(e – Vle)ϕ(k). ()

Combining ()–(), one has

E
{
�V

(
η(k), rk

)}

= E
{
ϕᵀ(k)(�l + �i,l)ϕ(k)

}

–
k–∑

s=k–τ (k)

{
Hᵀ

 ϕ(k) + Rλ(s)
}ᵀR–


{

Hᵀ
 ϕ(k) + Rλ(s)

}

–
k–τ–∑

s=k–τ (k)

{
Hᵀ

 ϕ(k) + Rλ(s)
}ᵀR–


{

Hᵀ
 ϕ(k) + Rλ(s)

}

–
k–τ (k)–∑

s=k–τ

{
Hᵀ

 ϕ(k) + (R + R)λ(s)
}ᵀ(R + R)–{Hᵀ

 ϕ(k) + (R + R)λ(s)
}

≤ E
{
ϕᵀ(k)(�l + �i,l)ϕ(k)

}
, ()

where

�i,l = [Ai,le + Ai,le + Di,le]ᵀPl[Ai,le + Ai,le + Di,le]

+ � ( – � )eᵀ (MKi,lCj,lN )ᵀPlMKi,lCj,lN e

+ � ( – � )eᵀ (MKi,lCj,lN )ᵀPlMKi,lCj,lN e

+ τHR–
 Hᵀ

 + τH(R + R)–Hᵀ
 + τHR–

 Hᵀ
 .

Let λ = min{�}, then λ >  due to �. Finally from (), we obtain, for any k ≥ ,

E
{
�V

(
η(k), rk

)}
= E
{

V
(
η(k + ), rk+ = j | η(k), rk = i

)}
– E
{

V
(
η(k), rk = i

)}

≤ (α – )ηᵀ(k)Plη(k) + ωᵀ(k)Slω(k)

≤ V
(
η(k), rk

)
+ ωᵀ(k)Slω(k). ()

Taking mathematical expectation on both sides of inequality () and noting that α ≥ ,
it can be shown from () and () that

E
{
�V

(
η(k + ), rk+

)}
< αV

(
η(k), rk

)
+ λmax(Sl)E

{
ωᵀ(k)ω(k)

}

< · · · < αkE
{

V
(
η(), r

)}
+ λmax(Sl)E

{ k–∑

s=

αk–s–ωᵀ(k)ω(k)

}

≤ αkE
{

V
(
η(), r

)}
+ λmax(Sl)αkd. ()
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In view of conditions (), letting Pl = R– 
 PlR– 

 , Qs = R– 
 QsR– 

 (s = , , ) and Rn =
R– 

 RnR– 
 (n = , ), we obtain

E
{

V
(
η(), r

)}
= ηᵀ()Plη() +

–∑

s=–τ

ηᵀ(s)Qη(s) +
–∑

s=–τ (k)

ηᵀ(s)Qη(s)

+
–∑

s=–τ

ηᵀ(s)Qη(s) +
–τ∑

s=t–τ+

–∑

s=t
ηᵀ(s)Qη(s)

+
–τ–∑

t–τ

–∑

s=t
λᵀ(s)Rλ(s) +

–∑

t=–τ

–∑

s=t
λᵀ(s)Rλ(s)

≤ (λmax(Pl) + τλmax(Q) + τMλmax(Q) + τMλmax(Q)

+


τ(τ + τ – )λmax(Q)]c

+


[
τ(τ + τ – )λmax(R) + τ(τ – )λmax(R)

]
ρ. ()

On the other hand, for all l ∈L, it can be seen from () that

E
{

V
(
η(k), rk

)}≥ E
{
ηᵀ(k)Plη(k)

}≥ λmin(Pl)ηᵀ(k)Rη(k). ()

From () and (), we get

ηᵀ(k)Rη(k) <
(ψc + ψρ + λmax(Sl)d)αN

λmin(Pl)
. ()

Noting condition (), it can be derived from () and () that ηᵀ(k)Rη(k) < c for all
k ∈ {, , . . . , N}. �

Remark  To estimate the derivative of the Lyapunov functional, more information is
needed on the slope of neuron activation functions f (η(k)) and g(η(k – τ (k))) derivative
than [–], which yield less conservative results.

Remark  In this brief contribution, the UCL is introduced to save the communication
resource, which was assumed to be perfect in the existing literature. Hence, the applica-
bility of SJNN subject to UCL is reasonable and relatively wide.

Remark  Note that the failures of sensors are mode-dependent and depict that the signal
may vary between actuator and controller, which is extended to the filtering for T-S fuzzy
stochastic jumping neural networks subject to UCLs.

Theorem . For given scalars N > , α > , c > , c > , and d > , the system () is
SFTB if there exist symmetric matrices Pl = diag{Pl, Pl} > , Qs >  (s = , , ), Rn > 
(n = , ), Sl > , and appropriately matrices Hs (s = , , ), Xnl > , Ynl >  (n = , ) such
that, for any l ∈L, the following LMIs hold:

�ij,l + �ji,l <  (i < j), ()
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�ii,l < , ()

ψ c + ψρ + λd < cα
–N , ()

where

�ij,l =

⎡

⎢
⎣

�l ∗ ∗
�ij,l �l ∗
�l  �l

⎤

⎥
⎦ , �ij,l = �

()
ij,l ×

[
�

()
ij,l �

()
ij,l

 �
()
ij,l

]

,

�
()
ij,l =

⎡

⎢
⎣

√
πlIn

√
πlIn · · · √

πlN In√
πlIn

√
πlIn · · · √

πlN In√
πlIn

√
πlIn · · · √

πlN In

⎤

⎥
⎦

ᵀ

,

�
()
ij,l =

⎡

⎢
⎣

√
Āij,l

√
Āij,l  √

� ( – � )M̄ij,l   


√
� ( – � )N̄ij,l  

⎤

⎥
⎦ ,

�
()
ij,l =

⎡

⎢
⎣

   
√

D̄i,l

    
    

⎤

⎥
⎦ ,

�
()
ij,l =

⎡

⎢
⎢
⎢
⎣

√
χB̄ᵀ

i,l    


√
χB̄ᵀ

i,l   
 

√
κC̄i,l  

  
√

κC̄i,l 

⎤

⎥
⎥
⎥
⎦

,

M̄ij,l =

[
 

–Zi,lCj,l 

]

, N̄ij,l =

[
 

–Zi,lCj,l 

]

,

�l = diag{–P – Pl, –P – Pl, . . . , –Ph – Pl︸ ︷︷ ︸
h

, –P – Pl, –P – Pl, . . . , –Ph – Pl︸ ︷︷ ︸
h

,

–P – Pl, –P – Pl, . . . , –Ph – Pl︸ ︷︷ ︸
h

, –P – Pl, –P – Pl, . . . , –Ph – Pl︸ ︷︷ ︸
h

,

–P – Pl, –P – Pl, . . . , –Ph – Pl︸ ︷︷ ︸
h

, –P – Pl, –P – Pl, . . . , –Ph – Pl︸ ︷︷ ︸
h

, },

Āij,l =

[
PlAi,l 

( – � )Zi,lCj,l PlAi,l – Zi,lCj,l

]

,

Āi,l =

[
 

( – � )Zi,lCj,l –Zi,lCj,l

]

, B̄i,l =

[
PlBi,l 

 PlBi,l

]

,

C̄i,l =

[
PlCi,l 

 PlCi,l

]

, Di,l =

[
Pl Di,l

Pl Di,l

]

,

ψ  = λ + τλ + τMλ + τMλ +


τ(τ + τ – )λ,

ψ =


[
τ(τ + τ – )λ + τ(τ – )λ

]
,

λ–
 = max

l∈L
{
λmin(Pl),λmin(Pl)

}
, λ = λmax(Q), λ = λmax(Q),
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λ = λmax(Q), λ = λmax(R), λ = λmax(R), λ = max
l∈L

λmax(Sl),

Pmml = R– 
 PmmlR– 

 (m = , ), Qs = R– 
 QsR– 

 (s = , , ),

Rs = R– 
 RnR– 

 (n = , ).

Moreover, the finite-time state estimator can be constructed by

Ki,l = P–
lZi,l. ()

Proof Letting Pl = diag{Pl, Pl}. Pre- and post-multiplying () by the block-diagonal
matrix Pl = diag{I, I, I, I, I, I, I, I, I, P–

l , P–
l , P–

l , P–
l , P–

l , P–
l , I, I, I} and using the Schur

complement lemma, one has

q∑

i=

q∑

j=

hi
(
ξ (k)

)
hj
(
ξ (k)

)
�̃ij,l < , ()

where

�̃ij,l =

⎡

⎢
⎣

�l ∗ ∗
�̃ij,l �̃l ∗
�l  �l

⎤

⎥
⎦ , �̃ij,l = �

()
ij,l ×

[
�̃

()
ij,l �

()
ij,l

 �
()
ij,l

]

,

�̃
()
ij,l =

⎡

⎢
⎣

√
Ãij,l

√
Ãij,l  √

� ( – � )M̃ij,l   


√
� ( – � )Ñij,l  

⎤

⎥
⎦ ,

M̃ij,l =

[
 

–PlKi,lCj,l 

]

, Ñij,l =

[
 

–PlKi,lCj,l 

]

,

�̃l = diag
{

–PlP–
 Pl, –PlP–

 Pl, . . . , –PlP–
N Pl,

︸ ︷︷ ︸
N

, –PlP–
 Pl, –PlP–

 Pl, . . . , –PlP–
N Pl

︸ ︷︷ ︸
N

,

–PlP–
 Pl, –PlP–

 Pl, . . . , –PlP–
N Pl

︸ ︷︷ ︸
N

, –PlP–
 Pl, –PlP–

 Pl, . . . , –PlP–
N Pl

︸ ︷︷ ︸
N

,

–PlP–
 Pl, –PlP–

 Pl, . . . , –PlP–
N Pl

︸ ︷︷ ︸
N

, –PlP–
 Pl, –PlP–

 Pl, . . . , –PlP–
N Pl

︸ ︷︷ ︸
N

}
,

Āij,l =

[
PlAi,l 

( – � )PlKi,lCj,l PlAi,l – PlKi,lCj,l

]

,

Āi,l =

[
 

( – � )PlKi,lCj,l –PlKi,lCj,l

]

.

It follows that

[Pm – Pl]ᵀP–
m [Pm – Pl] ≥  (m = , , . . . , N),

which leads to

–PlP–
m Pm ≤ Pm – Pl (m = , , . . . , N).
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It follows from () that

q∑

i=

q∑

j=

hi
(
ξ (k)

)
hj
(
ξ (k)

)
�ij,l < . ()

Furthermore, condition () can be written as

q∑

i=

q∑

j>i

hi
(
ξ (k)

)
hj
(
ξ (k)

)
[�ij,l + �ji,l] +

q∑

i=

�ii,l < .
�

4 Illustrative example
Example  Consider the T-S fuzzy Markovian jump neural network () involving two
modes with the following parameters:

A =

[
. 
 .

]

, B =

[
. .

–. .

]

,

C =

[
. .

–. .

]

, D =

[
. 
 .

]

,

A =

[
. 
 .

]

, B =

[
. .

–. .

]

,

C =

[
–. .
–. .

]

, D =

[
. 
 .

]

,

A =

[
. 
 .

]

, B =

[
. .

–. .

]

,

C =

[
. 

–. .

]

, D =

[
. 
 .

]

,

A =

[
. 
 .

]

, B =

[
. .

–. .

]

,

C =

[
. 
. .

]

, D =

[
. 
 .

]

,

C = C = C = C = [ ], C = C = C = C = [–. .],

Ul = Vl =

[
. .
 –.

]

, Ul = Vl =

[
. .
 –.

]

,

Ul = Vl =

[
. .

 –.

]

, l = , .

Moreover, assume that the transition rate matrix is given by

� =

[
. .
. .

]

.



Duan and Peng Advances in Difference Equations  (2017) 2017:54 Page 15 of 17

The nonlinear activation functions f (η(k)) and g(η(k)) are chosen as

f
(
η(k)

)
= g
(
η(k)

)
=
[
.η() + tan h

(
.η()

)
+ .η() – .η() – tan h

(
.η()

)]

and the membership functions h(η(k)) and h(η(k)) are defined as

h
(
η(k)

)
=

⎧
⎨

⎩

.( – η(k)), |η(k)| < ,

, |η(k)| ≥ .

Given the initial values for R = I , c = , d = , N = , α = , τ =  and τ = . By using the
Matlab Toolbox, one has minimum c = .. Therefore, the normal augmented fuzzy
Markovian jump neural network () is SFTB with respect to (, , I, , .).

Remark  In view of the parameters given above, the sector bounds of the activation func-
tions f (η(k)) and g(η(k – τ (k))) are [{Ul, Vl}, {Ul, Vl}]. If the lower and upper bounds of
the activation functions are introduced instead of the probability distribution information,
that is, χ = κ = , χ = κ =  and letting Ul = Vl = [ . .

 –. ], the minimum c = ..
However, if the probability information of the small and large activation functions is em-
ployed, one has minimum c = ..

5 Conclusions
This paper is concerned with the finite-time state estimation problem for T-S fuzzy
stochastic jumping neural networks under unreliable communication links. Stochastic
variables subject to the Bernoulli white sequences are employed to govern the nonlin-
earities occurring in different sector bounds. By employing the reasonable Lyapunov-
Krasovskii functional and using Newton-Leibniz enumerating, sufficient conditions for
the existence of the state estimator are given in terms of linear matrix inequalities. Finally
a numerical example has been offered to show the effectiveness of the proposed approach.
The main results in this paper may be further extended to famous dynamical models, such
as fuzzy semi-Markovian jump systems, which will be dealt with by the authors in future
work.
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