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Abstract
This paper addresses a class of fractional stochastic impulsive neutral functional
differential equations with infinite delay which arise from many practical applications
such as viscoelasticity and electrochemistry. Using fractional calculations, fixed point
theorems and the stochastic analysis technique, sufficient conditions are derived to
ensure the existence of solutions. An example is provided to prove the main result.
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1 Introduction
It is commonly believed that fractional calculus dates back to . Fractional derivatives
supply a powerful tool in describing the memory and hereditary properties of many ma-
terials and processes [, ]. Many researchers have focused their attention on fractional
differential equations. For example, robust stability and stabilization of fractional-order in-
terval systems were investigated in []. Li et al. presented a stability theorem for fractional-
order nonlinear dynamic systems [].

Dynamical behaviors such as existence and stability are basic problems of fractional dif-
ferential equations [–]. Shen and Lam proved that for fractional-order nonlinear sys-
tem described by Caputo’s or Riemann-Liouville’s definition, any equilibrium cannot be
finite-time stable as long as the continuous solution corresponding to the initial value
problem globally exists []. Song and Cao gave some sufficient conditions ensuring the
existence and uniqueness of the nontrivial solution []. In recent years, scholars have paid
more attention to impulsive differential equations. This is mainly because of many pro-
cesses in which their state is changed suddenly at some instants. These phenomena can be
described by impulsive differential equations. So far, there have been several interesting
results that studied the existence of solutions for fractional impulsive differential equa-
tions, see [–] and the references therein.

It is well known that time delays exist in different technical systems which may cause un-
predictable system behaviors. There are some results about integer-order and fractional-
order functional differential equations with infinite delay [, , –]. Sakthivel et al.
studied the existence of solutions for a class of nonlinear fractional differential equations
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with infinite delays by utilizing fractional calculations and a fixed point technique [].
Another kind of time-delay, called neutral-type time-delay, has received considerable at-
tention [–]. Actually, many real delayed systems can be described as neutral differ-
ential equations. The differential expression includes the derivative terms of current state
and past state. In [], Liao et al. gave the existence theorem of solutions for fractional
impulsive neutral functional differential equations with infinite delay by using the Caputo
fractional derivative, Hausdorff’s measure of noncompactness and the theory of Mönch.

Since the real environment is influenced by noise inevitably, it is significant to consider
the dynamical properties for a fractional stochastic impulsive neutral functional differen-
tial equation with infinite delay, especially for the existence of solutions. To the best of our
knowledge, few results have studied this problem, and the aim of this paper is to shorten
this gap.

Motivated by the above discussions, in this paper we aim to study the existence of solu-
tions for fractional stochastic impulsive neutral functional differential equations with infi-
nite delays. In the established model, the stochastic disturbances are described in terms of
a Brownian motion. By using fixed point theorems, we derive sufficient criteria to ensure
the existence of solutions. Moreover, our results take some well-studied models, such as
integer-order functional differential equations with infinite delay, as special cases.

This paper is organized as follows. In Section , we introduce some useful preliminaries.
In Section , we prove the existence of solutions for the fractional-order system under
investigation. In Section , an example is given to demonstrate the correctness of the main
theorems. Conclusions are made in Section .

2 Preliminaries
In this paper, we adopt the symbols as follows: K and K are separable Hilbert spaces.
L(K, K) is the space which contains all the bounded linear operators from K into K. ‖ ·‖
and (·, ·) denote the norm and inner product in K and K. (�,F , {Ft}t≥, P) is a complete
filtered probability space satisfying the fact that F contains all P-null sets of F . W =
{W (t)}t≥ is a Q-Wiener process defined on (�,F , {Ft}t≥, P) with the covariance operator
Q such that TrQ < ∞. E{·} denotes the expectation. It is assumed that Qδk = γkδk , k =
, , . . . , and (w(u), δ)K =

∑∞
k=

√
γk(δk , δ)Kβk(u), δ ∈ K, e ≥ , where {δk}k≥ in K is a

complete orthonormal system, γk is a bounded sequence of nonnegative real numbers,
{βk}k≥ are independent Brownian motions.

We discuss the following fractional functional differential equations:

⎧
⎪⎨

⎪⎩

cDα
u[x(u) + g(u, xu)] = f (u, xu) + σ (u, xu) dW (u)

du , u ∈ H = [, T], u �= uk ,
�x(uk) = Ik(x(uk)), u = uk , k = , , . . . , m,
x(u) = ξ (u) ∈ Bh, u ∈ (–∞, ],

(.)

where cDα
u denotes α-order Caputo fractional derivative, α > 

 ; x(·) ∈ K. The history xu :
(–∞, ] → K, xu(v) = x(u+v) ∈ Bh, v ≤ . f : H ×Bh → K, g : H ×Bh → K, σ : H ×Bh →
L

, Ik : Bh → K (k = , , . . . m) are appropriate functions. Here  = u ≤ u ≤ · · · ≤ um ≤
um+ = T , �x(uk) = x(u+

k ) – x(u–
k ), x(u+

k ) = limε→+ x(uk + ε) and x(u–
k ) = limε→+ x(uk – ε).

ξ = {ξ (u), u ∈ (–∞, ]} denotes the initial condition, and it is an F-measurable Bh-values
random variable which is independent of ω.

We adopt the following symbols in [].
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Suppose h : (–∞, ] → (,∞) is a continuous function satisfying l =
∫ 

–∞ h(u) du < ∞.
Define the space Bh by

Bh =
{

ξ : (–∞, ] → K, for any a > ,
(
E
∣
∣ξ (θ )

∣
∣) 

 is a bounded and measurable

function on [–a, ] with ξ () =  and
∫ 

–∞
h(v) sup

v≤θ≤

(
E
∣
∣ξ (θ )

∣
∣) 

 dv < ∞
}

.

Let ‖ξ‖Bh =
∫ 

–∞ h(v) supv≤θ≤(E|ξ (θ )|) 
 dv, ξ ∈ Bh, then (Bh,‖ · ‖Bh ) is a Banach space.

Define the space

Bb =
{

x : (–∞, T] → K such that x|Hk ∈ C(Hk , K) and there exist x
(
u+

k
)
,

x
(
u–

k
)
, x(uk) = x

(
u–

k
)
, x = ξ ∈ Bh, k = , , . . . , m

}
,

where x|Hk is the restriction of x to Hk = (uk , uk+], k = , , , . . . , m. Define ‖x‖Bb = ‖ξ‖Bh +
supv∈[,T](E‖x(v)‖

K
) 

 , x ∈ Bb, then ‖ · ‖Bb is a seminorm in Bb.
The following definitions and lemmas are needed to ensure the existence of solutions

of (.).

Definition . ([, ]) The fractional integral of order α for a function f is defined as

Iαf (u) =


(α)

∫ u

u

(u – v)α–f (v) dv,

where u ≥ u and α > .

Definition . ([, ]) Caputo’s derivative of order α for a function f ∈ Cn([u, +∞), R) is
defined by

cDu
αf (u) =


(n – α)

∫ u

u

(u – v)n–α–f (n)(v) dv,

where u ≥ u and n is a positive integer such that n –  < α < n.
Particularly, when  < α < , cDu

αf (u) = 
(–α)

∫ u
u

(u – v)–αf ′(v) dv.

Definition . An Ft-adapted stochastic process x : (–∞, T] → K is called a solution of
(.) if x = ξ ∈ Bh satisfying x ∈L

(�, K) and the following conditions hold:
(i) x(u) is Bh-valued and the restriction of x(·) to the interval (uk , uk+] (k = , , . . . , m)

is continuous.
(ii)

x(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ (u), u ∈ (–∞, ],
ξ () + g(, ξ ()) – g(u, xu)

+ 
(α)

∫ u
 (u – v)α–f (v, xv) dv

+ 
(α)

∫ u
 (u – v)α–σ (v, xv) dW (v), u ∈ (, u],

ξ () + g(, ξ ()) – g(u, xu)
+ 

(α)
∫ u

 (u – v)α–f (v, xv) dv
+ 

(α)
∫ u

 (u – v)α–σ (v, xv) dW (v)
+

∑k
i= Ii(x(ui)), u ∈ (uk , uk+], k = , , . . . , m.

(.)
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(iii) �x|u=uk = Ik(x(uk)), k = , , . . . , m, the restriction of x(·) to the interval
[, T] \ {u, . . . , um} is continuous.

Lemma . Assume, for all u ∈ H = [, T], xu ∈ Bh, x = ξ ∈ Bh, then

‖xu‖Bh ≤ l sup
u∈[,T]

(
E
∥
∥x(u)

∥
∥

K

) 
 + ‖x‖Bh .

Proof For all u ∈ [, T],

sup
v≤θ≤

(
E
∥
∥x(u + θ )

∥
∥) 

 ≤ max
{

sup
v≤θ≤–u

(
E
∥
∥x(u + θ )

∥
∥) 

 , sup
–u≤θ≤

(
E
∥
∥x(u + θ )

∥
∥) 


}

≤ sup
v≤θ≤–u

(
E
∥
∥x(u + θ )

∥
∥) 

 + sup
–u≤θ≤

(
E
∥
∥x(u + θ )

∥
∥) 



= sup
v+u≤θ≤

(
E
∥
∥x(θ )

∥
∥) 

 + sup
≤v≤u

(
E
∥
∥x(v)

∥
∥) 



≤ sup
v≤θ≤

(
E
∥
∥x(θ )

∥
∥) 

 + sup
≤u≤T

(
E
∥
∥x(u)

∥
∥) 

 .

So

‖xu‖Bh =
∫ 

–∞
h(v) sup

v≤θ≤

(
E
∣
∣xu(θ )

∣
∣) 

 dv

=
∫ 

–∞
h(v) sup

v≤θ≤

(
E
∣
∣x(u + θ )

∣
∣) 

 dv

≤
∫ 

–∞
h(v)

(
sup

v≤θ≤

(
E
∥
∥x(θ )

∥
∥) 

 + sup
≤u≤T

(
E
∥
∥x(u)

∥
∥) 


)

dv

=
∫ 

–∞
h(v) sup

v≤θ≤

(
E
∥
∥x(θ )

∥
∥) 

 dv +
∫ 

–∞
h(v) sup

≤u≤T

(
E
∥
∥x(u)

∥
∥) 

 dv

=
∫ 

–∞
h(v) dv sup

≤u≤T

(
E
∥
∥x(u)

∥
∥) 

 + ‖x‖Bh

= l sup
≤u≤T

(
E
∥
∥x(u)

∥
∥) 

 + ‖x‖Bh .

This completes the proof. �

Lemma . (Krasnoselskii’s fixed point theorem []) Let B be a nonempty closed convex
set of a Banach space (X,‖ · ‖). Suppose that P and Q map B into X such that

(i) Px + Qy ∈ B whenever x, y ∈ B;
(ii) P is compact and continuous;

(iii) Q is a contraction mapping;
then there exists z ∈ B such that z = Pz + Qz.

3 Main results
To obtain the existence of solutions of (.), we need the following assumptions:

(H) There exists L >  such that

E
∥
∥f (u, x) – f (u, y)

∥
∥

K
≤ L‖x – y‖

Bh
, ∀x, y ∈ Bh.



Bao and Cao Advances in Difference Equations  (2017) 2017:66 Page 5 of 14

(H) There exists L >  such that

E
∥
∥g(u, x) – g(u, y)

∥
∥

K
≤ L‖x – y‖

Bh
, ∀x, y ∈ Bh.

(H) There exists L >  such that

E
∥
∥σ (u, x) – σ (u, y)

∥
∥
L


≤ L‖x – y‖

Bh
, ∀x, y ∈ Bh.

(H) There exists L >  such that

E
∥
∥Ik(x) – Ik(y)

∥
∥

K
≤ L‖x – y‖

Bh
, ∀x, y ∈ Bh and k = , , . . . , m.

Now we will use the Banach fixed point theorem to prove the existence theorem for (.).

Theorem . Assume that conditions (H)-(H) hold, then (.) has a unique solution if
the following condition holds:

l
(

L +


(α)
L

Tα

α +


(α)
L

Tα–

α – 
+ mL

)

< . (.)

Proof Define the operator � : Bb → Bb by

�x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ (u), u ∈ (–∞, ],
ξ () + g(,φ()) – g(u, xu)

+ 
(α)

∫ u
 (u – v)α–f (v, xv) dv

+ 
(α)

∫ u
 (u – v)α–σ (v, xv) dW (v), u ∈ (, u],

ξ () + g(,φ()) – g(u, xu)
+ 

(α)
∫ u

 (u – v)α–f (v, xv) dv
+ 

(α)
∫ u

 (u – v)α–σ (v, xv) dW (v)
+

∑k
i= Ii(x(ui)), u ∈ (uk , uk+], k = , , . . . , m.

(.)

For ξ ∈ Bb, define

ξ̄ (t) =

{
ξ (u), u ∈ (–∞, ],
, u ∈ H ,

then ξ̄ = ξ . Next, define the function

η̄(t) =

{
, u ∈ (–∞, ],
η(u), u ∈ H ,

for each η ∈ C(H , R), with η() = .
If x(·) satisfies (.), then x(u) = ξ̄ (u) + η̄(u) for u ∈ H , which implies xu = ξ̄u + η̄u for

u ∈ H , and the function η(·) satisfies

η(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(, ξ ()) – g(u, xu) + 
(α)

∫ u
 (u – v)α–f (v, xv) dv

+ 
(α)

∫ u
 (u – v)α–σ (v, xv) dW (v), u ∈ (, u],

g(, ξ ()) – g(u, xu) + 
(α)

∫ u
 (u – v)α–f (v, xv) dv

+ 
(α)

∫ u
 (u – v)α–σ (v, xv) dW (v)

+
∑k

i= Ii(x(ui)), u ∈ (uk , uk+],
k = , , . . . , m



Bao and Cao Advances in Difference Equations  (2017) 2017:66 Page 6 of 14

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(, ξ ()) – g(u, ξ̄u + η̄u) + 
(α)

∫ u
 (u – v)α–f (v, ξ̄v + η̄v) dv

+ 
(α)

∫ u
 (u – v)α–σ (v, φ̄v + η̄v) dW (v), u ∈ (, u],

g(, ξ ()) – g(u, ξ̄u + η̄u) + 
(α)

∫ u
 (u – v)α–f (v, ξ̄v + η̄v) dv

+ 
(α)

∫ u
 (u – v)α–σ (v, ξ̄v + η̄v) dW (v)

+
∑k

i= Ii(ξ̄ (ui) + η̄(ui)), u ∈ (uk , uk+],
k = , , . . . , m.

Set B
b = {η ∈ Bb, such that η = } and for any η ∈ B

b , one has

‖η‖B
b

= ‖η‖Bh + sup
u∈H

(
E
∥
∥η(u)

∥
∥

K

) 
 = sup

u∈H

(
E
∥
∥η(u)

∥
∥

K

) 
 ,

thus (B
b ,‖ · ‖B

b
) is a Banach space.

Define the operator � : B
b → B

b by

(�η)(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(, ξ ()) – g(u, ξ̄u + η̄u) + 
(α)

∫ u
 (u – v)α–f (v, ξ̄v + η̄v) dv

+ 
(α)

∫ u
 (u – v)α–σ (v, ξ̄v + η̄v) dW (v), u ∈ (, u],

g(, ξ ()) – g(u, ξ̄u + η̄u) + 
(α)

∫ u
 (u – v)α–f (v, ξ̄v + η̄v) dv

+ 
(α)

∫ u
 (u – v)α–σ (v, ξ̄v + η̄v) dW (v)

+
∑k

i= Ii(ξ̄ (ui) + η̄(ui)), u ∈ (uk , uk+],
k = , , . . . , m.

In order to prove the existence result, it is enough to show that � has a unique fixed point.
Let η,η∗ ∈ B

b , then for all u ∈ (, u], we have

E
∥
∥(�η)(u) –

(
�η∗)(u)

∥
∥

K

≤ E
∥
∥g(u, ξ̄u + η̄u) – g

(
u, ξ̄u + η̄∗

u
)∥
∥

K

+ E
∥
∥
∥
∥


(α)

∫ u


(u – v)α–[f (v, ξ̄v + η̄v) – f

(
v, ξ̄v + η̄∗

v
)]

dv
∥
∥
∥
∥



K

+ E
∥
∥
∥
∥


(α)

∫ u


(u – v)α–[σ (v, ξ̄v + η̄v) – σ

(
v, ξ̄v + η̄∗

v
)]

dW (v)
∥
∥
∥
∥



K

≤ L
∥
∥η̄u – η̄∗

u
∥
∥
Bh

+ 
(


(α)

) ∫ u


(u – v)α– dv

∫ u


(u – v)α–

× E
∥
∥f (v, ξ̄v + η̄v) – f

(
v, ξ̄v + η̄∗

v
)∥
∥

K
dv

+ 
(


(α)

) ∫ u


(u – v)(α–)E

∥
∥σ (v, ξ̄v + η̄v) – σ

(
v, ξ̄v + η̄∗

v
)∥
∥
L


dv

≤ L
∥
∥η̄u – η̄∗

u
∥
∥
Bh

+ 
(


(α)

) Tα

α

∫ u


(u – v)α–L

∥
∥η̄v – η̄∗

v
∥
∥
Bh

dv

+ 
(


(α)

) ∫ u


(u – v)(α–)L

∥
∥η̄v – η̄∗

v
∥
∥
Bh

dv

≤ Ll sup
v∈[,T]

∥
∥η(v) – η∗(v)

∥
∥

K

+ 
(


(α)

) Tα

α
L

∫ u


(u – v)α–l sup

v∈[,T]

∥
∥η(v) – η∗(v)

∥
∥

K
dv
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+ 
(


(α)

)

L

∫ u


(u – v)(α–)l sup

v∈[,T]

∥
∥η(v) – η∗(v)

∥
∥

K
dv

≤ Ll∥∥η – η∗∥∥
B

b
+ 

(


(α)

)

l Tα

α L
∥
∥η – η∗∥∥

B
b

+ 
(


(α)

)

L
Tα–

α – 
l∥∥η – η∗∥∥

B
b

= l
[

L +
(


(α)

) Tα

α L +
(


(α)

)

L
Tα–

α – 

]
∥
∥η – η∗∥∥

B
b
.

For u ∈ (uk , uk+], k = , , . . . , m, one can obtain

E
∥
∥(�η)(u) –

(
�η∗)(u)

∥
∥

K

≤ E
∥
∥g(u, ξ̄u + η̄u) – g

(
u, ξ̄u + η̄∗

u
)∥
∥

K

+ E

∥
∥
∥
∥
∥

k∑

i=

(
Ii
(
η̄(u) + ξ̄ (u)

)
– Ii

(
η̄∗(u) + ξ̄ (u)

))
∥
∥
∥
∥
∥



K

+ E
∥
∥
∥
∥


(α)

∫ u


(u – v)α–[f (v, ξ̄v + η̄v) – f

(
v, ξ̄v + η̄∗

v
)]

dv
∥
∥
∥
∥



K

+ E
∥
∥
∥
∥


(α)

∫ u


(u – v)α–[σ (v, ξ̄v + η̄v) – σ

(
v, ξ̄v + η̄∗

v
)]

dW (v)
∥
∥
∥
∥



K

≤ L
∥
∥η̄u – η̄∗

u
∥
∥
Bh

+ mlLE
∥
∥η̄(u) – η̄∗(u)

∥
∥

K

+ 
(


(α)

) Tα

α

∫ u


(u – v)α–L

∥
∥η̄v – η̄∗

v
∥
∥
Bh

dv

+ 
(


(α)

) ∫ u


(u – v)(α–)L

∥
∥η̄v – η̄∗

v
∥
∥
Bh

dv

≤ Ll sup
v∈[,T]

∥
∥η(v) – η∗(v)

∥
∥

K
+ mlL sup

v∈[,T]

∥
∥η(v) – η∗(v)

∥
∥

K

+ 
(


(α)

) Tα

α
L

∫ u


(u – v)α–l sup

v∈[,T]

∥
∥η(v) – η∗(v)

∥
∥

K
dv

+ 
(


(α)

)

L

∫ u


(u – v)(α–)l sup

v∈[,T]

∥
∥η(v) – η∗(v)

∥
∥

K
dv

≤
(

l
[

L +
(


(α)

)

L
Tα

α +
(


(α)

)

L
Tα–

α – 

]

+ mlL

)
∥
∥η – η∗∥∥

B
b
.

Therefore, for all u ∈ [, T],

E
∥
∥(�η)(u) –

(
�η∗)(u)

∥
∥

K

≤ l
(

L +
(


(α)

)

L
Tα

α +
(


(α)

)

L
Tα–

α – 
+ mL

)
∥
∥η – η∗∥∥

B
b
.

From (.), we conclude that � is a contraction mapping. This implies that (.) has a
unique solution on (–∞, T]. The proof is complete. �
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The next result is established by using Krasnoselskii’s fixed point theorem. We need the
following assumptions.

(H) f : H ×Bh → K is continuous, and there exists a continuous function
μ : H → (, +∞) such that

E
∥
∥f (u, x)

∥
∥

K
≤ μ(u)‖x‖

Bh
, ∀(u, x) ∈ H ×Bh,

where μ∗
 = sup≤v≤u μ(v).

(H) g : H ×Bh → K is continuous, and there exists a continuous function
μ : H → (, +∞) such that

E
∥
∥g(u, x)

∥
∥

K
≤ μ(u)‖x‖

Bh
, ∀(u, x) ∈ H ×Bh,

where μ∗
 = sup≤v≤u μ(v).

(H) σ : H ×Bh →L
 is continuous, and there exists a continuous function

μ : H → (, +∞) such that

E
∥
∥σ (u, x)

∥
∥
L


≤ μ(u)‖x‖

Bh
, ∀(u, x) ∈ H ×Bh,

where μ∗
 = sup≤v≤u μ(v).

(H) There exists K >  such that Ik : Bh → K, k = , , . . . , m, E‖Ik(x)‖
K

≤ K .
Let Bq = {y ∈ B

b ,‖y‖
B

b
≤ q, q > }, then Bq is a bounded closed convex set in B

b , ∀y ∈ Bq.
From Lemma ., we get

‖yu + η̄u‖
Bh

≤ 
(‖yu‖

Bh
+ ‖η̄u‖

Bh

)

≤ 
(

l sup
v∈[,u]

E
∥
∥y(v)

∥
∥

K
+ ‖y‖

Bh

)
+ 

(
l sup

v∈[,u]
E
∥
∥η̄(v)

∥
∥

K
+ ‖η̄‖

Bh

)

≤ 
(‖ξ‖

Bh
+ lq

)
� M.

Theorem . Assume that conditions (H)-(H) hold, then (.) has at least one solution
if the following conditions hold:

l
[

μ∗
 +

(


(α)

)

μ∗


Tα

α +
(


(α)

)

μ∗


Tα–

α – 

]

< , (.)

and


(


(α)

)(Tα

α L +
Tα–

α – 
L

)

l < . (.)

Proof See Appendix. �

4 Example
The existence, uniqueness and stability of integer-order Volterra integro-differential equa-
tion have been investigated for its wide and important application in the fields of financial
mathematics, physics, biology, medicine, automatic control, demography, dynamics etc.
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But there are few results about fractional stochastic Volterra integro-differential equa-
tions. In this section, we provide an example for which there is at least one solution due
to the fact that the conditions in Theorem . are satisfied.

Example . Consider the following fractional stochastic impulsive neural functional dif-
ferential equations with infinite delay:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cD


u [x(u) – 


∫ 

–∞ evx(u + v) dv]
= 


∫ 

–∞ evx(u + v) dv + 

∫ 

–∞ evx(u + v) dv dW (v)
dv , u ∈ (, 

 ) ∪ ( 
 , ],

�x( 
 ) = 

 ,
x(u) = , u ∈ (–∞, ],

(.)

where g(u, xu) = – 

∫ 

–∞ evx(u + v) dv, f (u, xu) = 

∫ 

–∞ evx(u + v) dv, σ (u, xu) = 

∫ 

–∞ ev ×
x(u + v) dv, H = [, 

 ) ∪ ( 
 , ], T = , m = .

For ξ ∈ Bh, define ‖ξ‖Bh =
∫ 

–∞ h(v) supv≤θ≤(E|ξ (θ )|) 
 dv, h(v) = ev, l = 

 , then ξ ∈ Bh,
and (Bh,‖ · ‖Bh ) is a Banach space which has the following properties.

A. If x(u) : (–∞, T] → R is continuous on H , and x ∈ Bh, then xu ∈ Bh, and xu is
continuous on H .

A. Bh is a Banach space.
A. ‖xu‖Bh ≤ 

 supu∈[,T](E‖x(u)‖
K

) 
 + ‖x‖Bh .

In addition, let μ(u) = 
 , μ(u) = 

 , μ(u) = 
 , μ∗

 = 
 , μ∗

 = 
 , μ∗

 = 
 . L = 

 ,
L = 

 , L = 
 , K = 

 , L = , we have that conditions (H)-(H) are satisfied and (.),
(.) hold, i.e.,

l
[

μ∗
 +

(


(α)

)

μ∗


Tα

α +
(


(α)

)

μ∗


Tα–

α – 

]

≈  ∗ 


∗
[




+


. ∗ 


∗ 


+



∗ 

. ∗ 
]

= . < ,

and


(


(α)

)(Tα

α L +
Tα–

α – 
L

)

l

≈  ∗ 
.

(



∗ 


+




∗ 
)

∗
(




)

= . < ,

then (.) has at least one solution by Theorem ..

5 Conclusions
Fractional stochastic impulsive neutral functional differential equations are very useful
in viscoelasticity, electrochemistry, automatic control etc. In this paper, based on frac-
tional calculation, fixed point theorems and the stochastic analysis technique, new exis-
tence theorems of solutions for these equations are given. Moreover, our results take some
well-studied models, such as integer-order functional differential equations with infinite
delay, as special cases. The main result is verified by an example.
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Appendix
Proof of Theorem . Define the operator � : Bq → Bq and � : Bq → Bq, where

(�η)(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

, u ∈ (–∞, ],
g(, ξ ()) – g(u, ξ̄u + η̄u), u ∈ (, u],
g(, ξ ()) – g(u, ξ̄u + η̄u) +

∑k
i= Ii(ξ̄ (ui) + η̄(ui)), u ∈ (uk , uk+],

k = , , . . . , m,

(A.)

(�η)(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

, u ∈ (–∞, ],


(α)
∫ u

 (u – v)α–f (v, ξ̄v + η̄v) dv
+ 

(α)
∫ u

 (u – v)α–σ (v, ξ̄v + η̄v) dW (v), u ∈ (, u],


(α)
∫ u

 (u – v)α–f (v, ξ̄v + η̄v) dv
+ 

(α)
∫ u

 (u – v)α–σ (v, ξ̄v + η̄v) dW (v), u ∈ (uk , uk+],
k = , , . . . , m.

(A.)

If � is compact and continuous and � is a contraction operator, from Lemma ., (.)
has at least one solution. We will prove them according to the following five steps.

Step : We use contradiction to prove that there is q∗ ∈ N such that �η +�η
∗ ∈ Bq∗ for

η,η∗ ∈ Bq∗ . Otherwise, for each q ∈ N , there would exist ηq ∈ Bq, η∗q ∈ Bq and uq ∈ [, T]
such that

E
∥
∥�η

q + �η
∗q∥∥

K
> q. (A.)

Without losing generality, we assume limq→∞ uq = T .
For uq ∈ (, u], we have

q < E
∥
∥
(
�η

q)(uq) +
(
�η

∗q)(uq)
∥
∥

K

≤ E
∥
∥g

(
, ξ ()

)∥
∥

K
+ E

∥
∥g

(
uq, η̄q

uq + ξ̄ q
uq

)∥
∥

K

+ E
∥
∥
∥
∥


(α)

∫ uq


(uq – v)α–f

(
v, η̄∗

v + ξ̄v
)

dv
∥
∥
∥
∥



K

+ E
∥
∥
∥
∥


(α)

∫ uq


(uq – v)α–σ

(
v, η̄∗

v + ξ̄v
)

dW (v)
∥
∥
∥
∥



K

≤ E
∥
∥g

(
, ξ ()

)∥
∥

K
+ μ∗


∥
∥η̄q

uq + ξ̄ q
uq

∥
∥
Bh

+ 
(


(α)

) ∫ uq


(uq – v)α– dv

∫ uq


(uq – v)α–E

∥
∥f

(
v, η̄∗

v + ξ̄v
)∥
∥

K
dv

+ 
(


(α)

) ∫ uq


(uq – v)(α–)E

∥
∥σ

(
v, η̄∗

v + ξ̄v
)∥
∥
L


dv

≤ E
∥
∥g

(
, ξ ()

)∥
∥

K
+ μ∗

M + 
(


(α)

) uα
q

α

∫ uq


(uq – v)α–μ∗

 M dv

+ 
(


(α)

) ∫ uq


(uq – s)(α–)μ∗

M dv

≤ E
∥
∥g

(
, ξ ()

)∥
∥

K
+ μ∗

M + μ∗
 M

(


(α)

) Tα

α + 
(


(α)

)

μ∗
M

Tα–

α – 
.
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Similarly, for uq ∈ (uk , uk+], k = , . . . , m, we can obtain

q < E
∥
∥
(
�η

q)(uq) +
(
�η

∗q)(uq)
∥
∥

K

≤ E
∥
∥g

(
, ξ ()

)∥
∥

K
+ E

∥
∥g

(
uq, η̄q

uq + ξ̄ q
uq

)∥
∥

K
+ E

∥
∥
∥
∥
∥

k∑

i=

Ii
(
η̄(ui) + ξ̄ (ui)

)
∥
∥
∥
∥
∥



K

+ E
∥
∥
∥
∥


(α)

∫ uq


(uq – v)α–f

(
v, η̄∗

v + ξ̄v
)

dv
∥
∥
∥
∥



K

+ E
∥
∥
∥
∥


(α)

∫ uq


(uq – v)α–σ

(
v, η̄∗

v + ξ̄s
)

dW (v)
∥
∥
∥
∥



K

≤ E
∥
∥g

(
, ξ ()

)∥
∥

K
+ μ∗


∥
∥η̄q

uq + ξ̄ ∗q
uq

∥
∥
Bh

+ m
m∑

i=

E
∥
∥Ii

(
η̄(ui) + ξ̄ (ui)

)∥
∥

K

+ 
(


(α)

) ∫ uq


(uq – v)α– dv

∫ uq


(uq – v)α–E

∥
∥f

(
v, η̄∗

v + ξ̄v
)∥
∥

K
dv

+ 
(


(α)

) ∫ uq


(uq – v)(α–)E

∥
∥σ

(
v, η̄∗

v + ξ̄v
)∥
∥
L


dv

≤ E
∥
∥g

(
, ξ ()

)∥
∥

K
+ μ∗

M + μ∗
 M

(


(α)

) Tα

α + 
(


(α)

)

μ∗
M

Tα–

α – 

+ m
m∑

i=

E
∥
∥Ii

(
η̄(ui) + ξ̄ (ui)

)∥
∥

K

≤ E
∥
∥g

(
, ξ ()

)∥
∥

K
+ μ∗

M + μ∗
 M

(


(α)

) Tα

α

+ 
(


(α)

)

μ∗
M

Tα–

α – 
+ mK .

So, we obtain

q < E
∥
∥g

(
, ξ ()

)∥
∥

H + μ∗
M + μ∗

 M
(


(α)

) Tα

α

+ 
(


(α)

)

μ∗
M

Tα–

α – 
+ mK . (A.)

Dividing by q and taking the lower limit on both sides of inequality (A.), one can get

 ≤
(

lim
q→+∞ inf

M
q

)


(

μ∗
M + μ∗



(


(α)

) Tα

α +
(


(α)

)

μ∗


Tα–

α – 

)

. (A.)

On the other hand, according to limq→+∞ inf M
q = l and inequality (A.),

 ≤ l
[

μ∗
 +

(


(α)

)

μ∗


Tα

α +
(


(α)

)

μ∗


Tα–

α – 

]

are easily obtained. This is a contradiction with inequality (.). Therefore, there exists
q∗ ∈ N such that �η + �η

∗ ∈ Bq∗ for η,η∗ ∈ Bq∗ .
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Step : We need to prove � is continuous on Bq∗ .
Suppose {ηn}∞n= is a sequence in Bq∗ with limn→∞ ηn = η ∈ Bq∗ . Then, for u ∈ (, u], we

have

E
∥
∥
(
�η

n)(u) – (�η)(u)
∥
∥

K

≤ E
∥
∥g

(
u, η̄n

u + ξ̄u
)

– g(u, η̄u + ξ̄u)
∥
∥

K

≤ L
∥
∥ηn

u – ηu
∥
∥
Bh

≤ Ll∥∥ηn – η
∥
∥
B

b
.

Similarly, for u ∈ (uk , uk+], k = , , . . . , m,

E
∥
∥
(
�η

n)(u) – (�η)(u)
∥
∥

K

≤ E
∥
∥g

(
u, η̄n

u + ξ̄u
)

– g(u, η̄u + η̄u)
∥
∥

K

+ E

∥
∥
∥
∥
∥

k∑

i=

Ii
(
η̄n(ui) + ξ̄ (ui)

)
–

k∑

i=

Ii
(
η̄(ui) + ξ̄ (ui)

)
∥
∥
∥
∥
∥



K

≤ L
∥
∥ηn

u – ηu
∥
∥
Bh

+ mL
∥
∥ηn

u – ηu
∥
∥
Bh

≤ 
(
L + mL

)
l∥∥ηn – η

∥
∥
B

b
.

So, limn→∞ E‖�η
n –�η‖

K
= , which implies that the mapping � is continuous on Bq∗ .

Step : We prove that � maps bounded sets into bounded sets in Bq∗ .
For u ∈ (, u], we have

E
∥
∥(�η)(t)

∥
∥

K
≤ E

∥
∥g

(
, ξ ()

)∥
∥

K
+ E

∥
∥g(u, η̄u + ξ̄u)

∥
∥

K

≤ E
∥
∥g

(
, ξ ()

)∥
∥

η
+ μ∗

‖η̄u + ξ̄u‖
Bh

≤ E
∥
∥g

(
, ξ ()

)∥
∥

K
+ μ∗

M.

If u ∈ (uk , uk+], k = , , . . . , m,

E
∥
∥(�η)(u)

∥
∥

K
≤ E

∥
∥g

(
, ξ ()

)∥
∥

K
+ E

∥
∥g(u, η̄u + ξ̄u)

∥
∥

K

+ E

∥
∥
∥
∥
∥

k∑

i=

Ii
(
η̄(ui) + ξ̄ (ui)

)
∥
∥
∥
∥
∥



K

≤ E
∥
∥g

(
, ξ ()

)∥
∥

K
+ μ∗

M + mK � r̂.

Hence, for q∗ > , there exists r̂ >  such that E‖(�η)(u)‖
K

≤ r̂, ∀η ∈ Bq∗ , u ∈ (ui, ui+],
i = , , . . . , m.

Step : The map � is equicontinuous.
Let  < t < s ≤ u, η ∈ Bq∗ , we obtain

E
∥
∥(�η)(t) – (�η)(s)

∥
∥

K
= E

∥
∥g(t, η̄t + ξ̄t) – g(s, η̄s + ξ̄s)

∥
∥

K
,
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for uk < t < s ≤ uk+, k = , . . . , m,

E
∥
∥(�η)(t) – (�η)(s)

∥
∥

K

= E

∥
∥
∥
∥
∥

g(t, η̄t + ξ̄t) – g(s, η̄s + ξ̄s) +
k∑

i=

Ii
(
η̄(ui) + ξ̄ (ui)

)
–

k∑

i=

Ii
(
η̄(ui) + ξ̄ (ui)

)
∥
∥
∥
∥
∥



K

= E
∥
∥g(t, η̄t + ξ̄t) – g(s, η̄s + ξ̄s)

∥
∥

K
.

Combining g is continuous and the definition of η̄, ξ̄ , we conclude that limt→s ‖g(t, η̄t + ξ̄t)–
g(s, η̄s + ξ̄s)‖

K
= , so �(Bq∗ ) is equicontinuous. From Steps - and Ascoli’s theorem, �

is compact.
Step : � is a contraction mapping.
Let η,η∗ ∈ Bq∗ and u ∈ (uk , uk+], k = , , . . . , m,

E
∥
∥(�η)(u) –

(
�η

∗)(u)
∥
∥

K

≤ E
∥
∥
∥
∥


(α)

∫ u

ui

(u – v)α–[f (v, η̄v + ξ̄v) – f
(
v, η̄∗

v + ξ̄v
)]

dv
∥
∥
∥
∥



K

+ E
∥
∥
∥
∥


(α)

∫ u

ui

(u – v)α–[σ (v, η̄v + ξ̄v) – σ
(
v, η̄∗

v + ξ̄v
)]

dW (v)
∥
∥
∥
∥



K

≤ 
(


(α)

) ∫ u

ui

(u – v)α– dv
∫ u

ui

(u – v)α–E
∥
∥f (v, η̄v + ξ̄v) – f

(
v, η̄∗

v + ξ̄v
)∥
∥

K
du

+ 
(


(α)

) ∫ u

ti

(u – v)(α–)E
∥
∥σ (v, η̄v + ξ̄v) – σ

(
v, η̄∗

v + ξ̄v
)∥
∥
L


du

≤ 
(


(α)

) (u – ui)α

α

∫ u

ui

(u – v)α–L
∥
∥η̄v – η̄∗

v
∥
∥
Bh

dv

+ 
(


(α)

) ∫ u

ui

(u – v)(α–)L
∥
∥η̄v – η̄∗

v
∥
∥
Bh

dv

≤ 
(


(α)

) Tα

α L
∥
∥η̄v – η̄∗

v
∥
∥
Bh

+ 
(


(α)

) Tα–

α – 
L

∥
∥η̄v – η̄∗

v
∥
∥
Bh

≤ 
(


(α)

)(Tα

α L +
Tα–

α – 
L

)

l sup
v∈[,T]

∥
∥η(v) – η∗(v)

∥
∥

K

≤ 
(


(α)

)(Tα

α L +
Tα–

α – 
L

)

l∥∥η – η∗∥∥
B

b
.

From (.), � is a contraction mapping. Therefore, according to Krasnoselskii’s fixed
point theorem, (.) has at least one solution on (–∞, T]. The proof is complete. �
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