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Abstract
The paper develops a derivative-type (D-type) networked iterative learning control
(NILC) scheme for repetitive discrete-time systems with packet dropouts
stochastically occurred in input and output communication channels. The scheme
generates the sequential recursive-mode control inputs by mending the dropped
instant-wise output with the synchronous desired output, while it drives the plant by
refreshing the dropped instant-wise control input with the used consensus-instant
control input at the previous iteration. By adopting statistic technique, the
convergences of the developed NILC scheme for linear and nonlinear systems are
derived, respectively. The derivations present that under certain conditions the
mathematical expectations of the stochastic tracking errors in the sense of 1-norm
converge to zero. Numerical simulations exhibit the effectiveness and validity.

Keywords: iterative learning control; mathematical expectation; networked control
systems; stochastic packet dropouts

1 Introduction
In biology, psychology, sociology as well as in philosophy, the notion of ‘learning’ has been
acknowledged as one of intelligent capabilities for an individual to earn food and fit the
environment for surviving and evolving persistently. It is noted as a process for an in-
telligent agent to acquire knowledge or experience from its perception and cognition of
the environment and then to act on the environment so as to improve its behavior per-
formance at the next time. Benefited from the advancing computer technology, learning
algorithm has been algorithmically embedded into the control programming of a robotic
manipulator to track a desired trajectory. The pioneer contribution is the iterative learn-
ing control (ILC) invented in the s whose scheme is to utilize the historical tracking
discrepancy to modify its control command so that the upgraded control command may
drive the repetitive system to track a predetermined desired trajectory []. Overviewing
the existing ILC investigations, the ILC has been acknowledged as one of the most effec-
tive intelligent control strategies for a repetitive system operated over a fixed time interval
owing to its less system information requirement and precise tracking insurance [–].

Along with the development of internet service, some of efficacious control schemes
can be networked for higher efficiency and lower cost, which forms networked control
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systems (NCSs). However, confined by the physical features of the wire or wireless net
communication devices such as the limit bandwidth or temporal oscillation of the net,
the embedment of the communication net into the traditional control loop may possi-
bly incur the communication delay and packet dropout which will deteriorate the control
effects [–]. In terms of the communication delays, a usual manner is to replace the
delayed data by the captured data at the last sampling instant in the case when the delay
is within one sampling step length [–]. In treating the packet dropout, the method is
to replace the dropped data with the latest captured one [, ]. It has been shown that
the aforementioned handling methods work satisfactorily under the assumptions that the
probabilities of the communication delay and the packet dropout are constrained appro-
priately.

Inspired by the handling methods for the NCSs, the investigations have been emerged
to embed the network into the conventional ILC system addressing the communication
delay and/or packet dropout. In detail, a D-type NILC strategy has been considered for
a class of linear time-invariant (LTI) multiple-input-multiple-output (MIMO) systems,
where both the packet dropout and the communication delay of the system output are
considered []. Reference [] has addressed a proportional-type (P-type) NILC for a
class of nonlinear systems with random packet losses happening in both the input and the
output communication channels, where the term ‘packet losses’ is no other than commu-
nication delays. The handling methods for the delayed data in [, ] are to substitute
the one-step-delayed data by the captured data at the last sampling instant, which is no
other than the conventional NCSs [–]. As the above-mentioned replacement mecha-
nism of the communication delayed data is one-step-ahead mode, it to some extent does
not match the ILC scheme which is an exact time point-to-point mapping along iteration
direction. As shown in [, ], the tracking error is asymptotically upper-bounded but
nonzero when communication delays occur. In addition, one [] has developed a P-type
NILC scheme for a class of nonlinear systems with stochastic delays happened in both sys-
tem output and control input communication channels, where the delayed data is replaced
with the synchronous data of the previous iteration. It has been shown that the proposed
NILC scheme can drive the NILC system to track the desired trajectory precisely as the
iteration goes on.

Regarding the communication data dropouts, the paper [] has proposed a D-type
NILC scheme for a class of LTI MIMO systems with packet dropout in the output chan-
nel and has deduced the convergence by Kalman filtering approach. Further work [,
] has considered a D-type NILC algorithm for a general case that only part of the sys-
tem output data stochastically drops but the remaining is successfully transmitted, which
induces the learning gain by minimizing the trace of the input error covariance matrix
or assigns it in the sense of mean square. Besides, the literature [, ] has presented
D-type NILC schemes for a class of discrete-time systems with packet dropout occur-
ring in the output channel, and in particular it [] has analyzed the convergence on basis
of exponential stability for asynchronous dynamical systems, while one [] has derived
the learning performance based on -D model. Further relevant work [] has adopted
a H-infinity measurement to assess the tracking performance of the NILC schemes for
systems with packet dropout occurred in output channel. Recently, one [] has devel-
oped a D-type NILC algorithm for a class of single-input-single-output (SISO) systems
with system output packet dropout modeled as a - Bernoulli-type Markov chain along
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the iteration axis. Under the assumption that for a fixed sampling instant the quantity
of the successive packet loss is less than a constant, the learning gain has been designed
as an iteration-decreasing sequence and the convergence has been deduced by stochas-
tic approximation and optimization techniques. In further work [] one has considered
the NILC design for nonlinear systems with unknown control direction and system out-
put packet dropouts. It is recalled that the handling strategy of dropped data proposed in
[–] is equivalent to replacing the dropped data with the synchronous desired output
signal. Meanwhile, [] has developed an NILC scheme by replacing the dropped output
with the successfully captured latest synchronous output.

It is observed that, however, the literature [–] only considers the packet dropout oc-
curring in the output communication channel. As a matter of fact, the packet dropout oc-
curs not only in the output communication channel, but also possibly in the input commu-
nication channel. Under this circumstance, the synchronous desired signal replacement
in the existing literature [–] is hardly adoptable for the input dropout as the desired
input is unavailable but pursued. Nevertheless, it is worth recalling that the learning ca-
pability of the ILC is principally benefited from the time point-to-point compensation for
the control input along the iteration direction rather than the time axis. Thus, the replace-
ment for the dropped data by the captured latest synchronous ones would be a feasibility
to deal with the dropped input. This motivates the paper.

This paper is to develop a D-type NILC strategy for discrete-time systems with both
stochastic input and output packet dropouts. The strategy mends the dropped instant-
wise output with the synchronous desired output, while it refreshes the dropped instant-
wise input with the consensus-instant input used at the previous iteration. By means of the
statistic technique, the convergence of the developed NILC scheme for respective linear
and nonlinear systems is derived, which shows that under certain conditions the mathe-
matical expectations of the stochastic tracking errors in the sense of -norm converge to
zero.

The rest of the paper is organized as follows. In Section , a P-type NILC scheme is
formulated and some notations are presented. Section  analyzes the convergence of the
proposed NILC scheme to linear systems and Section  addresses the convergent char-
acteristic of the proposed NILC scheme imposed on a kind of affine nonlinear systems.
The effectiveness and the validity are numerically simulated in Section  and Section 
concludes the paper.

2 NILC algorithm and notations
Let (X, F , P) be a probability space and p ∈ [, ] be a constant number, where X = {, }
is a sample space, F = {∅, {}, {}, {, }} is a set of events and P is a probability mea-
sure on set F satisfying P(∅) = , P({}) = p, P({}) =  – p and P({, }) = , respectively.
A stochastic variable ξ is said to be subject to - Bernoulli distribution refers that ξ is
defined on (�, F , P) satisfying ξ () =  and ξ () = . Denote E{ξ} as the mathematical ex-
pectation of the stochastic variable ξ . Then E{ξ} = P(ξ = ) =  – p. Let x = (x, . . . , xn)�

and y = (y, . . . , yn)� ∈ Rn be two n-dimensional real vectors. The partial order relation
≺ is defined as x ≺ y if and only if xi ≤ yi for all i = , , . . . , n. Let H = (hij)m×n ∈ Rm×n

be a real matrix. Denote |x| = (|x|, |x|, . . . , |xn|)�, |H| = (|hij|)m×n, ‖x‖ =
∑n

i= |xi| and
‖H‖ = max≤j≤n

∑m
i= |hij|.
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Figure 1 Schematic diagram of NILC.

Consider a class of repetitive discrete-time single-input-single-output (SISO) systems
described as follows:

{
xk(t + ) = f (xk(t), uk(t)), t ∈ S–,
yk(t) = g(xk(t), uk(t)), t ∈ S,

()

where the subscript k = , , . . . denotes the iteration index, t refers to the discrete-time
variable with S– = {, , , . . . , N – } and S = {, , , . . . , N}. xk(t) ∈ Rn, uk(t) ∈ R and yk(t) ∈
R are n-dimensional state, scalar input and scalar output at the kth iteration, respectively.
f (·, ·) and g(·, ·) are functions of the state and input variables.

In the system (), when the control input uk(t) is generated by an ILC update law and
is transmitted from the ILC unit to the actuator via the input communication channel
for driving the system, and simultaneously the system output yk(t) is transferred through
the output communication channel from the sensor to the ILC unit for data updating,
the mode is regarded as a networked iterative learning control paradigm, abbreviated as
NILC. The diagram of the NILC is illustrated in Figure . In the schematic diagram, ũk(t)
denotes the signal which is transmitted from the ILC unit to the actuator via the input
net channel. Its stochastic dropout is regarded as a random on/off switch. uk(t) refers to
the control command of the actuator for driving the system which is composed of ũk(t)
and uk–(t) in a switch mode. In detail, in the case when the ILC signal ũk(t) at t instant is
successfully captured by the actuator, the signal ũk(t) is directly taken as uk(t) for driving
the system, while in the case when the ILC signal ũk(t) at t instant is dropped, the actuator
will borrow its used input data uk–(t) at the previous iteration for driving the system.

Mathematically, the control input uk(t) of the actuator is represented as follows:

u(t) = ũ(t), t ∈ S–, given as a test signal,

uk(t) = ωk,tũk(t) + [ – ωk,t]uk–(t), t ∈ S–, k = , , . . . ,
()

where for all t ∈ S– and k = , , . . . , ωk,t is a stochastic variable subject to - Bernoulli
distribution. Here, ωk,t =  means that the signal ũk(t) is successfully transmitted while
ωk,t =  marks that the signal ũk(t) is dropped.

Analogously, yk(t) refers to the system output which will be transmitted to the ILC unit
for data updating through the output channel and its stochastic dropout is considered as
a random off/on switch. Whilst ỹk(t) is a candidate signal for the ILC updating which will
be either the system output yk(t) or the desired signal yd(t) depending on the success of
the data communication, namely, in the case when the system output yk(t) is successfully
transferred to the ILC unit, it will be adopted for data updating, while in the case when
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the system output yk(t) is dropped, the ILC unit will utilize the saved desired output signal
for the new command generation. Thus, the signal ỹk(t) is formulated as follows:

ỹk(t) = αk,tyk(t) + [ – αk,t]yd(t), t ∈ S+, k = , , . . . , ()

where S+ = {, , . . . , N}, yd(t) is the desired output, and for all t ∈ S+ and k = , , . . . , αk,t is
a stochastic variable subject to - Bernoulli distribution.

Remark  As shown in () and (), the handling methods of packet dropouts is differ-
ent from those in [, ]. The handling methods of packet dropouts in [, ] can be
described as follows:

{
uk(t) = ωk,tũk(t) + [ – ωk,t]uk(t – ),
ỹk(t) = αk,tyk(t) + [ – αk,t]ỹk(t – ).

Meanwhile, the replacement algorithm () is also different from (). This benefits from the
characteristic of ILC and it is expected that the replacement algorithms () and () show
better performance.

It is noted that in the concerned NILC profile Figure , the status of the communicated
data packet is either dropped or captured in success, which is modeled as a - Bernoulli
stochastic variable. In general, it is well known that the occurrences of the data packet
dropout at two iterations are independent of each other. Thus, the assumption is extracted
as follows.

(A) Assume that the stochastic variable ωk,t is independent on the variable ωl,s for all k �= l,
s, t ∈ S–. Meanwhile, assume that the stochastic variable αk,t is independent upon the
variable αl,s for all k �= l, s, t ∈ S+. Besides, assume that αk,t is independent on ωl,s for
all k = , , . . . , l = , , . . . , t ∈ S+ and s ∈ S–.

Moreover, for simplifying the analysis, the following assumption is introduced.

(A) Assume that the probabilities of packet dropout in the input and output channels are
ω̄ and ᾱ, respectively, mathematically,

P{ωk,t = } = ω̄,  ≤ ω̄ < , for t ∈ S–, k = , , . . . ,

P{αk,t = } = ᾱ,  ≤ ᾱ < , for t ∈ S+, k = , , . . . .

Since for given k, t, ωk,t and αk,t are stochastic variables subject to - Bernoulli distribu-
tion, it is easy to calculate the expectations of those stochastic variables as follows:

E{ωk,t} = P{ωk,t = } =  – ω̄,  ≤ ω̄ < , for t ∈ S–, k = , , . . . ,

E{αk,t} = P{αk,t = } =  – ᾱ,  ≤ ᾱ < , for t ∈ S+, k = , , . . . .

Based on the formulations () and (), a derivative-type (D-type) NILC updating law is
constructed in the form of

ũk+(t) = ũk(t) + �δỹk(t + ), t ∈ S–, k = , , . . . , ()

where δỹk(t + ) = yd(t + ) – ỹk(t + ) and � denotes the learning gain.
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In order to analyze the convergent characteristics of the proposed NILC scheme () with
() and (), the lifting technique is used and a set of denotations are introduced as follows:

uk =
[
uk(), uk(), . . . , uk(N – )

]� ∈ RN , ũk =
[
ũk(), ũk(), . . . , ũk(N – )

]� ∈ RN ,

ud =
[
ud(), ud(), . . . , ud(N – )

]� ∈ RN , yk =
[
yk(), yk(), . . . , yk(N)

]� ∈ RN ,

ỹk =
[
ỹk(), ỹk(), . . . , ỹk(N)

]� ∈ RN , yd =
[
yd(), yd(), . . . , yd(N)

]� ∈ RN ,

δyk = yd – yk , δỹk = yd – ỹk , δuk = ud – uk , δũk = ud – ũk ,

�k = diag(ωk,,ωk,, . . . ,ωk,N–) ∈ RN×N , � = diag(ω̄, ω̄, . . . , ω̄) ∈ RN×N ,

�k = diag(αk,,αk,, . . . ,αk,N ) ∈ RN×N , � = diag(ᾱ, ᾱ, . . . , ᾱ) ∈ RN×N .

Thus, equations () and () are, respectively, lifted as

u = ũ,

uk = �kũk + (I – �k)uk–, k = , , . . . ,
()

and

ỹk = �kyk + (I – �k)yd, k = , , . . . , ()

where I is an identity matrix with appropriate dimension.
Moreover, the D-type NILC update law () is lifted as

ũk+ = ũk + �δỹk . ()

The following lemmas are useful in this paper.

Lemma  Let {ek}∞k=, {σk}∞k= and {ϕk}∞k= be nonnegative sequences, which satisfy ek+ ≤
∑k

i= σiek–i+ + ϕk , σ =
∑∞

i= σi <  and limk→∞ ϕk = . Then limk→∞ ek = .

Proof First, we prove that the nonnegative sequence {ek}∞k= is bounded. Since the se-
quence {ϕk}∞k= is nonnegative satisfying limk→∞ ϕk =  and σ =

∑∞
i= σi < , there exists

a positive integer K such that ϕk + σ <  for all k ≥ K. Let C = max{e, e, . . . , eK , }. Thus,
ek ≤ C for all k ≥ K + , i.e., the nonnegative sequence {ek}∞k= is bounded. The proof is
accomplished by induction.

For k = K + , a direct computation shows that

eK+ ≤
K∑

i=

σieK–i+ + ϕK ×  ≤ (ρ + ϕK )C ≤ C.

Now assume that for K +  ≤ k ≤ K , ek ≤ C.
Next we are to show that it is true for k = K + . By eK+ ≤ C and the induction hypoth-

esis, a direct calculation shows that

eK+ ≤
K∑

i=

σieK–i+ + ϕK ×  ≤ (ρ + ϕK ) max{e, . . . , eK , eK+, . . . , eK , }

≤ max{e, . . . , eK , eK+, . . . , eK , } ≤ C.
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Since σ =
∑∞

i= σi <  and limk→∞ ϕk = , for any ε >  there exists a positive integer
Kε(Kε ≥ K) such that

∞∑

j=

σKε+j <
 – σ

C
ε


and ϕKε+i <

ε


( – σ ) for all i = , , . . . .

For k ≥ Kε + , we have

ek+ ≤ σek + σek– + · · · + σKε ek–Kε+ + σKε+ek–Kε + · · · + σke + ϕk

≤ σek + σek– + · · · + σKε ek–Kε+ + (σKε+ + · · · + σk)C +
ε


( – σ )

≤ σek + σek– + · · · + σKε ek–Kε+ +
 – σ

C
ε


C +

ε


( – σ )

≤ σek + σek– + · · · + σKε ek–Kε+ + ε( – σ ).

Taking superior limit on both sides of the above inequality yields

lim
k→∞

sup ek+ ≤ σ lim
k→∞

sup ek + σ lim
k→∞

sup ek– + · · · + σKε lim
k→∞

sup ek–Kε+ + ε( – σ )

≤ (σ + σ + · · · + σKε ) lim
k→∞

sup ek + ε( – σ )

≤ σ lim
k→∞

sup ek + ε( – σ ).

The above inequality leads to

lim
k→∞

sup ek ≤ ε.

Consequently

lim
k→∞

ek = .

This completes the proof. �

Lemma  Let {φk}∞k=, {λk}∞k= and {�k}∞k= be nonnegative sequences, which satisfy (i)
limk→∞ φk = , limk→∞ λk =  and limk→∞ �k = , (ii)

∑∞
k= φk is bounded. Then

lim
k→∞

( k∑

i=

φiλk–i+ + �k

)

= .

Proof From limk→∞ λk = , it follows that the nonnegative sequence {λk}∞k= is bounded.
Let C = supk=,,...{λk} and φ =

∑∞
k= φk . Since the sequence {φk}∞k= is nonnegative and we

have the assumption (ii), it is true that for any ε >  there exists a positive integer K such
that

∑∞
k=K+ φk < ε

C . In addition, from the assumption (i) it is immediate that there exists
a positive integer K (K > K) so that λk–K+ < ε

φ
for all k – K +  > K. Further, the as-

sumptions that {�k}∞k= is nonnegative and limk→∞ �k =  imply that there exists a positive
integer K such that �k < ε

 for all k > K.
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Thus, for all k > max{K + K – , K}, we have

k∑

i=

φiλk–i+ + �k = φλk + φλk– + · · · + φKλk–K+ + φK+λk–K + · · · + φkλ + �k

≤ (φ + φ + · · · + φK )
ε

φ
+ C

( ∞∑

k=K+

φk

)

+ �k

< φ × ε

φ
+ C × ε

C
+

ε


= ε.

Consequently

lim
k→∞

( k∑

i=

φiλk–i+ + �k

)

= .

This completes the proof. �

3 Convergence analysis for LTI SISO systems
For a real system, it is well known that in a neighborhood of an operating point, the dy-
namics can be approximated as a linear system. This section considers a class of repetitive
discrete-time LTI SISO systems taking the form of

{
xk(t + ) = Axk(t) + Buk(t), t ∈ S–,
yk(t) = Cxk(t), t ∈ S,

()

where A, B and C are matrices with appropriate dimensions. In particular, CB is supposed
to be nonzero, under which assumption it is easy to check that for a given desired output
yd(t), t ∈ S there exist such desired state xd(t), t ∈ S and desired control input ud(t), t ∈ S–

that

{
xd(t + ) = Axd(t) + Bud(t), t ∈ S–,
yd(t) = Cxd(t), t ∈ S.

()

The dynamic systems () and () can be, respectively, lifted as

yk = Huk + Gxk(), ()

and

yd = Hud + Gxd(). ()

Here

G =
[
(CA)�,

(
CA)�, . . . ,

(
CAN)�]� ∈ RN×n,
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H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

CB
CAB CB
CAB CAB CB

...
...

...
. . .

CAN–B CAN–B CAN–B · · · CB

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ RN×N .

Theorem  Assume that the proposed NILC scheme () with () and () is applied to the
system () and the initial state is resettable, namely, xk() = xd() for all k = , , . . . . Then
the expectation E{‖δyk‖} of the tracking error ‖δyk‖ is convergent to zero as the iteration
goes on if the inequality ρ = ‖E{|I – ��kH�k|}‖ + ( – ᾱ)ω̄|�|‖H‖ <  holds.

Remark  By the assumptions  and , ‖E{|I – ��kH�k|}‖ is a constant and is indepen-
dent of k, i.e. ρ is a constant number and is independent of k.

Remark  For a given k (k ≥ ), ‖δyk‖ =
∑N

t= |yd(t) – yk(t)| is a nonnegative stochastic
variable and dependent upon {αi,t : t ∈ S,  ≤ i ≤ k – } and {ωi,t : t ∈ S–,  ≤ i ≤ k}. Thus,
E{‖δyk‖} can be understood as the expectation of the stochastic variable ‖δyk‖ or the
first-order deviation of the stochastic output yk(t) (t ∈ S) with respect to the desired output
yd(t) (t ∈ S).

Proof From (), (), (), () and xk() = xd(), it follows that

δũk+ = δũk – �δỹk = δũk – ��kδyk = δũk – ��kHδuk . ()

By (), we have

δu = δũ,

δuk = �kδũk + (I – �k)δuk–, k = , , . . . .
()

By backwardly iterating (), we find

δuk = �kδũk +
k–∑

i=

[k––i∏

j=

(I – �k–j)

]

�iδũi +

[k–∏

j=

(I – �k–j)

]

δũ. ()

Substituting () into () shows

δũk+ = [I – ��kH�k]δũk –
k–∑

i=

��kH

[k––i∏

j=

(I – �k–j)

]

�iδũi

– ��kH

[k–∏

j=

(I – �k–j)

]

δũ. ()

By () and a direct computation, we have

|δũk+| ≺ |I – ��kH�k||δũk| +
k–∑

i=

|�|�k|H|
[k––i∏

j=

(I – �k–j)

]

�i|δũi|

+ |�|�k|H|
[k–∏

j=

(I – �k–j)

]

|δũ|. ()
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It is obvious that the assumption (A) results in

E{�i} = I – �, E{I – �k–j} = � and E{�k} = I – �.

Thus, calculating the expectation to both sides of () and taking the assumption (A) into
account yield

E
{|δũk+|

} ≺ E
{|I – ��kH�k|

}
E
{|δũk|

}
+

k–∑

i=

|�|(I – �)|H|�k–i(I – �)E
{|δũi|

}

+ |�|(I – �)|H|�k–E
{|δũ|

}
. ()

Computing -norm on both sides of () and considering the property ‖E{|δũk|}‖ =
E{‖δũk‖} achieve

E
{‖δũk+‖

} ≤ ∥
∥E

{|I – ��kH�k|
}∥
∥

E
{‖δũk‖

}
+ ( – ᾱ)|�|‖H‖ω̄

k–E
{‖δũ‖

}

+
k–∑

i=

( – ᾱ)( – ω̄)|�|‖H‖ω̄
k–iE

{‖δũi‖
}

≤ ∥
∥E

{|I – ��kH�k|
}∥
∥

E
{‖δũk‖

}
+ ( – ᾱ)|�|‖H‖ω̄

kE
{‖δũ‖

}

+
k–∑

i=

( – ᾱ)( – ω̄)|�|‖H‖ω̄
k–iE

{‖δũi‖
}

≤
k∑

i=

σiek–i+ + ϕk , ()

where ek = E{‖δũk‖}, ϕk = ( – ᾱ)|�|‖H‖ω̄
kE{‖δũ‖}, σ = ‖E{|I – ��kH�k|}‖ and σi =

( – ᾱ)( – ω̄)|�|‖H‖ω̄
i– for i = , , . . . .

From the assumption ρ = ‖E{|I – ��kH�k|}‖ + ( – ᾱ)ω̄|�|‖H‖ =
∑∞

i= σi < ,
limk→∞ ϕk =  and Lemma , the inequality () gives rise to

lim
k→∞

E
{‖δũk‖

}
= . ()

By (), (), (), and xk() = xd(), we have

δyk = Hδuk = H�kδũk +
k–∑

i=

H

[k––i∏

j=

(I – �k–j)

]

�iδũi + H

[k–∏

j=

(I – �k–j)

]

δũ. ()

From the equality (), a direct computation shows

|δyk| ≺ |H|�k|δũk| +
k–∑

i=

|H|
[k––i∏

j=

(I – �k–j)

]

�i|δũi|

+ |H|
[k–∏

j=

(I – �k–j)

]

|δũ|. ()
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Taking the expectation on both sides of () and taking the assumptions (A) and (A)
into account, we get

E
{|δyk|

} ≺ |H|(I – �)E
{|δũk|

}
+

k–∑

i=

|H|�k–i(I – �)E
{|δũi|

}

+ |H|�k–E
{|δũ|

}
. ()

Taking the -norm on both sides of (), we obtain

E
{‖δyk‖

} ≤ ‖H‖

(

( – ω̄)E
{‖δũk‖

}

+
k–∑

i=

ω̄k–i( – ω̄)E
{‖δũi‖

}
+ ω̄kE

{‖δũ‖
}
)

≤ ‖H‖

( k∑

i=

φiλk–i+ + �k

)

, ()

where φi = ( – ω̄)ω̄i–, λi = ‖E{|δũi|}‖ and �k = ω̄k‖E{|δũ|}‖.
By (), (), and Lemma , we obtain

lim
k→∞

E
{‖δyk‖

}
= .

This completes the proof. �

Corollary  Assume that the proposed NILC scheme () with () and () is applied to the
LTI system () and the initial state is resettable, that is, xk() = xd() for k = , , . . . . Then
the expectation E{‖δyk‖} of the tracking error ‖δyk‖ is convergent to zero as the iteration
approaches infinity if the conditions ‖A‖ <  and

ρ̃ = E
{| – �αk,CBωk,|

}
+ ( – ᾱ)

[
( – ω̄)‖A‖ + ω̄

] |�|‖B‖‖C‖

 – ‖A‖
< 

are satisfied.

Remark  It is evident that under the assumption CB �=  the learning gain � can be
chosen so as to guarantee the inequality  < �CB < , which implies that

E
{| – αk,ωk,�CB|} = E{ – αk,ωk,�CB} =  – ( – ᾱ)( – ω̄)�CB.

Thus, it is not difficult to compute that

ρ̃ =  – ( – ᾱ)|�|(|CB| + ‖B‖‖C‖
)
(

 –
‖B‖‖C‖

(|CB| + ‖B‖‖C‖)( – ‖A‖)
– ω̄

)

.

It is well known that  ≤ ᾱ < . Therefore, it is possible that the convergent condition
ρ̃ <  is guaranteed if the proportional learning gain � is properly chosen and the dropout
probability of the input data is constrained as ω̄ <  – ‖B‖‖C‖(|CB| + ‖B‖‖C‖)–( –
‖A‖)–, which implies that input data may not drop with higher frequency.
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Remark  It is observed that the inequality () reduces to

E
{‖δũk+‖

} ≤ ∥
∥E

{|I – ��kH�k|
}∥
∥

E
{‖δũk‖

}

for the case when ᾱ =  and ω̄ = , respectively. This implies that the expectation of the
input error monotonically converges to zero if the input and output drop with null prob-
abilities. Particularly, for the case when the input and output do not drop at all, the input
error in the sense of -norm is monotonously convergent. This coincides with the existing
conclusion in [].

Remark  As shown in (), δũk+ involves all the past signals {δũi :  ≤ i ≤ k} and its
dynamics is quite complex.

4 Convergence characteristics of nonlinear systems
In the real world, it is well known that the dynamics of some systems is nonlinear due to
the Coulomb friction, saturation or dead zone of the devices. This section considers a kind
of affine nonlinear systems described by

{
xk(t + ) = f (xk(t)) + Buk(t), t ∈ S–,
yk(t) = Cxk(t), t ∈ S,

()

where xk(t) ∈ Rn, uk(t) ∈ R and yk(t) ∈ R are n-dimensional state, scalar input, and scalar
output, respectively. f (·) is a nonlinear function and CB is supposed to be nonzero, under
which it is easy to check that, for a given desired output yd(t), t ∈ S, there exist desired
state xd(t), t ∈ S and desired control input ud(t), t ∈ S– such that

{
xd(t + ) = f (xd(t)) + Bud(t), t ∈ S–,
yd(t) = Cxd(t), t ∈ S,

()

i.e., yd(t) is realizable.

(A) Assume that the nonlinear function f (z) is uniformly globally Lipschitz with respect
to z, i.e., for all z, z ∈ Rn, there exists a positive constant Lf such that

∥
∥f (z) – f (z)

∥
∥

 ≤ Lf ‖z – z‖.

In order to analyze the convergent characteristics of the proposed NILC scheme ()
with () and () for the nonlinear system (), the lifting technique is used and a set of
denotations are introduced as follows:

xk =
[(

xk()
)�,

(
xk()

)�, . . . ,
(
xk(N – )

)�]� ∈ RnN ,

x+
k =

[(
xk()

)�,
(
xk()

)�, . . . ,
(
xk(N)

)�]� ∈ RnN ,

xd =
[(

xd()
)�,

(
xd()

)�, . . . ,
(
xd(N – )

)�]� ∈ RnN ,

x+
d =

[(
xd()

)�,
(
xd()

)�, . . . ,
(
xd(N)

)�]� ∈ RnN ,

f (xk) =
[(

f
(
xk()

))�,
(
f
(
xk()

))�, . . . ,
(
f
(
xk(N – )

))�]� ∈ RnN ,
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f (xd) =
[(

f
(
xd()

))�,
(
f
(
xd()

))�, . . . ,
(
f
(
xd(N – )

))�]� ∈ RnN ,

B =

⎡

⎢
⎢
⎣

B
. . .

B

⎤

⎥
⎥
⎦ ∈ RnN×N , C =

⎡

⎢
⎢
⎣

C
. . .

C

⎤

⎥
⎥
⎦ ∈ RN×nN .

Thus, () and () are, respectively, rewritten as

{
x+

k = f (xk) + Buk ,
yk = Cx+

k ,
()

and

{
x+

d = f (xd) + Bud,
yd = Cx+

d .
()

Theorem  Assume that the proposed NILC scheme () with () and () is applied to the
nonlinear system () and the initial state is resettable, i.e., xk() = xd() for k = , , . . . .
Then, under the assumptions (A), (A), and (A), the expectation E{‖δyk‖} of the tracking
error ‖δyk‖ converges to zero as the iteration tends to infinity if Lf <  and ρ = ‖E{|I –
��kCB�k|}‖ + ( – ᾱ)|�|‖B‖‖C‖(ω̄ + Lf

–Lf
) <  are satisfied.

Proof Equations (), (), (), (), and xk() = xd() give rise to

δũk+ = δũk – �δỹk = δũk – ��kδyk

= δũk – ��kC
(
x+

d – x+
k
)

= δũk – ��kCBδuk – ��kC
[
f (xd) – f (xk)

]
. ()

Substituting () into () yields

δũk+ = (I – ��kCB�k)δũk –
k–∑

i=

��kCB

[k––i∏

j=

(I – �k–j)

]

�iδũi

– ��kCB

[k–∏

j=

(I – �k–j)

]

δũ – ��kC
(
f (xd) – f (xk)

)
. ()

By () and a direct computation, we get

|δũk+| ≺ |I – ��kCB�k||δũk| +
k–∑

i=

|�|�k|CB|
[k––i∏

j=

(I – �k–j)

]

�i|δũi|

+ |�|�k|CB|
[k–∏

j=

(I – �k–j)

]

|δũ|

+ |�|�k|C|∣∣f (xd) – f (xk)
∣
∣. ()
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Calculating the expectation on both sides of () and taking the assumptions (A) and
(A) into consideration, we obtain

E
{|δũk+|

} ≺ E
{|I – ��kCB�k|

}
E
{|δũk|

}

+
k–∑

i=

|�|(I – �)|CB|�k–i(I – �)E
{|δũi|

}

+ |�|(I – �)|CB|�k–E
{|δũ|

}
+ |�|(I – �)|C|E{∣

∣f (xd) – f (xk)
∣
∣
}

. ()

Taking -norm on both sides of () and taking the property ‖E{|δũk|}‖ = E{‖δũk‖} into
account, we have

E
{‖δũk+‖

} ≤ ∥
∥E

{|I – ��kCB�k|
}∥
∥

E
{‖δũk‖

}

+
k–∑

i=

( – ᾱ)( – ω̄)|�|‖CB‖ω̄
k–iE

{‖δũi‖
}

+ ( – ᾱ)|�|‖CB‖ω̄
k–E

{‖δũ‖
}

+ ( – ᾱ)|�|‖C‖
∥
∥E

{∣
∣f (xd) – f (xk)

∣
∣
}∥
∥



≤ ∥
∥E

{|I – ��kCB�k|
}∥
∥

E
{‖δũk‖

}

+
k–∑

i=

( – ᾱ)( – ω̄)|�|‖CB‖ω̄
k–iE

{‖δũi‖
}

+ ( – ᾱ)|�|‖CB‖ω̄
kE

{‖δũ‖
}

+ ( – ᾱ)|�|‖C‖
∥
∥E

{∣
∣f (xd) – f (xk)

∣
∣
}∥
∥

. ()

From that ‖E{|f (xd) – f (xk)|}‖ = E{‖f (xd) – f (xk)‖} and the assumption (A), we get

∥
∥E

{∣
∣f (xd) – f (xk)

∣
∣
}∥
∥

 ≤ Lf E
{‖xd – xk‖

}
. ()

Substituting () into () one arrives at

E
{‖δũk+‖

} ≤ ∥
∥E

{|I – ��kCB�k|
}∥
∥

E
{‖δũk‖

}

+
k–∑

i=

( – ᾱ)( – ω̄)|�|‖CB‖ω̄
k–iE

{‖δũi‖
}

+ ( – ᾱ)|�|‖CB‖ω̄
kE

{‖δũ‖
}

+ ( – ᾱ)|�|‖C‖Lf E
{‖xd – xk‖

}
. ()

By (), (), and (), we have

x+
d – x+

k = f (xd) – f (xk) + B�kδũk +
k–∑

i=

B

[k––i∏

j=

(I – �k–j)

]

�iδũi

+ B

[k–∏

j=

(I – �k–j)

]

δũ. ()
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By (), we obtain

∣
∣x+

d – x+
k
∣
∣ ≺ ∣

∣f (xd) – f (xk)
∣
∣ + |B|�k|δũk| +

k–∑

i=

|B|
[k––i∏

j=

(I – �k–j)

]

�i|δũi|

+ |B|
[k–∏

j=

(I – �k–j)

]

|δũ|. ()

Taking the expectation on both sides of () and taking the assumptions (A) and (A)
into consideration, we have

E
{∣
∣x+

d – x+
k
∣
∣
} ≺ E

{∣
∣f (xd) – f (xk)

∣
∣
}

+ |B|(I – �)E
{|δũk|

}

+
k–∑

i=

|B|�k–i(I – �)E
{|δũi|

}
+ |B|�k–E

{|δũ|
}

. ()

Computing the -norm on both sides of () leads to

E
{∥
∥x+

d – x+
k
∥
∥



} ≤ ∥
∥E

{∣
∣f (xd) – f (xk)

∣
∣
}∥
∥

 + ( – ω̄)‖B‖E
{‖δũk‖

}

+
k–∑

i=

( – ω̄)ω̄k–i‖B‖E
{‖δũi‖

}
+ ω̄k–‖B‖E

{‖δũ‖
}

. ()

Substituting () into () reaches

E
{∥
∥x+

d – x+
k
∥
∥



} ≤ Lf E
{‖xd – xk‖

}
+ ( – ω̄)‖B‖E

{‖δũk‖
}

+
k–∑

i=

( – ω̄)ω̄k–i‖B‖E
{‖δũi‖

}
+ ω̄k–‖B‖E

{‖δũ‖
}

. ()

From E{‖xd – xk‖} ≤ E{‖x+
d – x+

k ‖} and (), one obtains

E
{∥
∥x+

d – x+
k
∥
∥



} ≤ ( – ω̄)
‖B‖

 – Lf
E
{‖δũk‖

}
+

k–∑

i=

( – ω̄)ω̄k–i ‖B‖

 – Lf
E
{‖δũi‖

}

+ ω̄k ‖B‖

 – Lf
E
{‖δũ‖

}
. ()

Furthermore, from () and (), it follows that

E
{‖δũk+‖

} ≤
(

∥
∥E

{|I – ��kCB�k|
}∥
∥

 + ( – ᾱ)( – ω̄)|�|Lf ‖B‖‖C‖

 – Lf

)

E
{‖δũk‖

}

+
k–∑

i=

( – ᾱ)( – ω̄)|�|‖B‖‖C‖

 – Lf
ω̄k–iE

{‖δũi‖
}

+
( – ᾱ)|�|‖B‖‖C‖

 – Lf
ω̄k–E

{‖δũ‖
}

≤
(

∥
∥E

{|I – ��kCB�k|
}∥
∥

 + ( – ᾱ)( – ω̄)|�|Lf ‖B‖‖C‖

 – Lf

)

E
{‖δũk‖

}
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+
k–∑

i=

( – ᾱ)( – ω̄)|�|‖B‖‖C‖

 – Lf
ω̄k–iE

{‖δũi‖
}

+
( – ᾱ)|�|‖B‖‖C‖

 – Lf
ω̄kE

{‖δũ‖
}

. ()

From the convergent condition ρ < , inequality (), and Lemma , we have

lim
k→∞

E
{‖δũk‖

}
= . ()

By (), (), and Lemma , we get

lim
k→∞

E
{∥
∥x+

d – x+
k
∥
∥



}
= . ()

From () and (), it follows that

δyk = C
(
x+

d – x+
k
)
. ()

By () and simple computation, we have

E
{‖δyk‖

} ≤ ‖C‖E
{∥
∥x+

d – x+
k
∥
∥



}
. ()

Equations () and () reduce to

lim
k→∞

E
{‖δyk‖

}
= .

This completes the proof. �

5 Numerical simulations
For the sake of exhibiting the effectiveness of the proposed learning scheme, the simula-
tions are done for the systems being linear and nonlinear, respectively, where the tracking
error is formulated as ‖δyk‖ =

∑
t= |yd(t) – yk(t)|. In accordance with the derivation that

the tracking error is evaluated in a statistical sense by mathematical expectation, the nu-
merical experiments are made for  runs. Here, the terminology ‘one run’ means that
the NILC-driven system operates  iterations until a perfect tracking is achieved. Namely,
the expectation of system output yk(t) is computed as E{yk(t)} = 


∑

m= y(m)
k (t) and the

expectation of tracking error is formulated as E{‖δyk‖} = 


∑
m=

∑
t= |yd(t) – y(m)

k (t)|,
where the superscript (m) marks the run order.

Example  Consider a second-order linear system as follows:

[
x,k(t + )
x,k(t + )

]

=

[












][
x,k(t)
x,k(t)

]

+

[





]

uk(t), t ∈ S– = {, , , . . . , },

yk(t) = x,k(t) + x,k(t), t ∈ S = {, , , . . . , }, ()

x,k() = , x,k() = .
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Figure 2 Outputs of linear system at the 3rd
iteration.

Figure 3 Outputs of linear system at the 7th
iteration.

Figure 4 Expectations of outputs of linear
system at the 7th iteration.

The desired trajectory is chosen as yd(t) = sin( π
 t), t ∈ S. The beginning control signal is set

as u(t) =  for t ∈ S–. For the proposed NILC scheme () with () and (), the convergent
factor is computed as ρ̃ =  – �( – ᾱ)( 

 – ω̄) under the assumption that the learning
gain is restricted to � ∈ (, ]. Thus, the convergent condition ρ̃ <  in Corollary  holds
if the probabilities satisfy  ≤ ᾱ < and  ≤ ω̄ < 

 , respectively.
Set the learning gain as � = .. Choose three groups of probabilities as P: ᾱ = , ω̄ = ;

P: ᾱ = ., ω̄ = . and P: ᾱ = ., ω̄ = ., respectively. It is testified that the convergent
conditions for three groups of probabilities in Corollary  are ρ̃(P) = 

 < , ρ̃(P) =
,
, <  and ρ̃(P) = ,

, < , respectively, which implies that the convergent conditions
are satisfied. Figures  and  depict the outputs for those three groups probabilities at the
third and seventh iterations, respectively, where the dashed curves exhibit for the desired
outputs, the solid ones denote the outputs for P: ᾱ = , ω̄ = , the dot-dash ones plot the
outputs for P: ᾱ = ., ω̄ = . and the circle-solid ones present the outputs for P: ᾱ = .,
ω̄ = ., respectively.
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Figure 5 Expectations of tracking errors of linear
system.

Figure 6 Outputs of nonlinear system at the 3rd
iteration.

It is observed that the outputs for larger dropout probabilities render stronger stochastic
oscillations and slower tracking. Figure  displays the expectations of those outputs at the
seventh iteration, while Figure  shows the expectations of tracking errors, which convey
that expectations of tracking errors with respect to the proposed NILC scheme () with
() and () converge to nullity very well.

Example  Consider a nonlinear system modeled as

[
x,k(t + )
x,k(t + )

]

=

[

 sin(x,k(t))

 cos(x,k(t))

]

+

[





]

uk(t), t ∈ S– = {, , , . . . , },

yk(t) = x,k(t) + x,k(t), t ∈ S = {, , , . . . , }, ()

x,k() = , x,k() = .

The desired trajectory is set as yd(t) = sin( π
 t), t ∈ S. The control signal at the beginning

iteration is set as u(t) =  for t ∈ S–. It is calculated that the Lipschitz constant of the
function f (x,k(t), x,k(t)) = [ 

 sin(x,k(t)), 
 cos(x,k(t))]� is Lf = 

 . Under the assumption
that the learning gain �is confined within the range (, ], the convergent factor is formu-
lated as ρ =  – �( – ᾱ)(. – ω̄). This means that ρ <  holds if the probabilities are
restricted as  ≤ ᾱ <  and  ≤ ω̄ < . are satisfied.

Choose learning gain as � = . and set three groups of probabilities as P: ᾱ = , ω̄ = ;
P: ᾱ = ., ω̄ = . and P: ᾱ = ., ω̄ = ., respectively. It is not difficult to test that the
convergent conditions in Theorem  for those three groups of probabilities are ρ(P) =
. < , ρ(P) = . <  and ρ(P) = . < , respectively. Figures  and  give the
outputs at the third and sixth iterations, respectively, where the dashed curves mark the
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Figure 7 Outputs of nonlinear system at the 6th
iteration.

Figure 8 Expectations of outputs of nonlinear
system at the 6th iteration.

Figure 9 Expectations of tracking errors of
nonlinear system.

desired outputs, the solid ones are the outputs for P: ᾱ = , ω̄ = , the dot-dash ones
express the outputs for P: ᾱ = ., ω̄ = . and the circle-solid ones represent the outputs
for P: ᾱ = ., ω̄ = ., respectively.

It is seen that the outputs are closing to the desired trajectory as the iteration goes on,
though the outputs for larger dropout probabilities reveal stochastic perturbation. Fig-
ure  plots the expectations of outputs at the sixth iteration on operation time interval,
while Figure  depicts the expectations of tracking errors along the iteration direction,
respectively.

From Figures -, it is found that the proposed ILC scheme () with the compensations
() and () may drive both the linear and the nonlinear systems to track the desired tra-
jectory perfectly in statistical mode.
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6 Conclusion
In this paper, a D-type NILC scheme is developed for discrete-time systems with appropri-
ate mending manners for dropped input and output data. Under the assumption that the
stochastic data dropouts are subject to - Bernoulli-type distributions and by assessing
the tracking performance in the form of mathematical expectation, the zero-error con-
vergences of the NILC for the SISO linear and affine nonlinear time-invariant systems are
derived, respectively. Both the theoretical derivations and the numerical simulations con-
vey that the proposed NILC scheme enables the linear and affine nonlinear time-invariant
systems to track the desired trajectory well, though the stochastic dropout may disturb the
tracking behavior. However, the investigations for the networked ILC systems with noise
and parameter uncertainties are challenging in future work.
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