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dynamic equations on time scales through the variational method and the critical point

theory [�� …�� ].

In this paper, we consider the existence of nontrivial homoclinic orbits to zero of equa-

tion on time scalesT of the form

�
(p(t)u� (t))� + q� (t)u� (t) = f (� (t),u� (t)), � -a.e.t � T,

u(±� ) = u� (±� ) = �,
(�)

where p(t) : T � R is nonzero and is� -di�erential, q : T � R is Lebesgue integrable

and f : T × R � R is Lebesgue integrable with respect tot for � -a.e.t � T. Providing

that f (t,x) grows superlinearly both at origin and at in“nity or is an odd function with

respect tox � R, we explore the existence of a nontrivial homoclinic orbit of the dynamic

equation (� ) by means of the mountain pass lemma and the existence of an unbounded

sequence of nontrivial homoclinic orbits by using the symmetric mountain pass lemma.

The interesting thing is that the variational method and the critical point theory are used

in this paper. It is notable that in our study any periodicity assumptions onp(t), q(t) and

f (t,u) are not required.

We say that a property holds for� -a.e.t � A � T or � -a.e. onA � T whenever there

exists a setE � A with the null Lebesgue� -measure such that this property holds for

everyt � A \ E.

Definition  We say that a solutionu of equation (� ) is homoclinic to zero if it satis“es

u(t) � � as t � ±� , wheret � T. In addition, if u �= �, then u is called a nontrivial ho-

moclinic solution.

Throughout this paper, we make the following assumptions:

(H� ) limx� �
f (t,x)

x = � uniformly for � -a.e. t � T ;
(H� ) there exists a constant � > � such that

xf (t,x) � �
� x

�
f (t,s) ds < � for � -a.e. t � T and for all x � R \ { � }; (�)

(H� ) p(t) > � for � -a.e. t � T and
�

(…� ,� )T
p� (t)� t < +� ;

(H� ) q� (t) < � for � -a.e. t � T , lim|t|�� q� (t) = …� and
�

(…� ,� )T
|q� (t)|� � t < +� .

Let F(t,x) =
� x

� f (t,s) ds, it follows from (� ) that

dF
F

	
�
x

dx for |x| 	 �,

which implies that there is a real function� (t) > � such that

� x

�
f (t,s) ds � …� (t)|x|� for � -a.e.t � T and|x| 	 �. (�)

It follows from (� ) and (� ) that

lim
|x|��

f (t,x)
x

= …� uniformly for � -a.e.t � T. (�)
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Hence, we have the following remark.

Remark 
() u(t) 
 � is a trivial homoclinic solution of equation ().
() f (t,x) grows superlinearly both at infinity and at origin.

The paper is structured as follows. In Section� , we introduce two technical lemmas

which will be used in the proofs of our main results. In Section� , the variational structure

of the dynamic equation (� ) is presented. In Section� , we summarize our main results on

the existence homoclinic solution of the dynamic equation (� ) on time scales and present

two examples. We demonstrate the proofs in Section	 .

2 Preliminaries
In this section, we present two lemmas which can help us to better understand our main

results and proofs. For the basic terminologies such as measure, absolute continuity, the

Lebesgue integral and Sobolev•s spaces on time scales, we refer the reader to references

[�� …�� ].

Let us recall the mountain pass theorem [�� ] and the symmetric mountain pass theorem

[�� ], respectively.

Lemma  ([�� ]) Let X be a real Banach space and � : X � R be a C� -smooth functional.
Suppose that � satisfies the following conditions:

(i) � (�) = � ;
(ii) every sequence {uj}j� N in X such that {� (uj)}j� N is bounded in R and � �(uj) � � in

X � as j � +� contains a convergent subsequence as j � +� (the PS condition);
(iii) there exist constants � and � > � such that � |� B� (�) 	 � ;
(iv) there exists e � X \ B̄� (�) such that � (e) � � , where B� (�) is an open ball in X of

radius � centered at � .
Then � possesses a critical value c 	 � given by

c = inf
g� 	

max
s� [�,�]

�
�
g(s)

�
,

where

	 =
�

g � C
�
[�, �], E

�
: g(�) = �, g(�) = e

	
.

Lemma  ([�� ]) Let X be a real Banach space and � : X � R be a C� -smooth functional.
Suppose that � satisfies the following conditions:

(i) � (�) = � ;
(ii) � satisfies the PS condition;

(iii) there exist constants � and � > � such that � |� B� (�) 	 � ;
(iv) for each finite-dimensional subspace 
E � E, there is 
 = 
 (
E) such that � � � on


E \ � 
 .
Then � possesses an unbounded sequence of critical values.
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3 Variational framework
In this section, we state some basic notations, some lemmas which are closely related to

our main results, and construct a variational framework of our problem.

For p � R and p 	 �, we let the space

Lp
�

�
(…� ,� )T,R

�
=

�
f : (…� ,� )T � R :

�

(…� ,� )T

�
�f (t)

�
�p

� t < +�
�

be equipped with the norm


 f 
 Lp
�

=

 �

(…� ,� )T

�
�f (s)

�
�p

� s
� �

p
.

Then Lp
� ((…� ,� )T,R) is a Banach space together with the inner product given by

� f ,g� Lp
�

=
�

(…� ,� )T

f (t)g(t)� t,

where (f ,g) � Lp
� ((…� ,� )T,R) × Lp

� ((…� ,� )T,R).

Let

H �,�
� = H �,�

�

�
(…� ,� )T,R

�

=

�
��

��
u : (…� ,� )T � R

�
�
�
�
�
�
�

u is absolutely continuous and

bounded measurable functional,

u� � L�
� ((…� ,� )T,R)

�
��

��
.

It is a Hilbert space with the norm de“ned by


 u
 = 
 u
 H �,�
�

=
� �

(…� ,� )T

|u|� � t +
�

(…� ,� )T

�
�u�

�
� �

� t
� �

�

for u � H �,�
� .

De“ne

E =

�
��

��
u � H �,�

�

�
�
�
�
�
�
�

�
(…� ,� )T

[p(t)(u� )� …q� (t)(u� )� ]� t < +� ,

and there exist �,a � (…� ,� )T are real

such that
�

(�, a)T
u(t)� t = �

�
��

��
.

Then E is a Hilbert space with the norm de“ned by


 u
 �
E =

�

(…� ,� )T

�
p(t)

�
u� � �

…q� (t)
�
u� � � �

� t for u � E,

and the inner product is

�u,v� =
�

(…� ,� )T

�
p(t)u� v� …q� (t)

�
u� � � v

�
� t for any u,v � E.
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Let

L�
�

�
(…� ,+� )T,R

�
=

�

u : (…� ,+� )T � R

�
�
�
�

u is bounded measurable

function a.e. on (…� ,+� )T

�

,

and L�
� ((…� ,+� )T,R) is called the essentially bounded space on time scales, which is

equipped with the norm


 u
 L�
�

:= ess sup
� �
�u(t)

�
� : t � (…� ,+� )T

	
= inf

µ(E� )=�, E� � E
sup

t� (…� ,+� )T\ E�

�
�u(t)

�
�,

where u(t) is bounded on (…� ,+� )T \ E� , and E� is a set of measure zero in the space

(…� ,+� )T.

Now, we list three technical lemmas which will be used in the proofs of our main results

in the next section.

We have the following lemma.

Lemma  There exist positive constants C� and L such that the following inequality holds:


 u
 L�
�

� C� 
 u
 . (	)

Moreover, there exist �, a � (…� ,� )T are real such that
�

(�, a)T
u(t)� t = �, then


 u
 L�
�

� L
 u� 
 L�
�

, (
)

where t � (…� ,+� )T, holds.

Proof Going to the components ofu(t), we can assume thatn = �, and there exist �, a �

(�, + � )T are real. Ifu(t) � H �,�
� , then there exists� � [�, a]T such thatu(� ) = inft� [�, a]T u(t),

it follows that

�
a

�

(�, a)T

u(t)� t 	
�
a

�

(�, a)T

u(� )� t = u(� ).

Thus, there exists constantc� > � such that |u(� )| � c� |
�

(�, a)T
u(t)� t|. Hence, for t �

(…� ,� )T, one can get

�
�u(t)

�
� =

�
�
�
�u(� ) +

�

(� ,t)T
u� (t)� t

�
�
�
� �

�
�u(� )

�
� +

�
�
�
�

�

(� ,t)T
u� (t)� t

�
�
�
�

� c�

�
�
�
�

�

(�, a)T

u(t)� t
�
�
�
� + |t …� |

�
�

� �

(� ,t)T

�
�u� (t)

�
� �

� t
� �

�

� c� a
�
�

� �

(…� ,� )T

�
�u(t)

�
� �

� t
� �

�

+ |t …� |
�
�

� �

(…� ,� )T

�
�u� (t)

�
� �

� t
� �

�

,
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then


 u
 L�
�

= inf
µ(E� )=�, E� � E

sup
t� (…� ,+� )T\ E�

�
�u(t)

�
�

� max
�

c� a
�
� , inf

µ(E� )=�, E� � E
sup

t� (…� ,+� )T\ E�

|t …� |
�
�

�

×
�� �

(…� ,� )T

�
�u(s)

�
� �

� t
� �

�

+
� �

(…� ,� )T

�
�u� (s)

�
� �

� t
� �

�
�

� C� 
 u
 .

If
�

(�, a)T
u(t)� t = �, then

�
�u(t)

�
� =

�
�
�
�u(� ) +

�

(� ,t)T
u� (t)� t

�
�
�
� �

�
�u(� )

�
� +

�
�
�
�

�

(� ,t)T
u� (t)� t

�
�
�
�

� c�

�
�
�
�

�

(�, a)T

u(t)� t
�
�
�
� + |t …� |

�
�

� �

(� ,t)T

�
�u� (t)

�
� �

� t
� �

�

,

which implies (
 ) holds. �

Lemma  Assume that the sequence {un} � E such that un � u in E, then the sequence un

satisfies un � u in L�
� ((…� ,� )T,R).

Proof Without loss of generality, assume thatun � � in E for any 
 > �. It follows from

(H� ) that there exists negativeT� � T such that

…
�

q� (t)
� 
 for � -a.e.t � (…� ,T� )T. (�)

Similarly, we also have there exists positiveT� � T such that

…
�

q� (t)
� 
 for � -a.e.t � (T� , � )T. (�)

From (H� ) and (H� ), we haveun � u in EI , where

EI =
�

u � H �,�
�

�
�
�
�

(T� ,T� )T

�
p(t)

�
u� (t)

� �
…q� (t)

�
u� (t)

� � �
� t < +�

�
.

Hence,{un} is bounded inEI , which implies that{un} is bounded inL�
� ((T� ,T� )T,R). Due

to the uniqueness of the weak limit inL�
� ((T� ,T� )T,R), one obtainsun � � on ( T� ,T� )T,

then there isn� such that

�

(T� ,T� )T

�
�un(t)

�
� �

� t � 
 for all n 	 n� (�)

since

sup
n

�

(…� ,� )T

�
p(t)

�
u�

n (t)
� �

…q� (t)
�
un(t)

� � �
� t < +� .
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Let

A� = max

� �

(…� ,T� )T

q� (t)
�
�un(t)

�
� �

� t,
�

(…� ,T� )T

q� (t)
�
�u�

n (t)
�
� �

� t
�

,

then � < A� < +� .

According to (� ), we have

�

(…� ,T� )T

�
�un(t)

�
� �

� t

� …
 max

� �

(…� ,T� )T

q� (t)
�
�un(t)

�
� �

� t,
�

(…� ,T� )T

q� (t)
�
�u�

n (t)
�
� �

� t
�

� 
 A� . (��)

Let

A� = max

� �

(T� ,� )T

q� (t)
�
�un(t)

�
� �

� t,
�

(T� ,� )T

q� (t)
�
�u�

n (t)
�
� �

� t
�

,

then � < A� < +� .

In view of (� ), we have

�

(T� ,� )T

�
�un(t)

�
� �

� t

� …
 max

� �

(T� ,� )T

q� (t)
�
�un(t)

�
� �

� t,
�

(T� ,� )T

q� (t)
�
�u�

n (t)
�
� �

� t
�

� 
 A� . (��)

Since
 is arbitrary, combining (� ), (�� ) and (�� ), one has

un � u in L�
�

�
(…� ,� )T,R

�
. �

In the following, we de“ne and prove the variational framework of the dynamic equa-

tion (� ).

De“ne the functional E � R by

� (u) =
�
�

�

(…� ,� )T

�
p(t)

�
u� (t)

� �
…q� (t)

�
u� (t)

� � �
� t +

�

(…� ,� )T

F
�
� (t),u� (t)

�
� t

=
�
�


 u
 �
E +

�

(…� ,� )T

F
�
� (t),u� (t)

�
� t, (��)

whereF(t, � ) =
� �

� f (t,s) ds.

Lemma  The functional � is continuously differentiable on E, and

� �(u)v =
�

(…� ,� )T

�
p(t)u� v� …q� (t)u� v� �

� t +
�

(…� ,� )T

f
�
� (t),u� �

v� � t for u,v � E.
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Proof Let us “rst consider the existence of the Gâteaux derivative.
For anyv � E and 
 � R (� < |
 | < �), we have

�



�
� (u + 
 v) …� (u)

�

=
�

(…� ,� )T

�
� 


�
� p(t)
 u� v� + p(t)
 � �

v� � �
… �
 q� (t)u� (t)v� (t) + 
 � q� (t)

�
v� (t)

� � �

+
�

(…� ,� )T

F(� (t),u� + 
 v� ) …F(� (t),u� )



� t.

Givenu � R, the mean value theorem indicates that there exists� � � (�, �) such that

�
|
 |

�
�F

�
� (t),u� + 
 v� �

…F
�
� (t),u� � ��

=
�

|
 |

�
�
�
�
� F
� �

�
�
�
�
(� (t),u� +� � 
 v� )

�
�
�
�
�
�
 v�

�
� =

�
�f

�
� (t),u� + � � 
 v� � ��

�
�v�

�
�.

Note that

�
�f

�
� (t),u� + � � 
 v� � ��

�
�v�

�
� � L�

�

�
(…� ,� )T,R

�
.

It follows from Lebesgue•s dominated convergence theorem on time scales that

� �(u)v = lim

 � �

�



�
� (u + 
 v) …� (u)

�

=
�

(…� ,� )T

�
p(t)u� v� …q� (t)u� v� �

� t +
�

(…� ,� )T

f
�
� (t),u� �

v� � t.

Next, we show the continuity of the Gâteaux derivative.
Assume that the sequence{un} � E satis“esun � u asn � � in E. Using Lebesgue•s

dominated convergence theorem on time scales and (H� ) yields

�

(…� ,� )T

�
�f

�
� (t),u�

n
�

…f
�
� (t),u� � �� � t � � as n � � . (��)

It follows from Theorem �.	 in [ �� ] that E �� L�
� ((…� ,� )T,R) is compact, thenun � u

asn � � in L�
� ((…� ,� )T,R). For arbitraryv � E, there holds

� �(un)v …� �(u)v

=
�

(…� ,� )T

p(t)
�
u�

n …u� �
v� � t

…
�

(…� ,� )T

q� (t)
�
u�

n …u� �
v� � t +

�

(…� ,� )T

�
f
�
� (t),u�

n
�

…f
�
� (t),u� ��

v� � t.

Hölder•s inequality on time scales and Lemma� reduce to

�
�� �(un)v …� �(u)v

�
�

�
�

(…� ,� )T

�
�p(t)

�
u�

n …u� � ��
�
�v�

�
� � t +

�

(…� ,� )T

�
�q� (t)

�
u�

n …u� � ��
�
�v�

�
� � t
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+
�

(…� ,� )T

�
�� f

�
� (t),u�

n
�

…f
�
� (t)u� �

v� � �� � t

� 
 v
 L�
�

� �

(…� ,� )T

�
�u�

n …u�
�
� �

� t
� �

�
� �

(…� ,� )T

�
�p(t)

�
� �

� t
� �

�

+
�
� v�

�
�

L�
�

� �

(…� ,� )T

�
�u�

n …u�
�
� �

� t
� �

�
� �

(…� ,� )T

�
�q� (t)

�
� �

� t
� �

�

+
�

(…� ,� )T

�
�� f

�
� (t),u�

n
�

…f
�
� (t),u� �

v� � �� � t

� C� 
 v

�
� u�

n …u�
�
�

L�
�

� �

(…� ,� )T

�
�p(t)

�
� �

� t
� �

�

+ C�
�
� v�

�
�
�
� u�

n …v�
�
�

L�
�

� �

(…� ,� )T

�
�q� (t)

�
� �

� t
� �

�

+ C�
�
� v�

�
�

�

(…� ,� )T

�
�f

�
� (t),u�

n
�

…f
�
� (t),u� � �� � t.

Thus, from the above discussion, (�� ), (H� ) and (H� ), we have

�
� � �(un) …� �(u)

�
�

� C�
�
� u�

n …u�
�
�

L�
�

� �

(…� ,� )T

�
�p(t)

�
� �

� t
� �

�

+ C� 
 v� 


 v


�
� u�

n …v�
�
�

L�
�

� �

(…� ,� )T

�
�q� (t)

�
� �

� t
� �

�

+ C� 
 v� 


 v


�

(…� ,� )T

�
�f

�
� (t),u�

n
�

…f
�
� (t),u� � �� � t � � as n � � ,

which implies � �(un) � � �(u) asn � � . �

For anyv� � E, the dynamic equation (� ) gives

�

(…� ,� )T

�
p(t)u� (t)

� � v� � t +
�

(…� ,� )T

q� (t)u� (t)v� � t

…
�

(…� ,� )T

f
�
� (t),u� (t)

�
v� � t

=
�

(…� ,� )T

�
…p(t)u� (t)v� + q� (t)u� (t)v� �

� t …
�

(…� ,� )T

f
�
� (t),u� �

v� � t

= �.

So, “nding the homoclinic solutions to the zero of dynamic equation (� ) is equivalent to
“nding the critical points of the associated functional� de“ned in (�� ).

4 Main results
In this section, we state the results of the existence of nontrivial homoclinic orbits of the
dynamic equation (� ) on time scales. As an elementary illustration, two examples are given
to show the usefulness of these criteria.
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Theorem  If conditions (H� ), (H� ), (H� ) and (H� ) are satisfied, then the dynamic equation
(� ) has one nontrivial homoclinic orbit to � such that

� <
�

(…� ,� )T



�
�

�
p(t)

�
u� (t)

� �
…q� (t)

�
u� (t)

� � �
+ F

�
� (t),u� �

�
� t < +� .

Example  Let

T ={�, 	, ���, ���, ���, �	�, �
�, ���, ���, ��� } � [���.	, + � ) � (…� ,…���.	).

Consider the following second order boundary value problem on time scalesT of the

form

�
(� t� u� (t))� … (t� )� u� = …�

� � (t)(u� (t))� , � -a.e.t � T,

u(±� ) = u� (±� ) = �.
(��)

Since
� x

� f (t,s) ds = …t
� x� , one can check that all conditions of Theorem� are ful“lled. It

follows from Theorem� that the dynamic equation (� ) has one nontrivial homoclinic orbit

to �.

Theorem  If conditions (H� ), (H� ), (H� ), (H� ) and the following condition are satisfied

(H� ) f (t,…x) = …f (t,x) for all x � R and � -a.e. t � T ,

then the dynamic equation (� ) has an unbounded sequence in E of a homoclinic orbit to �.

Example  Let a,b > � be real numbers,

P� =
��

k=�

�
k(a + b),k(a + b) + a

�
,

and

P� =
��

k=�

�
…k(a + b) …a,…k(a + b)

�
.

Consider the following second order boundary value problem on time scalesP� � P� of

the form

�
(� t� u� (t))� …|t� |u� = …�

� � (t)(u� (t))	 , � -a.e.t � P� � P� ,

u(±� ) = u� (±� ) = �.
(�	)

Since
� x

� f (t,s) ds = …t
�� x
 , one can check that all conditions of Theorem� are ful“lled. It

follows from Theorem� that the dynamic equation (� ) has an unbounded sequence inE
of a homoclinic orbit to �.

5 Proof of theorems
In this section, we show our main results on the existence of nontrivial homoclinic orbits

of the dynamic equation (� ) on time scales.
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Proof of Theorem � Since we have already known that� � C� (E,R) and � (�) = �, in the
following we prove that all the other conditions of Lemma� are ful“lled with respect to
the functional � .

Firstly, we claim that� satis“es the PS condition.
Assume that there exist a sequence{un} � E and a constantc such that

� �(un) � � as n � � and � (un) � c, n = �, �, . . . , (�
)

we show that{un} has a convergent subsequence inE.
It follows from (�
 ) and (H� ) that there is a constantd 	 � such that

d + 
 un
 E 	 � (un) …
�
�

� �(un)un

=
�

�
�

…
�
�

�

 u
 �

E +
�

(…� ,� )T

�
F

�
� (t),u� �

…f
�
� (t),u� �

v� �
� t

	
�

�
�

…
�
�

�

 u
 �

E,

which implies that {un} is bounded inE. Hence, there is a subsequence (still denoted by
{un}, un � u� in E). It follows from Lemma � that un � u� in L�

� ((…� ,� )T,R). Now,
according to (H� ), un,u� � E, for any
 > �, we have that there exist constants� � > �, � � > �
andL � T such that

|un| < � � , |u� | < � � and 
 un …u� 
 L�
�

< 
 for � -a.e.|t| > L, (��)

which implies that

�
�f

�
� (t),u�

n
� �� � 


�
�u�

n
�
� and

�
�f

�
� (t),u�

�

� �� � 

�
�u�

�

�
� for � -a.e.|t| > L. (��)

Since
�

(…� ,� )T

�
f
�
� (t),u�

n
�

…f
�
� (t),u�

�

��
(un …u� )� t

=
�

[…L,L]T

�
f
�
� (t),u�

n
�

…f
�
� (t),u�

�

��
(un …u� )� t

+
�

(…� ,…L)T

�
f
�
� (t),u�

n
�

…f
�
� (t),u�

�

��
(un …u� )� t

+
�

(L,� )T

�
f
�
� (t),u�

n
�

…f
�
� (t),u�

�

��
(un …u� )� t, (��)

let

L�
� ,loc(T,R) =

�
� : T � R | for arbitrary compact intervalK � T,� IK � L�

� (T,R)
	
,

whereIK is an indicator function of intervalK and

� IK =

�
� (x), x � K ,

�, x /� K .
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It follows from the uniform continuity of f (t,x) in x andun � u� in L�
� ,loc(T,Rn) that

�

[…L,L]T

�
f
�
� (t),u�

n
�

…f
�
� (t),u�

�

��
(un …u� )� t � � as n � � .

Combining Hölder•s inequality on time scales, (�� ) and (�� ) leads to

�
�
�
�

�

(…� ,…L)T

�
f
�
� (t),u�

n
�

…f
�
� (t),u�

�

��
(un …u� )� t

�
�
�
�

�
� �

(…� ,…L)T

�
�f

�
� (t),u�

n
�

…f
�
� (t),u�

�

� �� �
� t

� �
�
� �

(…� ,…L)T

(un …u� )� � t
� �

�

� 
 �
� �

(…� ,…L)T

� ��u�
n
�
� +

�
�u�

�

�
� � �

� t
� �

�

� 
 � M� .

By using the same technique, we obtain

�
�
�
�

�

(L,� )T

�
f
�
� (t),u�

n
�

…f
�
� (t),u�

�

��
(un …u� )� t

�
�
�
� � 
 � M� ,

whereM� , M� depend on the bounds forun andu� in E. Then

�

(…� ,� )T

�
f
�
� (t),u�

n
�

…f
�
� (t),u�

�

��
(un …u� )� t � � as n � � (��)

since

�
� �(un) …� �(u� )

�
(uk …u� )

= 
 un …u� 
 �
E …

�

(…� ,� )T

�
f
�
� (t),u�

n
�

…f
�
� (t),u�

�

��
(un …u� )� t. (��)

Equations (�� ) and (�� ) imply that un � u� in E. Consequently,� satis“es the PS condi-

tion.

Secondly, we prove that there exist constants� and � > � such that � satis“es the as-

sumption (iii) of Lemma� .

It follows from Lemma� that there exists� � > � such that


 u
 L�
�

� � � 
 u
 E for u � E.

On the other hand, according to (H� ) and (H� ), we have that there exists� � > � such that


 u
 � � � � 
 u
 E,

where


 u
 � = max
t� (…� ,� )T

�
�u(t)

�
�.
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(H� ) implies that there is� > � such that

�
�F(t,x)

�
� � 
 |x|� for |x| � � .

Let � = �
� �

and 
 u
 E � � , we have
 u
 � � �
� �

� � = � , then

�
�F

�
t,u� � �� � 


�
�u�

�
� �

for
�
�u�

�
� � � and � -a.e.t � T,

which implies that

�

(…� ,� )T

F
�
t,u� �

� t 	 …
 
 u
 �
L�

�
	 …
� �

� 
 u
 �
E.

Hence, if
 u
 E = � , we have

� (u) =
�
�


 u
 �
E +

�

(…� ,� )T

F
�
� (t),u� �

� t

	
�
�


 u
 �
E …
� �

� 
 u
 �
E =

�
�
�

…
� �
�

�
� � .

Choosing
 = �
� � �

� , we have

� (u) 	
�
�

� � = � > �.

Thirdly, we claim that there existse � X \ B̄� (�) such that � satis“es the assumption (iv)

of Lemma� .

Let u � E be such that|u(t)| 	 �, for any � 	 �, it follows from ( � ) that

� (� u) =
� �

�

 u
 �

E +
�

(…� ,� )T

F
�
� (t),� u� �

� t

�
� �

�

 u
 �

E …
�

(…� ,� )T

�
� � u�

�
� �

� � (t)� t

=
� �

�

 u
 �

E …|� |�
�

(…� ,� )T

�
�u�

�
� �

� � (t)� t,

which implies that there exists� 	 � such that 
 � u
 > � and � (� u) � � = � (�).

Hence, all the conditions of Lemma� are satis“ed, the desired results follow. �

Proof of Theorem � It follows from (H � ) that � is even. In addition, we have already proved

that � � C� (E,T), � (�) = � and � satis“es the Palais-Smale condition. We prove that all the

other conditions of the symmetric mountain pass theorem are satis“ed with respect to

the functional � . We have already showed that� satis“es condition (iii) of the symmetric

mountain pass theorem in the proof of Theorem� .

In the following, we claim that� satis“es condition (iv) of the symmetric mountain pass

theorem.
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Let 
E � E be a “nite-dimensional subspace. Consideru � 
E � E with u �= �. It follows

from (� ) that

�

(�, � )T

F
�
t,u� �

� t � …
�

(�, � )T

� (t)
�
�u(t)

�
� �

� t,

and

�

(…� ,…�)T

F
�
t,u� �

� t � …
�

(…� ,…�)T

� (t)
�
�u(t)

�
� �

� t.

We also have


 u
 �
E � c
 u
 �

� for u � 
E,

wherec = c(
E).

De“ne m = inf
 u
 � =� (
�

(�, � )T
� (t)|u(t)|� � t +

�
(…� ,…�)T

� (t)|u(t)|� � t), if m = �, we have


 u
 = � for � -a.e.t � { t | |u(t)| > � }, which contradicts 
 u
 � = �, then m > �, and we

have

� (u) �
�
�

c
 u
 �
� +

�

(…� ,�)T

F
�
� (t),u� �

� t

+
�

(�, � )T

F
�
� (t),u� �

� t +
�

[…�,�]T

F
�
� (t),u� �

� t

�
�
�

c
 u
 �
� +

�

(…� ,�)T

F
�
� (t),u� �

� t +
�

(�, � )T

F
�
� (t),u� �

� t

�
�
�

c
 u
 �
� …

�

(…� ,�)T

� (t)
�
�u(t)

�
� �

� t …
�

(�, � )T

� (t)
�
�u(t)

�
� �

� t

=
�
�

c
 u
 �
� …

�
� �


 u
 �
�

� �

(…� ,�)T

� (t)
�

� |u(t)|

 u
 �

� �

� t

+
�

(�, � )T

� (t)
�

� |u(t)|

 u
 �

� �

� t
�

�
�
�

c
 u
 �
� …

m
� �


 u
 �
� .

Since� > �, there exists a constantC� such that� (u) � � if 
 u
 � 	 C.

Consequently, it follows from Lemma� that the functional � possesses an unbounded

sequence of critical values{cj} with cj = � (uj), whereuj satis“es

� = � �(uj)uj = 
 uj
 �
E +

�

(…� ,� )T

f
�
� (t),u�

j
�
uj� t,

which implies that

…
 uj
 �
E =

�

(…� ,� )T

f
�
� (t),u�

j
�
uj� t.
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(H� ) implies that

cj = …
�
�

�

(…� ,� )T

f
�
� (t),u�

j
�
uj� t +

�

(…� ,� )T

F
�
� (t),u�

j
�
� t

� …
�
�

�

(…� ,� )T

f
�
� (t),u�

j
�
uj� t =

�
�


 uj
 �
E.

Then {uj} is unbounded inE because ofcj � � asj � � . The proof is completed. �
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