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Abstract
The main purpose of this paper is, using the method of trigonometric sums and the
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1 Introduction
Let q ≥  be a positive integer. For any positive integer k and integer m, the kth Gauss
sums G(m, k; q) are defined as

G(m, k; q) =
q∑

a=

e
(

mak

q

)
,

where e(y) = eπ iy.
Concerning these sums, many authors had studied their properties and obtained a series

of interesting results, see [, ]. In fact, from Weil’s important work [], one can get the
upper bound estimate

∣∣∣∣∣

p–∑

a=

χ (a)e
(

mak

p

)∣∣∣∣∣ �k
√

p,

where p is an odd prime, χ denotes a Dirichlet character mod p and �k denotes the Big O
notation dependent on k.

We also mention that the fourth power mean value of G(m, k; q) was well explored by
Zhang and Liu [], in which some sharp asymptotic formulas can be found.

On the other hand, Yang and Tang [] studied a number of solutions of the congruence
equation

x + y ≡ c mod n with (xy, n) = 

and gave an exact computational formula for it.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13662-017-1097-2
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-017-1097-2&domain=pdf
mailto:wpzhang@nwu.edu.cn


Shen and Zhang Advances in Difference Equations  (2017) 2017:43 Page 2 of 9

Let s be a positive integer and p be an odd prime with p ≡  mod . Let Ms denote a
number of solutions of the equation

X
 + X

 + X
 + · · · + X

s = 

in the finite field GF(p), and let Us = Ms – ps–. Chowla et al. [] proved that Us satisfies
the linear recurrence

Us – pUs– – pdUs– = ,

where U = , U = p –  and U = (p – )d with d being uniquely determined by p =
d + b and d ≡  mod .

Some related results can also be found in [–].
Now we consider a similar problem: Let n be a positive integer and p be an odd prime

with p ≡  mod . Let Mn(p) denote a number of solutions of the congruence equation

x
 + x

 + · · · + x
n– + x

n ≡  mod p, ()

where  ≤ xi ≤ p – , i = , , . . . , n.
It is natural to ask whether there exists an exact computational formula for Mn(p) when

n is a positive integer and p is an odd prime?
As far as we know, it seems that no one has studied this problem yet, at least we have

not seen any related result before. The problem is interesting because it can help us to
understand more accurate information of the quartic Gauss sums.

In this paper, we shall use the method of trigonometric sums and the properties of Gauss
sums to study this problem and give some interesting computational formulas. For the
sake of convenience, first we let B(p) =

∑p–
a=( a+a

p ), a denotes the solution of the equation
ax ≡  mod p, and ( ∗

p ) denotes the Legendre symbol mod p. Then we have the following
theorem.

Theorem  Let p = k +  be a prime, Un(p) = Mn(p) – pn–. Then, for any positive integer
n ≥ , we have the fourth-order linear recurrence formula

Un(p) = –pUn–(p) + pB(p)Un–(p) –
(
p – pB(p)

)
Un–(p),

where the first four terms are U(p) = , U(p) = –(p – ), U(p) = (p – )B(p) and U(p) =
–p(p – ) + (p – )B(p).

Theorem  Let p = k +  be a prime, Un(p) = Mn(p) – pn–. Then, for any positive integer
n ≥ , we have the fourth-order linear recurrence formula

Un(p) = pUn–(p) + pB(p)Un–(p) –
(
p – pB(p)

)
Un–(p),

where the first four terms are U(p) = , U(p) = (p – ), U(p) = (p – )B(p) and U(p) =
p(p – ) + (p – )B(p).

From these theorems we may immediately deduce the following two corollaries.
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Corollary  Let p = k +  be an odd prime. Then we have

M(p) = p + (p – )B(p) – p(p – ), M(p) = p – p(p – )B(p).

Corollary  Let p = k +  be an odd prime. Then we have

M(p) = p + (p – )B(p) + p(p – ), M(p) = p + p(p – )B(p).

Note the estimate for character sums

∣∣B(p)
∣∣ =

∣∣∣∣∣

p–∑

a=

(
a + a

p

)∣∣∣∣∣ ≤ 
√

p,

from Corollary  and Corollary  we can also deduce the following corollary.

Corollary  Let p be an odd prime with p ≡  mod . Then we have the asymptotic formu-
las

M(p) = p + O(p) and M(p) = p + O(p

 ).

Remark Let p be an odd prime with p ≡  mod , it is clear that we have the identity (see
Theorems - in [])

p =

(



p–∑

a=

(
a + a

p

))

+

(



p–∑

a=

(
a + ra

p

))

= α + β,

where r is a quadratic non-residue mod p, that is to say, ( r
p ) = –. The above identity implies

that |B(p)| is a constant depending only on p and |B(p)| ≤ √p.

For prime p = k +  and positive b with  ≤ b ≤ p – , we have the identity

A(b) =
p–∑

a=

e
(

ba

p

)
= i

(
b
p

)√
p, i = –.

It is very easy to prove that Mn–(p) = pn– and

Mn(p) = pn– + (–)npn–(p – ).

2 Several lemmas
In this section, we give some lemmas which are necessary in the proofs of our theorems.
Hereinafter, we shall use some properties of the classical Gauss sums, all of them can be
found in reference [], so they will not be repeated here. First we have the following lemma.

Lemma  Let p be an odd prime with p ≡  mod , ( ∗
p ) = χ denotes the Legendre symbol

mod p. Then, for any integer b with (b, p) = , we have the identities

(I) A(b) =
p–∑

a=

e
(

ba

p

)
=

(
b
p

)√
p +

p–∑

a=

(
a
p

)
e
(

ba

p

)
;
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(II) A(b) = R(p) · p + 
(

b
p

)√
p

( p–∑

a=

(
a
p

)
e
(

ba

p

))
+

(
b
p

)√
p

p–∑

a=

(
a + a

p

)
,

where R(p) = –, if p = k + ; and R(p) = , if p = k + .

Proof From the definition of the quadratic residue mod p and the properties of the Legen-
dre symbol, we have

A(b) =
p–∑

a=

e
(

ba

p

)
=  +

p–∑

a=

e
(

ba

p

)
=  +

p–∑

a=

(
 + χ(a)

)
e
(

ba

p

)

=
p–∑

a=

e
(

ba

p

)
+

p–∑

a=

χ(a)e
(

ba

p

)
. ()

Since p ≡  mod , from [] (see formula () of Section .) we know that

p–∑

a=

e
(

ba

p

)
=

(
b
p

) p–∑

a=

e
(

a

p

)
=

(
b
p

)√
p. ()

From () and () we may immediately deduce formula (I) of Lemma .
Now we prove formula (II) of Lemma . It is clear that from (I) we have

A(b) = p + 
(

b
p

)√
p

( p–∑

a=

(
a
p

)
e
(

ba

p

))
+

( p–∑

a=

(
a
p

)
e
(

ba

p

))

. ()

From the properties of the reduced residue system mod p and (), we have

( p–∑

a=

(
a
p

)
e
(

ba

p

))

=
p–∑

x=

p–∑

y=

(
xy
p

)
e
(

b(x + y)
p

)

=
p–∑

x=

(
x
p

) p–∑

y=

e
(

by(x + )
p

)

= (p – )
p–∑

x=
x+≡ mod p

(
x
p

)

+
p–∑

x=
(x+,p)=

(
x
p

)( p–∑

y=

e
(

by(x + )
p

)
– 

)

= p
p–∑

x=
x+≡ mod p

(
x
p

)
–

p–∑

x=

(
x
p

)
+

(
b
p

)√
p

p–∑

x=

(
x(x + )

p

)

= I(p)p +
(

b
p

)√
p

p–∑

a=

(
a + a

p

)
, ()

where I(p) = –, if p = k + ; and I(p) = , if p = k + .
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Combining () and (), we have the identity

A(b) = R(p) · p + 
(

b
p

)√
p

( p–∑

a=

(
a
p

)
e
(

ba

p

))
+

(
b
p

)√
p

p–∑

a=

(
a + a

p

)
.

This proves formula (II) of Lemma .
Similarly, from (I) and () we can also prove that if p = k + , then we have

A(b) = 
(

b
p

)
p


 + p

( p–∑

a=

(
a
p

)
e
(

ba

p

))
+ p

( p–∑

a=

(
a + a

p

))

+
(

b
p

)√
p

( p–∑

a=

(
a
p

)
e
(

ba

p

))( p–∑

a=

(
a + a

p

))
. ()

If p = k + , then we have

A(b) = –
(

b
p

)
p


 + p

( p–∑

a=

(
a
p

)
e
(

ba

p

))
+ p

( p–∑

a=

(
a + a

p

))

+
(

b
p

)√
p

( p–∑

a=

(
a
p

)
e
(

ba

p

))( p–∑

a=

(
a + a

p

))
. ()

�

Lemma  Let p be an odd prime with p ≡  mod , A(p) is defined as in the above lemma,
and let

Nk(p) =
p–∑

b=

Ak(b).

Then we have the identities

N(p) = , N(p) = R(p)p(p – ) and N(p) = p(p – )

( p–∑

a=

(
a + a

p

))
,

where R(p) = –, if p = k + ; and R(p) = , if p = k + .

Proof Note the trigonometric identity

p–∑

m=

e
(

nm
p

)
=

{
p, if (p, n) = p;
, if (p, n) = ,

()

and

p–∑

b=

(
b
p

)
= .

From Lemma  and the properties of Gauss sums we have

p–∑

b=

A(b) =
p–∑

b=

(
 +

p–∑

a=

e
(

ba

p

))
= p –  +

p–∑

a=

p–∑

b=

e
(

ba

p

)
= , ()
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p–∑

b=

A(b) =
p–∑

b=

R(p) · p + 
p–∑

b=

(
b
p

)√
p

( p–∑

a=

(
a
p

)
e
(

ba

p

))

+
p–∑

b=

(
b
p

)√
p

p–∑

a=

(
a + a

p

)

= R(p) · p(p – ) + 
√

p
p–∑

a=

(
a
p

) p–∑

b=

(
b
p

)
e
(

ba

p

)

= R(p) · p(p – ) + p
p–∑

a=

(
a
p

)

= R(p) · p(p – ). ()

Similarly, from () and () we have

p–∑

b=

A(b) = p(p – )

( p–∑

a=

(
a + a

p

))
, ()

where we have used the identity

p–∑

b=

( p–∑

a=

(
a
p

)
e
(

ba

p

))
=

p–∑

a=

(
a
p

) p–∑

b=

e
(

ba

p

)
= –

p–∑

a=

(
a
p

)
= .

Now Lemma  follows from (), () and (). �

Lemma  Let p be an odd prime with |(p – ), then, for p = k + , we have

A(b) = –pA(b) + pA(b)

( p–∑

a=

(
a + a

p

))
– p + p

( p–∑

a=

(
a + a

p

))

.

If p = k + , then we have

A(b) = pA(b) + pA(b)

( p–∑

a=

(
a + a

p

))
– p + p

( p–∑

a=

(
a + a

p

))

.

Proof First, for any integer  ≤ b ≤ p – , from () and (II) of Lemma  we have

A(b) – R(p)pA(b) + R(p)p

= p

(


p–∑

a=

(
a
p

)
e
(

ba

p

)
+

p–∑

a=

(
a + a

p

))

= p

( p–∑

a=

(
a
p

)
e
(

ba

p

))

+ p

( p–∑

a=

(
a
p

)
e
(

ba

p

))( p–∑

a=

(
a + a

p

))

+ p

( p–∑

a=

(
a + a

p

))

= p

(
I(p)p +

(
b
p

)√
p

p–∑

a=

(
a + a

p

))
+ p

( p–∑

a=

(
a + a

p

))
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+ p

( p–∑

a=

(
a
p

)
e
(

ba

p

))( p–∑

a=

(
a + a

p

))

= I(p)p + p

( p–∑

a=

(
a + a

p

))((
b
p

)√
p +

p–∑

a=

(
a
p

)
e
(

ba

p

))

+ p

( p–∑

a=

(
a + a

p

))

= I(p)p + pA(b)

( p–∑

a=

(
a + a

p

))
+ p

( p–∑

a=

(
a + a

p

))

. ()

From (), the definitions of R(p) and I(p) we know that if p = k + , then

A(b) = –pA(b) + pA(b)

( p–∑

a=

(
a + a

p

))
– p + p

( p–∑

a=

(
a + a

p

))

. ()

If p = k + , then we have

A(b) = pA(b) + pA(b)

( p–∑

a=

(
a + a

p

))
– p + p

( p–∑

a=

(
a + a

p

))

. ()

Now Lemma  follows from () and (). �

It is clear that our Lemma  obtained a fourth-order linear recurrence formula for the
quartic Gauss sums A(b).

3 Proofs of the theorems
Now we shall complete the proofs of our main results. First we prove Theorem . If p =
k +  is an odd prime, then, for any positive integer n, from () and the definition of Mn(p)
we have

Mn(p) =
p–∑

x=

p–∑

x=

· · ·
p–∑

xn=
x

 +x
+···+x

n≡ mod p

 =

p

p–∑

b=

( p–∑

x=

e
(

bx

p

))n

= pn– +

p

p–∑

b=

( p–∑

x=

e
(

bx

p

))n

= pn– +

p

p–∑

b=

An(b). ()

So from () and Lemma  we have

U(p) = M(p) –  =

p

p–∑

b=

A(b) = , ()

U(p) = M(p) – p =

p

p–∑

b=

A(b) = –(p – ), ()

U(p) = M(p) – p =

p

p–∑

b=

A(b) = (p – )

( p–∑

a=

(
a + a

p

))
. ()
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From Lemma  we have

U(p) = M(p) – p =

p

p–∑

b=

A(b)

= –pU(p) + pU(p)B(p) – (p – )
(
p – B(p))

= –p(p – ) + (p – )B(p). ()

If k ≥ , then from () and Lemma  we have

Uk(p) = Mk(p) – pk– =

p

p–∑

b=

Ak(b) =

p

p–∑

b=

Ak–(b)A(b)

=

p

p–∑

b=

Ak–(b)

(
–pA(b) + pA(b)

( p–∑

a=

(
a + a

p

)))

–

(
p –

( p–∑

a=

(
a + a

p

))) p–∑

b=

Ak–(b)

= –pUk–(p) + p

( p–∑

a=

(
a + a

p

))
Uk–(p)

–

(
p – p

( p–∑

a=

(
a + a

p

)))
Uk–(p). ()

Now Theorem  follows from formulas ()-().
If p = k + , then from () and Lemma  we have

U(p) = M(p) –  =

p

p–∑

b=

A(b) = , ()

U(p) = M(p) – p =

p

p–∑

b=

A(b) = (p – ), ()

U(p) = M(p) – p =

p

p–∑

b=

A(b) = (p – )

( p–∑

a=

(
a + a

p

))
. ()

From Lemma  we also have

U(p) = M(p) – p =

p

p–∑

b=

A(b)

= pU(p) + pU(p)

( p–∑

a=

(
a + a

p

))
– (p – )

(
p –

( p–∑

a=

(
a + a

p

)))

= p(p – ) + (p – )B(p). ()
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If k ≥ , then from () and Lemma  we also have

Uk(p) = Mk(p) – pk– =

p

p–∑

b=

Ak(b) =

p

p–∑

b=

Ak–(b)A(b) = pUk–(p)

+ p

( p–∑

a=

(
a + a

p

))
Uk–(p) –

(
p – p

( p–∑

a=

(
a + a

p

)))
Uk–(p). ()

Now Theorem  follows from formulas ()-().
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