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At the same time, Lurie system has been generalised by researchers from di
erent as-

pects. Time-varying Lurie system is a natural generalisation. For the absolute stability of

such a system, there have been lots of useful results. In [�� ], the absolute stability of Lurie

indirect control systems and large-scale systems with multiple operators and unbounded

coe�cients were studied. The discussed system was taken as a large-scale interconnected

system composed of several subsystems. By constructing a Lyapunov function for each

isolated subsystem, a certain weighted sum of them was considered as the Lyapunov func-

tion of the original system. Thus some stability criteria were derived. The authors in [�� ,

�� ] developed some su�cient conditions for the absolute stability of Lurie direct control

systems and large-scale systems with unbounded coe�cients.

Regarding the absolute stability of time-varying Lurie systems, uncertain Lurie systems

and stochastic Lurie systems, lots of research results have been reported in the literature.

However, most of the results on the absolute stability of Lurie systems require that the

system coe�cients be bounded. Motivated by this, we will study the absolute stability of

time-varying Lurie indirect control systems with time delay. Especially, the coe�cients

of the system studied in this paper can be unbounded. Lyapunov•s second method will

be used. In fact, the research methods in [�� , �
 , �� ] can be combined and modi“ed ap-

propriately to investigate the systems considered in this paper. The proposed Lyapunov-

Krasovskii functional not only keeps the components related to a quadratic form together

with an integral term in the above references, but also adds an integral of a quadratic form

related to the time delay. Finally, several new simple absolute stability criteria are estab-

lished. The novelty of the paper can be summarised as follows: The elements of the system

coe�cient matrices can be unbounded functions; and also the time delay can be very large

if its time derivative is less than one. At the same time, the obtained results are also appli-

cable to time-varying delay Lurie indirect control systems with bounded coe�cients and

the systems with constant coe�cients.

Notation Throughout this paper,λ(A) stands for any eigenvalue of the square matrixA;

Let vector x = [x� x� · · · xm]T , and ‖x‖ represents the Euclidean norm of the vectorx,

i.e. , ‖x‖ =
√∑m

i=� x�
i ; The matrix norm ‖A‖, induced by the Euclidean vector norm‖x‖,

is de“ned as‖A‖ = max‖x‖=� ‖Ax‖, and it can be easily veri“ed that‖A‖ =
√

λmax(AT A);

limt→∞ refers to the upper limit. For simplicity, letφ(θ ) =
[ x(t+θ )

σ (t)

]
, θ ∈ […h, 	], t ≥ 	,

‖φ‖L�
=
√∫ 	

…h ‖φ(θ )‖�
dθ .

Lurie indirect control systems with single nonlinearity will be “rst studied, and then

the derived results will be extended to multiple nonlinearities. Lyapunov•s theorem on

asymptotic stability of time-delay systems used in the proof is given in [�� , �
 ]. For the

case of multiple nonlinearities,σ (t) in φ(θ ) is taken as a vector.

2 Absolute stability of Lurie systems with single nonlinearity
Consider the following time-varying delay Lurie indirect control system with variable co-

e�cients and single nonlinearity:

⎧
⎪⎨
⎪⎩

ẋ(t) = A(t)x(t) + B(t)x(t …τ (t)) + b(t)f (σ (t)),

σ̇ (t) = cT (t)x(t) …ρ(t)f (σ (t)),

x(t) = ϕ(t), t ∈ […h, 	],

(�)
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wherex(t) ∈ Rn; σ (t) ∈ R; A(t), B(t) are n × n matrices,b(t), c(t) are n-dimensional col-

umn vectors;τ (t) is time delay;ρ(t) ≥ ρ > 	, ρ is a constant.A(t), B(t), b(t), c(t), ρ(t) are

continuous in [	, ∞). ϕ(t) is the initial condition. The nonlinearity f (·) is continuous and

satis“es the sector condition:

F[k� ,k� ] =
{
f (·)|f (	) = 	; k� σ

� (t) ≤ σ (t)f
(
σ (t)

)≤ k� σ
� (t),σ (t) ∈ R…{	 }},

wherek� , k� are given constants satisfyingk� > k� > 	.

Definition  ([�� ]) System (� ) is said to be absolutely stable if its zero solution is globally

asymptotically stable for any nonlinearityf (·) ∈ F[k� ,k� ] .

For system (� ), the following assumptions are made.

A: The time delay τ (t) denotes the continuous and piecewise differentiable function
satisfying

	 ≤ τ (t) ≤ h, τ̇ (t) ≤ α < �,

where h, α are constants. At the non-differential points of τ (t), τ̇ (t) represents
max[τ̇ (t … 	),τ̇ (t + 	)] .

A: For any t ∈ [	, ∞), there exist symmetric positive-definite matrices P and G such
that

λ
(
PA(t) + AT (t)P+ G

)≤ …δ(t) ≤ …ξ < 	,

where δ(t) > 	 is a function and ξ > 	 is a constant.
A: For any t ∈ [	, ∞), assume that

‖PB(t)‖√
δ(t)(� …α)λmin(G)

≤ η,
‖Pb(t) + �

� c(t)‖√
δ(t)ρ(t)

≤ γ ,

where η, γ are constants.

Theorem  Under A�, A� and A�, if the inequality

η� + γ � < �

holds, then system(� ) is absolutely stable.

Proof Using the matricesP andG, a Lyapunov-Krasovskii functional candidate is chosen

as

V(t,φ) = xT (t)Px(t) +
∫ t

t…τ (t)
xT (s)Gx(s)ds+

∫ σ (t)

	
f (s)ds.



Liao et al. Advances in Difference Equations  (2017) 2017:38 Page 4 of 20

It can be proved that iff ∈ F[k� ,k� ] , then �
� k� σ

� (t) ≤ ∫ σ (t)
	 f (s)ds≤ �

� k� σ
� (t) hold. Thus,V

satis“es

λmin(P)
∥∥x(t)

∥∥�
+

�
�

k� σ
� (t)

≤ V(t,φ) ≤ λmax(P)
∥∥x(t)

∥∥�
+

�
�

k� σ
� (t) + λmax(G)

∫ 	

…h

∥∥x(t + θ )
∥∥�

dθ .

Further, we have

min

{
λmin(P),

�
�

k�

}∥∥φ(	)
∥∥�

≤ V(t,φ) ≤ max

{
λmax(P),

�
�

k�

}∥∥φ(	)
∥∥�

+ λmax(G)
∫ 	

…h

∥∥φ(θ )
∥∥�

dθ .

That is, let

u(s) = min

{
λmin(P),

�
�

k�

}
s� , v� (s) = max

{
λmax(P),

�
�

k�

}
s� , v� (s) = λmax(G)s� ,

then the following will hold whent ≥ 	:

u
(∥∥φ(	)

∥∥)≤ V(t,φ) ≤ v�
(∥∥φ(	)

∥∥) + v�
(‖φ‖L�

)
.

Consequently,V (t,φ) satis“es the conditions required by Lyapunov•s theorem.
The time derivative ofV(t,φ) along the trajectories of system (� ) will be calculated, and

its upper bound will be estimated as follows:

d
dt

V(t,φ)

∣∣∣∣
(� )

= � xT (t)Pẋ(t) + xT (t)Gx(t) …
(
� …τ̇ (t)

)
xT (t …τ (t)

)
Gx
(
t …τ (t)

)
+ f
(
σ (t)

)
σ̇ (t)

= � xT (t)P
[
A(t)x(t) + B(t)x

(
t …τ (t)

)
+ b(t)f

(
σ (t)

)]
+ xT (t)Gx(t)

…
(
� …τ̇ (t)

)
xT (t …τ (t)

)
Gx
(
t …τ (t)

)
+ f
(
σ (t)

)(
cT (t)x(t) …ρ(t)f

(
σ (t)

))

= xT (t)
[
PA(t) + AT (t)P+ G

]
x(t) + � xT (t)PB(t)x

(
t …τ (t)

)

+ � xT (t)Pb(t)f
(
σ (t)

)
…
(
� …τ̇ (t)

)
xT (t …τ (t)

)
Gx
(
t …τ (t)

)

+ f
(
σ (t)

)
cT (t)x(t) …ρ(t)f � (σ (t)

)
.

By virtue of A�, A� and the property of norm, the following will be obtained:

d
dt

V(t,φ)

∣∣∣∣
(� )

≤ …δ(t)
∥∥x(t)

∥∥�
+ �
∥∥PB(t)

∥∥∥∥x(t)
∥∥∥∥x

(
t …τ (t)

)∥∥

+ �

∥∥∥∥Pb(t) +
�
�

c(t)

∥∥∥∥
∥∥x(t)

∥∥∣∣f (σ (t)
)∣∣

… (� …α)λmin(G)
∥∥x
(
t …τ (t)

)∥∥�
…ρ(t)f � (σ (t)

)
.
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In order to make full use of A� and the unbounded terms in the coe�cients of system (� ),

take
√

δ(t)‖x(t)‖,
√

(� …α)λmin(G)‖x(t …τ (t))‖ and
√

ρ(t)|f (σ (t))| as the following variables

of the quadratic form. By further estimating the right-hand side ofddt V (t,φ)|(� ) based on

A�, let us note that

d
dt

V(t,φ)

∣∣∣∣
(� )

≤ …δ(t)
∥∥x(t)

∥∥�

+
� ‖PB(t)‖√

δ(t)(� …α)λmin(G)

[√
δ(t)

∥∥x(t)
∥∥] · [√(� …α)λmin(G)

∥∥x
(
t …τ (t)

)∥∥]

+ �
‖Pb(t) + �

� c(t)‖√
δ(t)ρ(t)

[√
δ(t)

∥∥x(t)
∥∥] · [√ρ(t)

∣∣f (σ (t)
)∣∣]

… (� …α)λmin(G)
∥∥x
(
t …τ (t)

)∥∥�
…ρ(t)f � (σ (t)

)

≤ …δ(t)
∥∥x(t)

∥∥�
+ � η

[√
δ(t)

∥∥x(t)
∥∥] · [√(� …α)λmin(G)

∥∥x
(
t …τ (t)

)∥∥]

+ � γ
[√

δ(t)
∥∥x(t)

∥∥] · [√ρ(t)
∣∣f (σ (t)

)∣∣]

… (� …α)λmin(G)
∥∥x
(
t …τ (t)

)∥∥�
…ρ(t)f � (σ (t)

)
.

Then, rewriting the right-hand side of the above inequality yields

d
dt

V(t,φ)

∣∣∣∣
(�)

≤
⎡
⎢⎣

√
δ(t)‖x(t)‖√

(� …α)λmin(G)‖x(t …τ (t))‖√
ρ(t)|f (σ (t))|

⎤
⎥⎦

T

× D

⎡
⎢⎣

√
δ(t)‖x(t)‖√

(� …α)λmin(G)‖x(t …τ (t))‖√
ρ(t)|f (σ (t))|

⎤
⎥⎦ , (�)

where

D =

⎡
⎢⎣

…� η γ

η …� 	

γ 	 …�

⎤
⎥⎦ .

In the following, we will show that the right-hand side of (� ) is a negative-de“nite function.

To establish this result, let us prove that matrixD is negative de“nite. It is easy to obtain

the characteristic polynomial ofD given by

|λI …D| = (λ + �)
[
(λ + �) � …

(
η� + γ � )].

Thus, the eigenvalues ofD are as follows:

λ� = …�, λ� = …� +
√

η� + γ � , λ� = …� …
√

η� + γ � .
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It can be seen that ifη� + γ � < �, three eigenvalues ofD are negative,i.e., D is a negative-
de“nite matrix. Clearly,λ� is the maximum eigenvalue ofD. This implies that

d
dt

V(t,φ)

∣∣∣∣
(� )

≤ (
…� +

√
η� + γ �

)(
δ(t)

∥∥x(t)
∥∥�

+ (� …α)λmin(G)
∥∥x
(
t …τ (t)

)∥∥�
+ ρ(t)

∣∣f (σ (t)
)∣∣� )

≤ (
…� +

√
η� + γ �

)(
δ
∥∥x(t)

∥∥�
+ ρ

∣∣f (σ (t)
)∣∣� ).

Sinceσ (t)f (σ (t)) ≥ k� σ
� (t), we have|f (σ (t))| ≥ k� |σ (t)|. Thus,

d
dt

V(t,φ)

∣∣∣∣
(� )

≤ (
…� +

√
η� + γ �

)(
δ
∥∥x(t)

∥∥�
+ ρk�

� σ � (t)
)

≤ (
…� +

√
η� + γ �

)
min

(
δ,ρk�

� )
∥∥∥∥∥

[
x(t)

σ (t)

]∥∥∥∥∥
�

.

This shows that, as to allf ∈ F[k� ,k� ] , d
dt V (t,φ)|(� ) is negative de“nite. Based on Lyapunov•s

theorem, system (� ) is absolutely stable, which completes the proof of Theorem� . �

Because asymptotical stability is a property of the trajectories of a system as time tends
to in“nity, we just need to ensure that the above requirements can be met when timet
is su�ciently large. Therefore, A� and A� can be rewritten as follows. There existsT ≥ 	
such that whent > T , the corresponding conditions hold. Particularly, A� can be rewritten
as a new form of the upper limit, that is, the following A� is valid.

A: It is assumed that

lim
t→∞

‖PB(t)‖√
δ(t)(� …α)λmin(G)

= η̄, lim
t→∞

‖Pb(t) + �
� c(t)‖√

δ(t)ρ(t)
= γ̄ ,

where η̄, γ̄ are constants.
The following corollaries are more convenient in practical situations.

Corollary  Under A�, A� and A�, if the inequality

η̄� + γ̄ � < � (�)

holds, then system(� ) is absolutely stable.

Proof According to the property of the upper limit, if A� holds, for any ε > 	, there exists
T (T ≥ 	) such that when t > T the following hold:

‖PB(t)‖√
δ(t)(� …α)λmin(G)

≤ η̄ + ε,
‖Pb(t) + �

� c(t)‖√
δ(t)ρ(t)

≤ γ̄ + ε.

Let

η = η̄ + ε, γ = γ̄ + ε,
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then inequality (� ) in Theorem� holds whent > T . By Theorem� , if there existsε > 	 such
that

ψ(ε) = (η̄ + ε)� + (γ̄ + ε)� < �,

then system (� ) is absolutely stable. We notice that the known conditionψ(	) = η̄� + γ̄ � < �,
andψ(ε) is a continuous function ofε, thus a positive real numberε which is su�ciently
small can be found such thatψ(ε) < �. This completes the proof of Corollary� .

In fact, if we de“neδ = � … (̄η� + γ̄ � ) and takeε = …(̄η+γ̄ )+
√

(η̄+γ̄ )� +δ

� , then we haveε > 	 and
(η̄ + ε)� + (γ̄ + ε)� = � … δ

� < �. �

Corollary  Under A�, A� and A�, if the inequality

η̄ + γ̄ < �

holds, then system(� ) is absolutely stable.

Proof From η̄ ≥ 	, γ̄ ≥ 	, obviously, we have

η̄� + γ̄ � ≤ (η̄ + γ̄ )� .

If η̄ + γ̄ < �, i.e., (η̄ + γ̄ )� < �, then inequality (� ) is valid. Thus, Corollary� holds by Corol-
lary � . �

Particulary, if the coe�cients of system (� ) are bounded, the above conclusions are still
accurate. Certainly, the above criteria are also true for Lurie systems with constant coe�-
cients.

3 Absolute stability of Lurie systems with multiple nonlinearities
Consider the following time-varying delay Lurie indirect control system with variable co-
e�cients and multiple nonlinearities:

⎧
⎪⎨
⎪⎩

ẋ(t) = A(t)x(t) + B(t)x(t …τ (t)) +
∑m

j=� bj(t)fj (σj (t)),

σ̇i (t) = cT
i (t)x(t) …ρi (t)fi (σi (t)) (i = �, �, . . . , m),

x(t) = ϕ(t), t ∈ […h, 	],

(�)

where x(t) ∈ Rn; σi (t) ∈ R (i = �, �, . . . , m); A(t), B(t) are n × n matrices;bi (t), ci (t) (i =
�, �, . . . , m) are n-dimensional column vectors;τ (t) is time delay;ρi (t) ≥ ρi > 	 ( i =
�, �, . . . , m), ρi are constants.A(t), B(t), bi (t), ci (t), ρi (t) are continuous in [	, ∞). ϕ(t) is
the initial condition. The nonlinearitiesfi (·) (i = �, �, . . . , m) are continuous and satisfy the
sector condition:

F[ki� ,ki� ] =
{
fi (·)|fi (	) = 	; ki� σi

� (t) ≤ σi (t)fi
(
σi (t)

)≤ ki� σi
� (t),σi (t) ∈ R…{	 }},

whereki� , ki� are given constants satisfyingki� > ki� > 	.

Definition  System (� ) is said to be absolutely stable if its zero solution is globally asymp-
totically stable for any nonlinearityfi (·) ∈ F[ki� ,ki� ] (i = �, �, . . . , m).
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In addition to A� and A�, the following assumptions are needed for system (� ).

A: For any t ∈ [	, ∞), assume that

‖PB(t)‖√
δ(t)(� …α)λmin(G)

≤ η,
‖Pbj(t) + �

� cj(t)‖√
δ(t)ρj (t)

≤ γj ,

where η, γj (j = �, �, . . . , m) are constants.

Theorem  Under A�, A� and A
, if the inequality

η� +
m∑
i=�

γi
� < �

holds, then system(� ) is absolutely stable.

Proof Using matricesPandG, a Lyapunov-Krasovskii functional candidate can be chosen

as

V(t,φ) = xT (t)Px(t) +
∫ t

t…τ (t)
xT (s)Gx(s)ds+

m∑
i=�

∫ σi (t)

	
fi (s)ds,

whereφ(θ ) = [xT (t + θ ) σ� (t) · · · σm(t)]T , θ ∈ […h, 	], t ≥ 	. Similarly to the proof of The-

orem � , it can be veri“ed thatV(t,φ) satis“es the conditions required by Lyapunov•s the-

orem.

Next calculating the time derivative ofV(t,φ) along the trajectories of system (� ) yields

d
dt

V(t,φ)

∣∣∣∣
(� )

= � xT (t)Pẋ(t) + xT (t)Gx(t)

…
(
� …τ̇ (t)

)
xT (t …τ (t)

)
Gx
(
t …τ (t)

)
+

m∑
i=�

fi
(
σi (t)

)
σ̇i (t)

= � xT (t)P

[
A(t)x(t) + B(t)x

(
t …τ (t)

)
+

m∑
j=�

bj(t)fj
(
σj (t)

)
]

+ xT (t)Gx(t) …
(
� …τ̇ (t)

)
xT (t …τ (t)

)
Gx
(
t …τ (t)

)

+
m∑
i=�

fi
(
σi (t)

)(
cT

i (t)x(t) …ρi (t)fi
(
σi (t)

))

= xT (t)
[
PA(t) + AT (t)P+ G

]
x(t) + � xT (t)PB(t)x

(
t …τ (t)

)

+ � xT (t)P
m∑
j=�

bj(t)fj
(
σj (t)

)
…
(
� …τ̇ (t)

)
xT (t …τ (t)

)
Gx
(
t …τ (t)

)

+
m∑
i=�

fi
(
σi (t)

)
cT

i (t)x(t) …
m∑
i=�

ρi (t)fi �
(
σi (t)

)
.
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Likewise, in the light of A�, A� and the property of norm, the following will be obtained:

d
dt

V(t,φ)

∣∣∣∣
(� )

≤ …δ(t)
∥∥x(t)

∥∥�
+ �
∥∥PB(t)

∥∥∥∥x(t)
∥∥∥∥x

(
t …τ (t)

)∥∥

+ �
m∑
j=�

∥∥∥∥Pbj(t) +
�
�

cj(t)

∥∥∥∥
∥∥x(t)

∥∥∣∣fj
(
σj (t)

)∣∣

… (� …α)λmin(G)
∥∥x
(
t …τ (t)

)∥∥�
…

m∑
i=�

ρi (t)fi �
(
σi (t)

)
.

In order to take advantage of A
 and the unbounded terms in the coe�cients of system
(� ), let us take

√
δ(t)‖x(t)‖,

√
(� …α)λmin(G)‖x(t …τ (t))‖ and

√
ρi (t)|fi (σi (t))| (i = �, �, . . . , m)

as the following variables of the quadratic form. Further estimating the right-hand side of
d
dt V (t,φ)|(� ) based on A
 yields

d
dt

V(t,φ)

∣∣∣∣
(� )

≤ …δ(t)
∥∥x(t)

∥∥�

+
� ‖PB(t)‖√

δ(t)(� …α)λmin(G)

[√
δ(t)

∥∥x(t)
∥∥] · [√(� …α)λmin(G)

∥∥x
(
t …τ (t)

)∥∥]

+ �
m∑
j=�

‖Pbj(t) + �
� cj(t)‖√

δ(t)ρj (t)

[√
δ(t)

∥∥x(t)
∥∥] · [

√
ρj (t)

∣∣fj
(
σj (t)

)∣∣]

… (� …α)λmin(G)
∥∥x
(
t …τ (t)

)∥∥�
…

m∑
i=�

ρi (t)fi �
(
σi (t)

)

≤ …δ(t)
∥∥x(t)

∥∥�
+ � η

[√
δ(t)

∥∥x(t)
∥∥] · [√(� …α)λmin(G)

∥∥x
(
t …τ (t)

)∥∥]

+ �
m∑
j=�

γj
[√

δ(t)
∥∥x(t)

∥∥] · [
√

ρj (t)
∣∣fj
(
σj (t)

)∣∣]

… (� …α)λmin(G)
∥∥x
(
t …τ (t)

)∥∥�
…

m∑
i=�

ρi (t)fi �
(
σi (t)

)
.

Rewriting the right-hand side of the above inequality, it follows that

d
dt

V(t,φ)

∣∣∣∣
(� )

≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

√
δ(t)‖x(t)‖√

(� …α)λmin(G)‖x(t …τ (t))‖√
ρ� (t)|f� (σ� (t))|

...√
ρm(t)|fm(σm(t))|

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

× D

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

√
δ(t)‖x(t)‖√

(� …α)λmin(G)‖x(t …τ (t))‖√
ρ� (t)|f� (σ� (t))|

...√
ρm(t)|fm(σm(t))|

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (
)
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where

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

…� η γ� · · · γm

η …� 	 · · · 	

γ� 	 …� · · · 	

· · · · · · · · · · · · · · ·
γm 	 	 · · · …�

⎤
⎥⎥⎥⎥⎥⎥⎦

.

In the following section we will prove that the right-hand side of (
 ) is a negative-de“nite
function. Firstly, let us show that matrixD is negative de“nite. Calculating the character-
istic polynomial ofD yields

|λI …D|

=

∣∣∣∣∣∣∣∣∣∣∣∣

λ + � …η …γ� · · · …γm

…η λ + � 	 · · · 	

…γ� 	 λ + � · · · 	

· · · · · · · · · · · · · · ·
…γm 	 	 · · · λ + �

∣∣∣∣∣∣∣∣∣∣∣∣

= (λ + �) m

[
(λ + �) � …

(
η� +

m∑
i=�

γ �
i

)]
.

It can easily be seen thatλ = …� is an eigenvalue of multiplicitym, and the other two eigen-

values are given byλ = …�±
√

η� +
∑m

i=� γ �
i . Therefore, ifη� +

∑m
i=� γi

� < �, all eigenvalues
of D are negative,i.e., D is negative de“nite.

Let us denote the largest eigenvalue ofD by β, namely,β = …� +
√

η� +
∑m

i=� γ �
i . From

(� ), the following will be obtained:

d
dt

V(t,φ)

∣∣∣∣
(� )

≤ β

(
δ(t)

∥∥x(t)
∥∥�

+ (� …α)λmin(G)
∥∥x
(
t …τ (t)

)∥∥�
+

m∑
i=�

ρi (t)
∣∣fi
(
σi (t)

)∣∣�
)

≤ β

(
δ
∥∥x(t)

∥∥�
+

m∑
i=�

ρi
∣∣fi
(
σi (t)

)∣∣�
)

.

Sinceσi (t)fi (σi (t)) ≥ ki� σ
�
i (t), then |fi (σi (t))| ≥ ki� |σi (t)| (i = �, �, . . . , m) holds. Therefore,

from the above inequality, we obtain

d
dt

V(t,φ)

∣∣∣∣
(� )

≤ β

(
δ
∥∥x(t)

∥∥�
+

m∑
i=�

ρiki�
� σi

� (t)

)

≤ β min
(
δ,ρ� k��

� , . . . ,ρmkm�
� )

∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎣

x(t)

σ� (t)
...

σm(t)

⎤
⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥

�

.
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Becauseβ < 	, for any nonlinearity fi (·) satisfying the given sector condition, we get
d
dt V (t,φ)|(� ) is negative de“nite. Thus, system (� ) is absolutely stable by Lyapunov•s theo-

rem. This completes the proof of Theorem� . �

Similarly to the case of single nonlinearity, in order to guarantee that system (� ) is ab-

solutely stable, A
 in Theorem� can be rewritten as follows: There existsT ≥ 	 such that

when t > T the corresponding conditions hold. Therefore,η, γj (j = �, �, . . . , m) in A
 can

be calculated by the upper limit (if the corresponding upper limit is a “nite value).

A: It is assumed that

lim
t→∞

‖PB(t)‖√
δ(t)(� …α)λmin(G)

= η̄, lim
t→∞

‖Pbj(t) + �
� cj(t)‖√

δ(t)ρj (t)
= γ̄j ,

where η̄, γ̄j (j = �, �, . . . , m) are constants.

Corollary  Under A�, A� and A�, if the inequality

η̄� +
m∑
i=�

γ̄ �
i < �

holds, then system(� ) is absolutely stable.

The proof follows similar steps as in the proof of Corollary� , and thus is omitted here.

According to Corollary � , it is easy to obtain the following Corollary� .

Corollary  Under A�, A� and A�, if the inequality

η̄ +
m∑
j=�

γ̄j < �

holds, then system(� ) is absolutely stable.

4 Numerical simulations
In this section, the validity of the proposed approach will be shown by numerical examples.

Example  Consider the time-varying delay Lurie indirect control system with variable

coe�cients and single nonlinearity

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
ẋ� (t)

ẋ� (t)

]
=

[
…�t …�

� �

t …�t …�
�

][
x� (t)

x� (t)

]

+

⎡
⎣
√

t
� 	

	
√

t
�

⎤
⎦
[

x� (t …τ (t))

x� (t …τ (t))

]
+

[
…�

� t

	

]
f
(
σ (t)

)
,

σ̇ (t) =
[
t

√
t
]
[

x� (t)

x� (t)

]
… (t + �) f

(
σ (t)

)
,

(�)

whereτ (t) = � + 	.
 sin t , f (·) ∈ F[	.	�,�		] .
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In comparison with system (� ), the coe�cient matrices are as follows:

A(t) =

[
…�t …�

� �

t …�t …�
�

]
, B(t) =

⎡
⎣
√

t
� 	

	
√

t
�

⎤
⎦ , b(t) =

[
…�

� t

	

]
,

c(t) =

[
t√
t

]
, ρ(t) = t + �.

Now let us verify that this system satis“es all the conditions of Theorem� .

Firstly, it is obvious that 	 ≤ τ (t) ≤ �.
 = h, τ̇ (t) = 	.
 cos t ≤ 	.
 < �. We have α = 	.
.

Thus, A� is satis“ed.

Then, letP= G = I , it follows that

PA(t) + AT (t)P+ G =

[
…�t t + �

t + � …�t

]
.

It is easy to obtain

λ
(
PA(t) + AT (t)P+ G

)≤ …
t +
√

� t � + � t + �.

Furthermore, letT = �.
, when t > T , we have

λ
(
PA(t) + AT (t)P+ G

)
< …
t +

√
�( t + �) = …(
 …

√
�) t +

√
� < …(� …

√
�) t .

Thus, we can choose

δ(t) = (� …
√

�) t .

Note that if t > T , we have

…δ(t) ≤ …ξ = …(�
√

� … �).

Thus, A� is satis“ed. In addition,

‖PB(t)‖√
δ(t)(� …α)λmin(G)

=
�√

� …
√

�
<

�√
�

,

‖Pb(t) + �
� c(t)‖√

δ(t)ρ(t)
=

√
t /�√

(� …
√

�) t · (t + �)
≤ �√

t ·
√

�� … �
√

�
<

�√
�


.

Hence,η = �√
�
, γ = �√

�

, that is, A� is satis“ed.

It is clear thatη� + γ � = ��
�	 < �. Summarising the conditions obtained, we conclude that

Theorem� is applicable and system (� ) is absolutely stable. In order to carry out a numer-

ical simulation, let

f
(
σ (t)

)
= � σ (t) + sinσ (t).
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Now it can be proved thatf (σ (t)) belongs toF[	.	�,�		] . Obviously,f (	) = 	. Thus, we just

need to show that ifσ (t) 	= 	, the following inequalities

	.	� σ � (t) ≤ σ (t)
[
� σ (t) + sinσ (t)

]≤ �		 σ � (t)

i.e.,

	.	� ≤ � +
sinσ (t)
σ (t)

≤ �		 (�)

are valid.

First we know, if 	 < |σ (t)| < π
� , we have

cosσ (t) <
sinσ (t)
σ (t)

< �.

Hence,

� +
sinσ (t)
σ (t)

< � + � = � < �		,

� +
sinσ (t)
σ (t)

> � + cosσ (t) > � … � = � > 	.	�.

Thus, in such a case, (� ) hold.

If |σ (t)| ≥ π
� , because of| sinσ (t)| ≤ �, we have

� +
sinσ (t)
σ (t)

≤ � +
| sinσ (t)|

|σ (t)| ≤ � +
�

|σ (t)| ≤ � +
�

π /�
< �		,

that is, the right-hand side of (� ) is valid. Moreover,

� +
sinσ (t)
σ (t)

≥ � …
| sinσ (t)|

|σ (t)| ≥ � …
�

|σ (t)| ≥ � …
�
π

≥ � … � = � > 	.	�,

that is, the left-hand side of (� ) is valid. Thus,f (σ (t)) ∈ F[	.	�,�		] .

The numerical simulation is carried out by Matlab. Suppose the initial condition is

[x� (t) x� (t) σ (	)] T = [� � 	] T , t ∈ […h, 	]. The state response of system (� ) is shown in Fig-

ure � .

It can be seen from Figure� that the zero solution of system (� ) is asymptotically sta-

ble. Changing the form off (σ (t)) and carrying out a corresponding numerical simulation

demonstrate that system (� ) is asymptotically stable as long asf (·) ∈ F[	.	�,�		] . Thus, it is

absolutely stable. This example illustrates that the simulation result is in perfect accor-

dance with theoretical conclusions.

Furthermore, in this paper, the derived theorems and corollaries are su�cient condi-

tions. This implies that system (� ) may be still asymptotically stable although some condi-

tions are not satis“ed. For this example, letf (σ (t)) = σ � (t), and the rest of the parameters

remain unchanged. Althoughf (σ (t)) does not belong to anyF[k� ,k� ] , it is found that sys-
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Figure 1 The state response of system (6) (with f (σ (t)) = 2σ (t) + sinσ (t)).

Figure 2 The state response of system (6) (with f (σ (t)) = σ 2(t)).

tem (� ) is still asymptotically stable by simulation, as shown in Figure� . Therefore, it is

possible to extend the absolute stability region of parameters for system (� ). This will be

explored in our future works.

The above selectedτ (t) is derivable everywhere. Next,τ (t) is rewritten as a continuous

and piecewise di
erentiable function.
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Figure 3 The state response of the system in Example 2.

Example  We still consider system (� ), the time delay is given by

τ (t) =

⎧
⎪⎨
⎪⎩

�, t < �,

	.
 t , � ≤ t ≤ �,

�, t > �.

The other parameters remain unchanged. Hereτ (t) ≤ � means h = �. Note that τ (t) is
not derivable att = � and t = �, but it has right and left derivative. Combined with A�, we
haveτ̇ (t) ≤ 	.
. Thus, α = 	.
. Similarly to Example � , this system is absolutely stable. By
utilising Matlab, the simulation result is shown in Figure� .

It is worth noting that the coe�cients A(t), B(t), b(t), c(t), ρ(t) in Example� and Ex-
ample� are unbounded. This is the novelty of the paper. All theorems and corollaries are
suitable for systems whose coe�cient matrices are unbounded. Actually, for Lurie systems
with bounded or constant coe�cients, all results are also true. Now an example of Lurie
system with constant coe�cients is presented.

Example  Consider the time-varying delay Lurie indirect control system with constant
coe�cients

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
ẋ� (t)

ẋ� (t)

]
=

[
…�.� 	.�

	.� …�

][
x� (t)

x� (t)

]
+

[
	.� 	.�

	.� 	.�

][
x� (t …τ (t))

x� (t …τ (t))

]

+

[
�

�

]
f
(
σ (t)

)
,

σ̇ (t) =
[
…� …�

]
[

x� (t)

x� (t)

]
… �	f

(
σ (t)

)
,

(�)
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whereτ (t) = � + 	.
 sin t , f (·) ∈ F[	.	�,�		] . Here,

A(t) =

[
…�.� 	.�

	.� …�

]
, B(t) =

[
	.� 	.�

	.� 	.�

]
,

b(t) =

[
�

�

]
, c(t) =

[
…�

…�

]
, ρ(t) = �	

are all constant matrices or constants.

Now we verify that this system satis“es all the conditions of Theorem� .

First, it is obvious that 	 ≤ τ (t) ≤ �.
 = h, τ̇ (t) = 	.
 cos t ≤ 	.
 < �. We have α = 	.
.

Thus, A� is satis“ed. Then letP= G = I , it follows that

PA(t) + AT (t)P+ G =

[
…�.� 	.�

	.� …�

]
.

It is easy to obtain

λ
(
PA(t) + AT (t)P+ G

)≤ …�.� +
√

	.�.

Thus, we have

ξ = δ(t) = �.� …
√

	.�.

Then, A� is satis“ed. In addition,

‖PB(t)‖√
δ(t)(� …α)λmin(G)

=

√
	.�

 +

√
	.	����
√

	.
(�.� …
√

	.�)
< 	.�,

‖Pb(t) + �
� c(t)‖√

δ(t)ρ(t)
=

√
	.
√

�	(�.� …
√

	.�)
< 	.�.

Hence, we haveη = 	.�, γ = 	.� in A�.

It is clear that η� + γ � = 	.� < �, which means that the conditions of Theorem � are

satis“ed. The conclusion could be made that system (� ) is absolutely stable. Let

f
(
σ (t)

)
= � σ (t) + sinσ (t).

Suppose the initial condition is [x� (t) x� (t) σ (	)] T = [� � 	] T , t ∈ […h, 	]. The simulation

result is obtained using Matlab, as shown in Figure� .

Figure� indicates that the zero solution of system (� ) is asymptotically stable. This veri-

“es theoretical results. Changingf (σ (t)) to simulate yields that system (� ) is asymptotically

stable so long asf (·) ∈ F[	.	�,�		] , i.e., system (� ) is absolutely stable. Thus, the results in this

paper are true for Lurie systems with constant coe�cients.

Next, an example of Lurie system with multiple nonlinearities is introduced.
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Figure 4 The state response of system (8).

Example  Consider the time-varying delay Lurie indirect control system with variable

coe�cients and two nonlinearities

{
ẋ(t) = A(t)x(t) + B(t)x(t …τ (t)) +

∑�
i=� bi (t)fi (σi (t)),

σ̇i (t) = cT
i (t)x(t) …ρi (t)fi (σi (t)) (i = �, �),

(�)

whereτ (t) = � + 	.
 sin t , fi (·) ∈ F[	.	�,�		] , i = �, � and

A(t) =

[
…�t …�

� t

� …�t …�
�

]
, B(t) =

⎡
⎣
√

t
� 	

	
√

t
�

⎤
⎦ ,

b� (t) =

[√
t

t

]
, b� (t) =

[
…t

� t

]
,

c� (t) =

[
�

…�t

]
, c� (t) =

[
� t

…�t

]
,

ρ� (t) = t + �, ρ� (t) = � t + �.

Now we verify that this system satis“es all the conditions of Corollary� .

Firstly, it is obvious that 	 ≤ τ (t) ≤ �.
 = h, τ̇ (t) = 	.
 cos t ≤ 	.
 < �. We know that α =

	.
. Thus A� is satis“ed.

Then let P= G = I , it follows that

PA(t) + AT (t)P+ G =

[
…�t t + �

t + � …�t

]
.
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It is easy to obtain

λ
(
PA(t) + AT (t)P+ G

)≤ …�t +
√

� t � + � t + �.

Further, let T = �. Then, when t > T , we have

λ
(
PA(t) + AT (t)P+ G

)
< …
t < …�	.

Thus A� is satis“ed with δ(t) = 
 t , ξ = …�	. In addition,

lim
t→∞

‖PB(t)‖√
δ(t)(� …α)λmin(G)

= lim
t→∞

√
t

�
√


 t · 	.

=

�√
�	

,

lim
t→∞

‖Pb� (t) + �
� c� (t)‖√

δ(t)ρ� (t)
= lim

t→∞
	.
 +

√
t√


 t(t + �)
= 	,

lim
t→∞

‖Pb� (t) + �
� c� (t)‖√

δ(t)ρ� (t)
= 	.

We recall the fact that the upper limit always exists if the limit exists, and it is equal to
the limit value. Hence, for A� we haveη̄ = �√

�	
, γ̄� = γ̄� = 	.

It is clear that η̄ + γ̄� + γ̄� = �√
�	

< �. Thus, all the conditions in Corollary� are satis“ed,
that is, system (� ) is absolutely stable.

In order to carry out the numerical simulation, let

f�
(
σ (t)

)
= � σ (t) + sinσ (t), f�

(
σ (t)

)
=

⎧
⎪⎨
⎪⎩

σ (t), |σ (t)| < �,

σ � (t), � ≤ |σ (t)| ≤ �,

� σ (t), |σ (t)| > �.

Figure 5 The state response of system (9).
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Suppose the initial condition of the system is given by

[
x� (t) x� (t) σ� (	) σ� (	)

]T
=
[
� � 	 	

]T
, t ∈ […h, 	].

With the aid of Matlab, the state response of system (� ) is shown in Figure
 . It illustrates
that the numerical simulation result is completely consistent with the theoretical conclu-
sion.

5 Conclusion
The absolute stability problem of time-varying delay Lurie indirect control systems with
variable coe�cients has been investigated in this paper. Based on Lyapunov stability the-
ory, some su�cient conditions and several simple and practical corollaries have been ob-
tained. The results in this paper are especially applicable to checking the absolute stability
of time-varying delay Lurie indirect control systems with unbounded coe�cients. The
validity of the proposed criteria has been demonstrated by numerical examples.
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