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Abstract
This paper considers two kinds of novel decoupled algorithms for the non-stationary
Stokes-Darcy model. In this way, the considered problem is decoupled into one
time-dependent Stokes equations and one linear parabolic equation. For the two
algorithms, we establish the stability and the optimal error estimates. Furthermore,
the existing result in Mu and Zhu (Math. Comput. 79:707-731, 2010) can be improved
to the optimal orderO(�t) following our proof. Finally, some numerical experiments
are conducted to validate the established theoretical results.
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1 Introduction
There are many multimodeling problems in real applications of complex systems. They
consist of multiple models in different regions coupled through interface conditions. The
local models may be varied in type, scale, control variable, and many other physical and
mathematical properties. In this paper, we focus on the coupled fluid flow and porous me-
dia flow modeled by the non-stationary Stokes-Darcy problem. There is a rich literature
on the mathematical analysis, numerical methods and applications for this model, see, e.g.,
[–] and the references therein. Among them, the decoupled method might be one of
the most popular approaches for solving the multimodeling problems because the decou-
pled method makes the existing single-model solvers applicable locally with little extra
computational and software overhead. Other appealing reasons were discussed in [, ].

In [], authors developed a decoupled method for the Stokes-Darcy model based on
the numerical solutions from previous time level and established the corresponding error
analysis. Unfortunately the estimates for uf and φ are not optimal, namely, the order is
O(�t 

 ). These estimates may be improved to O(�t), as suggested by numerical experi-
ments in []. It motivates us to propose some new decoupled algorithms and derive the
optimal estimates of the order of O(�t) for both uf and φ.

The rest of the paper is organized as follows. A coupled non-stationary Stokes-Darcy
model and its weak formulation are introduced in Section . Numerical algorithms, in-
cluding the coupled scheme and decoupled schemes, are developed in Section . The sta-
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bilities of these developed algorithms are provided in Section . Convergence is derived
in Section  to show that these new decoupled algorithms keep the same order of approx-
imation accuracy as the coupled method. Numerical results are reported in Section .

2 The non-stationary Stokes-Darcy model
Let us consider a fluid in �f coupled with a porous media flow in �p, where �f ,�p ∈ R

d

(d =  or ) are bounded domains, �f ∩ �p = ∅, and �f ∩ �p = �. Denote by � = �f ∪
�p, nf and np the unit outward normal directions on ∂�f and ∂�p, respectively. τ i, i =
, . . . , d –  the unit tangential vectors on the interface � and nf = –np on �.

Let T >  be a finite time. The fluid motion is governed by the Stokes equations:

⎧
⎪⎨

⎪⎩

∂uf
∂t – ν�uf + ∇pf = gf in �f × (, T],

∇ · uf =  in �f × (, T],
uf (x, ) = u

f (x) in �f ,
(.)

where uf (x, t) represents the velocity of the fluid flow in �f , pf (x, t) the kinetic pressure,
gf the external force, and ν >  the kinematic viscosity.

The porous media flow motion is governed by the following equations [, ]:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S
∂φ

∂t + ∇ · q = gp in �p × (, T],
q = –K∇φ in �p × (, T], (Darcy law)
up = q

n in �p × (, T],
φ(x, ) = φ(x) in �p,

(.)

where φ(x, t) is the piezometric head, q is the specific discharge defined as the volume of
the fluid flowing per unit time through a unit cross-sectional area normal to the direction
of the flow, up is the fluid velocity in �p, S is the specific mass storativity coefficient, K is
the hydraulic conductivity tensor, n is the volumetric porosity, and gp is the source term.
Note that φ = z + pp

ρg , the sum of elevation head plus pressure head, where z is the elevation
from a reference level, pp is the pressure in �p,ρ is the density of the fluid, and g is the
gravity acceleration. Without loss of generality, we assume z = . Furthermore, we assume
that K = diag(K , . . . , K) with K ∈ L∞(�p), K > , which implies that the porous media is
homogeneous. Finally, by using Darcy’s law in (.), the first continuity equation in (.)
in �p can be written in the parabolic form

S
∂φ

∂t
– ∇ · (K∇φ) = gp in �p × (, T]. (.)

A key part in a mixed model is the interface coupling conditions. For the Stokes-Darcy
model, the following interface conditions have been extensively studied and used in the
literature [–]

⎧
⎪⎪⎨

⎪⎪⎩

uf · nf + up · np =  on � × (, T],
pf – νnf

∂uf
∂nf

= ρgφ on � × (, T],

–ντ i
∂uf
∂nf

= α√
τ i·Kτ i

uf · τ i, i = , . . . , d –  on � × (, T].
(.)

Here α is a positive parameter depending on the properties of the porous medium and
must be experimentally determined. The first interface condition ensures the mass con-
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servation across the interface �, and using the second and third equations in (.), it can
be rewritten as

uf · nf =
K
n

∂φ

∂np
on � × (, T].

The second one is a balance of normal forces across the interface. The third one states that
the slip velocity along � is proportional to the shear stress along �.

Several types of boundary conditions for this coupled model are discussed in []. In
this paper, we consider the homogeneous Dirichlet boundary conditions for the coupled
model, that is,

uf =  on ∂�f \� and φ =  on ∂�p\�.

Denote W = Hf × Hp and Q = L(�f ), where

Hf =
{

v ∈ (
H(�f )

)d | v =  on ∂�f \�
}

and

Hp =
{
ψ ∈ H(�p) | ψ =  on ∂�p\�

}
.

The space L(D), where D = �f or �p, is equipped with the usual L-scalar product (·, ·)
and L-norm ‖ · ‖L(D). The spaces Hf and Hp are equipped with the following norms:

‖uf ‖Hf = ‖∇uf ‖
L(�f ) = (∇uf ,∇uf )�f ∀uf ∈ Hf ,

‖φ‖Hp = ‖∇φ‖
L(�p) = (∇φ,∇φ)�p ∀φ ∈ Hp.

We equip the space W with the following norms: ∀u = (uf ,φ) ∈ W

‖u‖
 = n(uf , uf )�f + ρgS(φ,φ)�p ,

‖u‖
W = nν(∇uf ,∇uf )�f + ρgK(∇φ,∇φ)�p ≈ ‖∇u‖

,

where (·, ·)D refers to the scalar product (·, ·) in the corresponding domain D for D = �f or
�p. For simplicity, we assume n,ρ, g, S,ν and K are constants.

We also recall the Poincaré and trace inequalities that are useful in the following analysis.
There exist constants Cp and Ct which only depend on � such that

‖v‖L(D) ≤ Cp‖v‖H(D), ‖v‖L(�) ≤ Ct‖v‖/
L(D)‖v‖/

H(D) ∀v ∈ H(D). (.)

The weak formulation for the non-stationary Stokes-Darcy problem reads as follows:
Find u = (uf ,φ) ∈ W , pf ∈ Q such that for all t ∈ (, T]

⎧
⎪⎨

⎪⎩

( ∂u
∂t , v) + a(u, v) + b(v, pf ) = (f , v) ∀v = (v,ψ) ∈ W ,

b(u, q) =  ∀q ∈ Q,
u(x, ) = u,

(.)
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where
(

∂u
∂t

, v
)

= n
(

∂uf

∂t
, v

)

+ ρgS

(
∂φ

∂t
,ψ

)

,

a(u, v) = a�(u, v) + a�(u, v) = a�f (uf , v) + a�p (φ,ψ) + a�(u, v),

with

a�f (uf , v) = n
∫

�f

ν∇uf · ∇v + n
d–∑

i=

∫

�

α√
τ i · Kτ i

(uf · τ i)(v · τ i);

a�p (φ,ψ) = ρg
∫

�p

K∇φ · ∇ψ ; a�(u, v) = nρg
∫

�

(φv · nf – ψuf · nf );

b(v, pf ) = –n
∫

�f

pf div v; (f , v) = n
∫

�f

gf · v + ρg
∫

�p

gpψ .

It is well known [] that a�f (·, ·), a�p (·, ·) and a�(·, ·) are continuous, and a(·, ·) is coercive.
Furthermore, a�f (·, ·) and a�p (·, ·) are symmetric,

a�(u, v) = –a�(v, u) and a�(u, u) =  ∀u, v ∈ W . (.)

The well-posedness of the model problem (.) can be found in [, , ] for the stationary
case. We also proceed to apply the Babuska-Brezzi theory to prove that (.) is well posed
for the non-stationary case. After assuming the inf-sup condition for b(·, ·), we restrict the
monolithic formulation (.) to the null space of b(·, ·). With the help of Riesz represen-
tation theorem, we can define an operator u �→ Au in a standard way by (Au, v) = a(u, v)
for the bilinear form a(·, ·). Then it follows form continuity and coercivity and the Lax-
Milgram theorem that this operator is maximal monotone. As a consequence, thanks to
the Hille-Yoshida theorem, we can obtain the existence of solution for the evolutionary
problem.

Lemma . Assume that

gf ∈ L(, T , L(�f )d), gp ∈ L(, T , L(�p)d), K ∈ L∞(�p)d×d,

and K is uniformly bounded and positive defined in �p, i.e., there exist constants kmin, kmax >
 such that

kmin|x| ≤ Kx · x ≤ kmax|x| a.e. x ∈ �p.

In addition, let u
f ∈ L(�f )d,φ ∈ L(�p), then the solution (uf , pf ,φ) ∈ (L(, T , Hf ) ∩

H(, T , L(�f )d)) × L(, T , Q) × L(, T , Hp) of (.)-(.) is also the solution to (.).
Conversely the solution of (.) satisfies (.)-(.).

3 Numerical algorithms
Let Wh = Hfh × Hph ⊂ W and Qh ⊂ Q denote the finite element subspaces. The finite
element spaces Hfh and Qh approximating velocity and pressure in the fluid flow region are
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assumed to satisfy the well-known discrete inf-sup condition []: There exists a constant
β >  independent of h, such that there exists a vh ∈ Wh for all qh ∈ Qh,

b(vh, qh) ≥ β‖vh‖W ‖qh‖Q. (.)

Several families of finite element spaces designed for the Stokes problem are provided in
[, ]. They all satisfy the discrete inf-sup condition (.) and can thus be applied for Hfh

and Qh. Standard finite element approximations of H(�p) can be applied for Hph in the
porous media flow region. For illustration, we assume that the finite element spaces of the
first-order approximation O(h) are used in the fluid flow, such as the well-known MINI
elements, and the porous media flow regions, such as the linear Lagrangian elements. The
corresponding inverse estimates are well known:

‖∇vh‖ ≤ Cinh–‖vh‖ ∀vh ∈ Hfh; ‖∇ψh‖ ≤ Cinh–‖ψh‖ ∀ψh ∈ Hph.

We also introduce a subspace Vh of Wh defined by

Vh =
{

vh ∈ Wh : b(vh, qh) =  ∀qh ∈ Qh
}

,

and the projection Rh : v = (v,ψ) ∈ W �→ Rhv = (Rhv, Rhψ) ∈ Vh defined by

(
(Rhv, vh)

)
=

(
(v, vh)

) ∀v ∈ W , vh ∈ Vh,

where

(
(u, v)

)
= nν(∇u,∇v)�f + ρgK(∇φ,ψ)�p , u = (uf ,φ), v = (v,ψ) ∈ W .

Without loss of generality, we assume a uniform mesh applied to the time interval [, T]
with tm = m�t, m = , , . . . , J , where �t = T

J is the time step.

3.1 Coupled marching schemes for the mixed model
Recall that the mixed model (.) is formulated as an abstract time-dependent saddle-
point problem. It is natural to consider the following first-order implicit marching scheme
by applying the backward divided difference for the temporal discretization and the finite
element Galerkin method for the spatial discretization, which leads to the coupled back-
ward Euler scheme:

Algorithm . (Coupled backward Euler scheme (CBES))
Find um

h = (um
fh,φm

h ) ∈ Wh and pm
fh ∈ Qh with m = , . . . , J , such that for all vh = (vh,ψh) ∈

Wh and qh ∈ Qh

⎧
⎪⎨

⎪⎩

( um
h –um–

h
�t , vh) + a(um

h , vh) + b(vh, pm
fh) = (f m, vh),

b(um
h , qh) = ,

u
h = Rhu,

(.)

where f m = f (tm) and u = (u
f ,φ). Note that at each time level, CBES amounts to solving

a stationary Stokes-Darcy problem and is well-posed. Theoretical analysis and numerical
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experiments have been provided by Mu and his co-worker. In [], authors not only pro-
vided the upper bounds for the numerical solution (um

h , pm
fh) of (.), but also established

the corresponding optimal error estimates.

Theorem . (see []) For CBES (.), we have

∥
∥dtuJ

h
∥
∥

 + �t
J∑

m=

∥
∥dttum

h
∥
∥

 + �t
J∑

m=

∥
∥∇dtum

h
∥
∥

 ≤ M. (.)

Furthermore, there exist constants C∗ >  and C∗ >  independent of h such that if

C∗h ≤ �t ≤ C∗h, (.)

then

∥
∥∇dtuJ

h
∥
∥

 + �t
J∑

m=

∥
∥dttum

h
∥
∥

 ≤ M. (.)

Here and below, the positive constant Mi (i = , , . . .) is independent of �t and h.

In order to derive error estimates, we assume the regularity u ∈ (H(�f ))d ×H(�p) and
p ∈ H(�f ), and the finite element spaces as described above of first-order approximation
O(h) are used for the fluid and porous media regions. For convenience, from now on, we
will use x � y to denote that there exists a positive constant C, such that x ≤ Cy.

Theorem . (see []) For CBES (.) with m = , . . . , J , we have

∥
∥u(tm) – um

h
∥
∥

 � �t + h,
∥
∥∇(

u(tm) – um
h
)∥
∥

 � �t + h,
∥
∥pf (tm) – pm

fh
∥
∥

 � �t + h + �t–h.

From CBES (.), we know that the variables ufh, pfh and φh are coupled together by the
boundary condition. When we solve this coupled system directly, the numerical difficulties
increase as the mesh size decreases. In order to solve the non-stationary Stokes-Darcy
model efficiently, some decoupled algorithms will be developed in the next subsection.

3.2 Decoupled marching schemes for the mixed model
Firstly, we recall a decoupled approach based on the temporal extrapolation on the inter-
face, which has been researched in [].

Algorithm . (Decoupled backward Euler scheme  (DBES))
Find um,h

. = (um,h
. ,φm,h

. ) ∈ Wh and pm,h
. ∈ Qh with m = , . . . , J , such that for all vh =

(vh,ψh) ∈ Wh and qh ∈ Qh

⎧
⎪⎪⎨

⎪⎪⎩

( um,h
. –um–,h

.
�t , vh) + a�(um,h

. , vh) + b(vh, pm,h
. ) = (f m, vh) – a�(um–,h

. , vh),
b(um,h

. , qh) = ,
u

h = Rhu.
(.)
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From the coercivity of a�(·, ·) and b(·, ·) satisfies the discrete inf-sup condition, we can
see that the DBES is well-posed. Furthermore, at each time step, the discrete model (.)
is equivalent to two decoupled problems that correspond to a Stokes problem in �f and a
Darcy problem in �p, respectively, with associated boundary conditions defined by um–,h

.

from the previous time level of �. In order to simplify the expression, we denote em
. =

(em
., ξm

.) with em
. = um

fh – um,h
. and ξm

. = φm
h – φ

m,h
. . In particular, e

. = (, ).

Theorem . (see []) Under the condition of (.), for DBES (.) with m = , . . . , J , we
have

∥
∥em

.
∥
∥

 + �t
m∑

j=

∥
∥∇ej

.
∥
∥

 � �t, (.)

∥
∥∇em

.
∥
∥

 + �t
m∑

j=

∥
∥dte

j
.

∥
∥

 � �t. (.)

Combining Theorems . and ., we can obtain the optimal order error estimates for
the decoupled numerical solution um,h

. and φ
m,h
. in L norm. But the H norm for um,h

.

and φ
m,h
. are suboptimal, namely, the order is O(�t 

 ). This estimate may be improved
to O(�t), as suggested by numerical experiments in []. It motivates us to propose some
novel decoupled algorithms and derive the optimal error estimates. Our algorithms can
be described as follows:

Algorithm . (Decoupled backward Euler scheme  (DBES))
Step . The discrete Stokes problem in the fluid region �f reads as follows: Find um,h

. ∈
Hfh, pm,h

. ∈ Qh with m = , . . . , J , such that for all vh ∈ Hfh and qh ∈ Qh

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n( um,h
. –um–,h

.
�t , vh) + a�f (um,h

. , vh) + b�f (vh, pm,h
. )

= (ngm
f , vh) –

∫

�
nρgφ

m–,h
. vh · nf ,

b�f (um,h
. , qh) = ,

u
fh = Rhu

f .

Step . The discrete Darcy problem on the porous media region reads as follows: Find
φ

m,h
. ∈ Hph with m = , . . . , J , such that for all ψh ∈ Hph

{

ρgS( φ
m,h
. –φ

m–,h
h

�t ,ψh) + a�p (φm,h
. ,ψh) = (ρggm

p ,ψh) +
∫

�
nρgψhum,h

. · nf ,
φ

h = Rhφ
.

The Steps  and  in Algorithm . can be rewritten as: Find um,h
. = (um,h

. ,φm,h
. ) ∈ Wh and

pm,h
. ∈ Qh with m = , . . . , J , such that for all vh = (vh,ψh) ∈ Wh and ∀qh ∈ Qh

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

( um,h
. –um–,h

.
�t , vh) + a�(um,h

. , vh) + b(vh, pm,h
. )

= (f m, vh) – a�(um–,h
. , vh) +

∫

�
nρgψh(um,h

. – um–,h
. ) · nf ,

b(um,h
. , qh) = ,

u
h = Rhu.

(.)
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Algorithm . (Decoupled backward Euler scheme  (DBES))
Step . The discrete Darcy problem on the porous media region reads as follows: Find

φ
m,h
. ∈ Hph with m = , . . . , J , such that for all ψh ∈ Hph

{

ρgS( φ
m,h
. –φ

m–,h
.

�t ,ψh) + a�p (φm,h
. ,ψh) = (ρggm

p ,ψh) +
∫

�
nρgψhum–,h

. · nf ,
φ

h = Rhφ
.

Step . The discrete Stokes problem in the fluid region �f reads as follows: Find um,h
. ∈

Hfh and pm,h
. ∈ Qh with m = , . . . , J , such that for all vh ∈ Hfh and qh ∈ Qh

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n( um,h
. –um–,h

.
�t , vh) + a�f (um,h

. , vh) + b�f (vh, pm,h
. )

= (ngm
f , vh) –

∫

�
nρgφ

m,h
. vh · nf ,

b�f (um,h
. , qh) = ,

u
fh = Rhu

f .

The Steps  and  in Algorithm . can be rewritten as: Find um,h
. = (um,h

. ,φm,h
. ) ∈ Wh

and pm,h
. ∈ Qh with m = , . . . , J , such that for all vh = (vh,ψh) ∈ Wh and qh ∈ Qh

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

( um,h
. –um–,h

.
�t , vh) + a�(um,h

. , vh) + b(vh, pm,h
. )

= (f m, vh) – a�(um–,h
. , vh) –

∫

�
nρg(φm,h

. – φ
m–,h
. )vh · nf ,

b(um,h
. , qh) = ,

u
h = Rhu.

(.)

Similar to the DBES, we can see that both Algorithms . and . are well-posed. In
scheme (.), we use the numerical solution um–,h

h from the previous time level to ap-
proximate the interface conditions. One advantage of algorithm (.) is that it can be used
in parallelism based on the solution of previous time level. In order to improve the compu-
tational accuracy, we separate the coupled model (.) into two steps (one Stokes equation
in �f and one Darcy problem in �p), and use the numerical solution obtained in step  to
approximate the boundary condition of step  at the same time level.

4 Stability
This section is devoted to establishing the upper bounds for the solutions um,h

. and um,h
.

of decoupled Algorithms . and ., respectively, which will be used in the error esti-
mates for em

. = (um
fh – um,h

. ,φm
h – φ

m,h
. ) and em

. = (um
fh – um,h

. ,φm
h – φ

m,h
. ) in Section . For

convenience, let us introduce the following notations. We denote the backward divided
difference operator dt by

dtum
h =

um
h – um–

h
�t

, for m = ,  . . . , J .

When m = , we define dtu
h = (dtu

fh, dtφ

h ) as the solution to the following problem:

(
dtu

h, vh
)

+ a
(
u

h, vh
)

=
(
f , vh

) ∀vh ∈ Vh. (.)
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We also denote

dttum
h =

dtum
h – dtum–

h
�t

for m = , , . . . , J .

Similarly, we introduce the divide differences dtum,h
.i and dttum,h

.i for m = , . . . , J and i =
, ,  for the solutions um,h

.i of Algorithms ., . and ., respectively. For m = , dtu
.i is

defined in the same way as dtu
h in (.).

Lemma . For DBES (.), under the condition (.) we have

∥
∥dtuJ ,h

.
∥
∥

 +



�t
J∑

m=

∥
∥dttum,h

.
∥
∥

 +



�t
J∑

m=

∥
∥dtum,h

.
∥
∥

W ≤ M.

Proof We subtract the decoupled backward Euler scheme (.) on two adjacent time levels
and notice the definition of dtu

., for all vh ∈ Vh and m = , . . . , J we have

(
dtum,h

. – dtum–,h
.

�t
, vh

)

+ a�

(
dtum,h

. , vh
)

=


�t
(
f m – f m–, vh

)
– a�

(
dtum–,h

. , vh
)

+ �t
∫

�

nρgψhdttum,h
. · nf . (.)

Taking vh = �tdtum,h
. = �t(dtum,h

. , dtφ
m,h
. ) ∈ Vh in (.) one finds

�t
(

dtum,h
. – dtum–,h

.
�t

, dtum,h
.

)

+ �ta�

(
dtum,h

. , dtum,h
.

)

=


�t
(
f m – f m–, �tdtum,h

.
)

– �ta�

(
dtum–,h

. , dtum,h
.

)

+ �t
∫

�

nρg · dttum,h
. · dtφ

m,h
. · nf .

Then by using the equality (a – b, a) = a – b + (a – b) and (.) we have

∥
∥dtum,h

.
∥
∥

 –
∥
∥dtum–,h

.
∥
∥

 + �t∥∥dttum,h
.

∥
∥

 + �t
∥
∥dtum,h

.
∥
∥

W

≤ n
∫

�f

(
gm

f – gm–
f

) · dtum,h
. + ρg

∫

�p

(
gm

p – gm–
p

) · dtφ
m,h
.

– �ta�

(
dtum–,h

. , dtum,h
.

)
+ �t

∫

�

nρg · dttum,h
. · dtφ

m,h
. · nf

≤ Cnν–
∫ tm

tm–

‖gft‖
 dt + CρgK–

∫ tm

tm–

∥
∥gm

pt
∥
∥

 dt + nν�t
∥
∥∇dtum,h

.
∥
∥



+ ρgK�t
∥
∥∇dtφ

m,h
.

∥
∥

 + �ta�

(
dtum,h

. – dtum–,h
. , dtum,h

.
)

+ �t
∫

�

nρg · dttum,h
. · dtφ

m,h
. · nf . (.)

For the last two terms in right-hand side (.), thanks to the trace theorem, the inverse
and Cauchy inequalities, and (.), we can treat them as follows:
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�ta�

(
dtum,h

. – dtum–,h
. , dtum,h

.
)

= �ta�

(
dttum,h

. , dtum,h
.

)

≤ �t∥∥dttum,h
.

∥
∥

L(�)

∥
∥dtum,h

.
∥
∥

L(�)

≤ C
t �t



∥
∥dttum,h

.
∥
∥/



∥
∥dttum,h

.
∥
∥/

W

∥
∥dtum,h

.
∥
∥/

 · �t


∥
∥dtum,h

.
∥
∥/

W

≤ 


�t
∥
∥dtum,h

.
∥
∥

W +



(
C

t
) 

 �t


∥
∥dttum,h

.
∥
∥/



∥
∥dttum,h

.
∥
∥/

W

∥
∥dtum,h

.
∥
∥/



≤ 


�t
∥
∥dtum,h

.
∥
∥

W +



(
C

t
) 

 �t∥∥dttum,h
.

∥
∥/



∥
∥dttum,h

.
∥
∥/

W · �t


∥
∥dtum,h

.
∥
∥/



≤ 


�t
∥
∥dtum,h

.
∥
∥

W +


Cin

(



) 

�t∥∥dttum,h

.
∥
∥



∥
∥dttum,h

.
∥
∥

W

+
C

t Cin


�t

∥
∥dtum,h

.
∥
∥



≤ 


�t
∥
∥dtum,h

.
∥
∥

W +


�t∥∥dttum,h

.
∥
∥

 +
C

t Cin


�t

∥
∥dtum,h

.
∥
∥

, (.)

�t
∫

�

nρg · dttum,h
. · dtφ

m,h
. · nf

≤ �tnρg
∥
∥dttum,h

.
∥
∥

L(�)

∥
∥dtφ

m,h
.

∥
∥

L(�)

≤ C
t �tnρg

∥
∥dttum,h

.
∥
∥/

L(�f )

∥
∥dttum,h

.
∥
∥/

H(�f )

∥
∥dtφ

m,h
.

∥
∥/

L(�p)

∥
∥dtφ

m,h
.

∥
∥/

H(�p)

≤ C
t Cin�tnρg

∥
∥dttum,h

.
∥
∥

L(�f )

∥
∥dtφ

m,h
.

∥
∥

L(�p)

≤ 


n�t∥∥dttum,h
.

∥
∥

L(�f ) +
nρg�tC

t C
in

S
ρgS�t

∥
∥dtφ

m,h
.

∥
∥

L(�p). (.)

Combining (.)-(.) with (.) and summing m form  to J we have

∥
∥dtuJ ,h

.
∥
∥

 +



�t
J∑

m=

∥
∥dttum,h

.
∥
∥

 +



�t
J∑

m=

∥
∥dtum,h

.
∥
∥

W

≤ Cnν–
∫ T


‖gft‖

 dt + CρgK–
∫ T



∥
∥gm

pt
∥
∥

 dt +
∥
∥dtu

.
∥
∥



+
(

C
t Cin


+

nρg�tC
t C

in
S

)

�t
J∑

m=

∥
∥dtum,h

.
∥
∥

.

Applying the Gronwall lemma, we obtain the desired result. �

Lemma . Under the condition of (.), for the decoupled Algorithm . with m =
, , . . . , J we have

∥
∥dtuJ ,h

.
∥
∥

 +



�t
J∑

m=

∥
∥dttum,h

.
∥
∥

 +



�t
J∑

m=

∥
∥dtum,h

.
∥
∥

W ≤ M.

Proof For all vh ∈ Vh, the following error equation can be obtained by using (.) on two
adjacent time levels
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(
dtum,h

. – dtum–,h
.

�t
, vh

)

+ a�

(
dtum,h

. , vh
)

=


�t
(
f m – f m–, vh

)
– a�

(
dtum–,h

. , vh
)

– �t
∫

�

nρgdttφ
m,h
. vh · nf . (.)

Taking vh = �tdtum,h
. = �t(dtum,h

. , dtφ
m,h
. ) ∈ Vh in (.) we obtain

(
dtum,h

. – dtum–,h
.

�t
, �tdtum,h

.

)

+ �ta�

(
dtum,h

. , dtum,h
.

)

=


�t
(
f m – f m–, �tdtum,h

.
)

– �ta�

(
dtum–,h

. , dtum,h
.

)

– �t
∫

�

nρgdttφ
m,h
. dtum,h

. · nf .

As a consequence we have

∥
∥dtum,h

.
∥
∥

 –
∥
∥dtum–,h

.
∥
∥

 + �t∥∥dttum,h
.

∥
∥

 + �t
∥
∥dtum,h

.
∥
∥

W

≤ n
∫

�f

(
gm

f – gm–
f

) · dtum,h
. + ρg

∫

�p

(
gm

p – gm–
p

) · dtφ
m,h
.

– �ta�

(
dtum–,h

. , dtum,h
.

)
– �t

∫

�

nρg · dtum,h
. · dttφ

m,h
. · nf

≤ Cnν–
∫ tm

tm–

‖gft‖
 dt + CρgK–

∫ tm

tm–

∥
∥gm

pt
∥
∥

 dt + nν�t
∥
∥∇dtum,h

.
∥
∥



+ ρgK�t
∥
∥∇dtφ

m,h
.

∥
∥

 + �ta�

(
dtum,h

. – dtum–,h
. , dtum,h

.
)

– �t
∫

�

nρg · dtum,h
. · dttφ

m,h
. · nf . (.)

For the last term in (.), using trace and inverse inequalities and (.) yields

�t
∫

�

nρg · dtum,h
. · dttφ

m,h
. · nf

≤ �tnρg
∥
∥dtum,h

.
∥
∥

L(�)

∥
∥dttφ

m,h
.

∥
∥

L(�)

≤ C
t �tnρg

∥
∥dtum,h

.
∥
∥/

L(�f )

∥
∥dtum,h

.
∥
∥/

H(�f )

∥
∥dttφ

m,h
.

∥
∥/

L(�p)

∥
∥dttφ

m,h
.

∥
∥/

H(�p)

≤ C
t Cin�tnρg

∥
∥dtum,h

.
∥
∥

L(�f )

∥
∥dttφ

m,h
.

∥
∥

L(�p)

≤ 


ρgS�t∥∥dttφ
m,h
.

∥
∥

L(�p) +
nρgC

t C
in�t

S
n�t

∥
∥dtum,h

.
∥
∥

L(�f ). (.)

Combining (.), (.) with (.), summing m from  to J , and applying the Gronwall
lemma, we complete the proof. �

5 Convergence analysis
In this section we present the error estimates for the decoupled Algorithms . and ..
As we have mentioned before, the suboptimal H-norm error estimates for um,h

. and φ
m,h
.

have been derived by Mu and Zhu in []. The estimate (.) can be improved to O(�t), as



Zhang and Jin Advances in Difference Equations  (2017) 2017:42 Page 12 of 23

suggested by numerical experiments. Firstly, we improve the estimate (.) to the optimal
order.

Lemma . Let (um
fh,φm

h ) and (um,h
. ,φm,h

. ) be the solutions of the discrete models (.) and
(.), respectively. Denote em

. = (em
., ξm

.) = (um
fh – um,h

. ,φm
h – φ

m,h
. ) we have

∥
∥∇em

.
∥
∥

 + �t
m∑

j=

∥
∥dte

j
.

∥
∥

 ��t.

Proof For all vh ∈ Vh and em
. with m = , . . . , J , the following error equation can be obtained

by comparing the discrete models (.): and (.)

(
em

. – em–
.

�t
, vh

)

+ a�

(
em

., vh
)

+ a�

(
um

h – um–
. , vh

)
= . (.)

Taking vh = (em
. – em–

. ) ∈ Vh in (.), we have

(
em

. – em–
.

�t
, 

(
em

. – em–
.

)
)

+ a�

(
em

., 
(
em

. – em–
.

))

= –a�

(
um

h – um–,h
. , 

(
em

. – em–
.

))
. (.)

For the right-hand side term of (.), we can estimate it as follows:

a�

(
um

h – um–,h
. , 

(
em

. – em–
.

))

= �ta�

(
um

h – um–
h + um–

h – um–,h
. , dtem

.
)

= �ta�

(
dtum

h , dtem
.

)
+ �ta�

(
em–

. , dtem
.

)

≤ �t∥∥dtum
h
∥
∥

L(�)

∥
∥dtem

.
∥
∥

L(�) + �t
∥
∥em–

.
∥
∥

L(�)

∥
∥dtem

.
∥
∥

L(�)

≤ C
t �t∥∥dtum

h
∥
∥





∥
∥∇dtum

h
∥
∥





∥
∥dtem

.
∥
∥





∥
∥∇dtem

.
∥
∥





+ C
t �t

∥
∥em–

.
∥
∥





∥
∥∇em–

.
∥
∥





∥
∥dtem

.
∥
∥





∥
∥∇dtem

.
∥
∥



 . (.)

For the first term of the right-hand side in (.), using the Young inequality, we obtain

�t∥∥dtum
h
∥
∥





∥
∥∇dtum

h
∥
∥





∥
∥dtem

.
∥
∥





∥
∥∇dtem

.
∥
∥





= �t


∥
∥dtum

h
∥
∥





∥
∥∇dtum

h
∥
∥





∥
∥dtem

.
∥
∥



 · �t



∥
∥∇dtem

.
∥
∥





≤ 


�t∥∥dtum
h
∥
∥





∥
∥∇dtum

h
∥
∥





∥
∥dtem

.
∥
∥



 +




�t∥∥∇dtem
.

∥
∥



=



�t


∥
∥dtum

h
∥
∥





∥
∥∇dtum

h
∥
∥



 · �t



∥
∥dtem

.
∥
∥



 +




�t∥∥∇dtem
.

∥
∥



≤ 


(



) 

�t



∥
∥dtum

h
∥
∥



∥
∥∇dtum

h
∥
∥

 +


�t

∥
∥dtem

.
∥
∥

 +



�t∥∥∇dtem
.

∥
∥



=



(



) 

�t∥∥dtum

h
∥
∥

 · �t


∥
∥∇dtum

h
∥
∥

 +


�t

∥
∥dtem

.
∥
∥

 +



�t∥∥∇dtem
.

∥
∥

.
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For the second term of the right-hand side in (.), by the Young inequality we get

�t
∥
∥em–

.
∥
∥





∥
∥∇em–

.
∥
∥





∥
∥dtem

.
∥
∥





∥
∥∇dtem

.
∥
∥





= �t


∥
∥em–

.
∥
∥





∥
∥∇em–

.
∥
∥





∥
∥dtem

.
∥
∥



 · �t



∥
∥∇dtem

.
∥
∥





≤ 


�t


∥
∥em–

.
∥
∥





∥
∥∇em–

.
∥
∥





∥
∥dtem

.
∥
∥



 +




�t∥∥∇dtem
.

∥
∥



=



�t


∥
∥em–

.
∥
∥





∥
∥∇em–

.
∥
∥



 · �t



∥
∥dtem

.
∥
∥



 +




�t∥∥∇dtem
.

∥
∥



≤ 


(



) 

�t



∥
∥em–

.
∥
∥



∥
∥∇em–

.
∥
∥

 +


�t

∥
∥dtem

.
∥
∥

 +



�t∥∥∇dtem
.

∥
∥

.

On the other hand, for the left-hand side of (.), using the trick of [] we have
(

em
. – em–

.
�t

, 
(
em

. – em–
.

)
)

+ a�

(
em

., 
(
em

. – em–
.

))

= �t
(
dtem

., dtem
.

)
+ a�

(
em

., em
.

)
– a�

(
em–

. , em–
.

)
+ �ta�

(
dtem

., dtem
.

)

= �t
∥
∥dtem

.
∥
∥

 +
∥
∥∇em

.
∥
∥



+ n
d–∑

i=

∫

�

α√
τ i · Kτ i

(
em

. · τ i
) –

∥
∥∇em–

.
∥
∥

 + �t∥∥∇dtem
.

∥
∥



– n
d–∑

i=

∫

�

α√
τ i · Kτ i

(
em–

. · τ i
) + n�t

d–∑

i=

∫

�

α√
τ i · Kτ i

(
dtem–

. · τ i
). (.)

Combining (.), (.) with (.), we obtain

�t
∥
∥dtem

.
∥
∥

 +
∥
∥∇em

.
∥
∥

 –
∥
∥∇em–

.
∥
∥



+ n
d–∑

i=

∫

�

α√
τ i · Kτ i

(
em

. · τ i
) – n

d–∑

i=

∫

�

α√
τ i · Kτ i

(
em–

. · τ i
)

≤ 


(



) 
 [

�t∥∥dtum
h
∥
∥

 · �t


∥
∥∇dtum

h
∥
∥

 + �t


∥
∥em–

.
∥
∥



∥
∥∇em–

.
∥
∥



]
. (.)

According to the definition of e
. we know that e

. = . From (.) as J =  one finds
∥
∥dtu

h
∥
∥

 + �t
∥
∥∇dtu

h
∥
∥

 ≤ M.

From (.) as m = 

�t
∥
∥dte

.
∥
∥

 +
∥
∥∇e

.
∥
∥

 + n
d–∑

i=

∫

�

α√
τ i · Kτ i

(
e

. · τ i
)

≤
√




�t∥∥dtu
h
∥
∥

 · �t


∥
∥∇dtu

h
∥
∥

 � �t.

Then we see that Lemma . holds for all m ≤ J – , that is to say,

∥
∥∇eJ–

.
∥
∥

 + �t
J–∑

m=

∥
∥dtem

.
∥
∥

 ��t.
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Now, we take m = J in (.) and use Theorem . and the trace theorem to obtain

�t
∥
∥dteJ

.
∥
∥

 +
∥
∥∇eJ

.
∥
∥

 + n
d–∑

i=

∫

�

α√
τ i · Kτ i

(
eJ

. · τ i
)

≤
√




[
�t∥∥dtuJ

h
∥
∥

 · �t


∥
∥∇dtuJ

h
∥
∥

 + �t


∥
∥eJ–

.
∥
∥



∥
∥∇eJ–

.
∥
∥



]

+
∥
∥∇eJ–

.
∥
∥

 + n
d–∑

i=

∫

�

α√
τ i · Kτ i

(
em–

. · τ i
) � �t.

Then we finish the proof of Lemma .. �

For the decoupled Algorithm ., we have the following error estimates.

Lemma . Let (ufh,φh) and (um,h
. ,φm,h

. ) be defined by the discrete models (.) and (.),
denote em

. = (em
., ξm

.) = (um
fh – um,h

. ,φm
h – φ

m,h
. ), under the condition of (.) we have

∥
∥eJ

.
∥
∥

 +



J∑

m=

�t
∥
∥em

.
∥
∥

W ��t,
∥
∥∇eJ

.
∥
∥

 + �t
J∑

m=

∥
∥dtem

.
∥
∥

 � �t.

Proof By comparing the discrete models (.) and (.), we have the following error equa-
tion for all vh ∈ Vh and em

. with m = , . . . , J :

(
em

. – em–
.

�t
, vh

)

+ a�

(
em

., vh
)

+ a�

(
um

h – um–,h
. , vh

)

= –
∫

�

nρgψh
(
um,h

. – um–,h
.

) · nf . (.)

Taking vh = �tem
. in (.), we have

(
em

. – em–
.

�t
, �tem

.

)

+ a�

(
em

., �tem
.

)

= –a�

(
um

h – um–,h
. , �tem

.
)

– �t
∫

�

nρgξm
.

(
um,h

. – um–,h
.

) · nf . (.)

Note that the left-hand side of (.) can be rewritten as

∥
∥em

.
∥
∥

 –
∥
∥em–

.
∥
∥

 + �t∥∥dtem
.

∥
∥

 + �t
∥
∥em

.
∥
∥

W

+ n�t
d–∑

i=

∫

�

α√
τ i · Kτ i

(
em

. · τ i
). (.)

For the terms of the right-hand side in (.), following the trick used in [], we have

a�

(
um

h – um–,h
. , �tem

.
)

≤ 

�t

(∥
∥em

.
∥
∥

W –
∥
∥em–

.
∥
∥

W

)
+ �t∥∥dtem

.
∥
∥

 + Ĉ�t∥∥dtum
h
∥
∥

W , (.)

�t
∫

�

nρgξm
.

(
um,h

. – um–,h
.

) · nf
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≤ �tnρg
∥
∥ξm

.
∥
∥

L(�)

∥
∥dtum,h

.
∥
∥

L(�)

≤ C
t �t


 nρg

∥
∥ξm

.
∥
∥/

L(�p)

∥
∥dtum,h

.
∥
∥/

L(�f )

∥
∥∇dtum,h

.
∥
∥/

L(�f ) · �t


∥
∥∇ξm

.
∥
∥/

L(�p)

≤ 


�t
∥
∥∇ξm

.
∥
∥

L(�p) +



(
C

t nρg
) 

 �t∥∥dtum,h
.

∥
∥/

L(�f )

∥
∥∇dtum,h

.
∥
∥/

L(�f )

· �t


∥
∥ξm

.
∥
∥/

L(�p)

≤ 


�t
∥
∥∇ξm

.
∥
∥

L(�p) +


�t

∥
∥ξm

.
∥
∥

L(�p)

+
√




(
C

t nρg
)

�t


∥
∥dtum,h

.
∥
∥

L(�f ) · �t


∥
∥∇dtum,h

.
∥
∥

L(�f ). (.)

Combining (.)-(.) with (.) and summing it over m from  to J we obtain

∥
∥eJ

.
∥
∥

 +



J∑

m=

�t
∥
∥em

.
∥
∥

W +


�t

∥
∥em

.
∥
∥

W

≤ �t

(√



(nρg)∥∥dtum,h

.
∥
∥

L(�f ) · �t
J∑

m=

∥
∥∇dtum,h

.
∥
∥

L(�f )

+ Ĉ�t
J∑

m=

∥
∥dtum

h
∥
∥

W

)

+


�t

J∑

m=

∥
∥em

.
∥
∥

. (.)

Thanks to Theorem ., Lemma ., and the Gronwall lemma, one finds

∥
∥eJ

.
∥
∥

 +



J∑

m=

�t
∥
∥em

.
∥
∥

W +


�t

∥
∥em

.
∥
∥

W � �t. (.)

Taking vh = (em
. – em–

. ) ∈ Vh in (.), we get

(
em

. – em–
.

�t
, 

(
em

. – em–
.

)
)

+ a�

(
em

., em
. – em–

.
)

= –a�

(
um

h – um–,h
. , 

(
em

. – em–
.

))

– 
∫

�

nρg
(
ξm

. – ξm–
.

) · (um,h
. – um–,h

.
) · nf . (.)

For the first term of the right-hand side in (.), we can treat it as (.). For the second
term, we have


∫

�

nρg
(
ξm

. – ξm–
.

) · (um,h
. – um–,h

.
) · nf

= �t
∫

�

nρgdtξ
m
. · dtum,h

. · nf

≤ C
t nρg�t∥∥dtξ

m
.

∥
∥/

L(�p)

∥
∥dtξ

m
.

∥
∥/

H(�p)

∥
∥dtum,h

.
∥
∥/

L(�f )

∥
∥dtum,h

.
∥
∥/

H(�f )

= C
t nρg�t



∥
∥dtξ

m
.

∥
∥/

L(�p)

∥
∥dtum,h

.
∥
∥/

L(�f )

∥
∥dtum,h

.
∥
∥/

H(�f ) · �t


∥
∥dtξ

m
.

∥
∥/

H(�p)

≤ 


�t∥∥∇dtξ
m
.

∥
∥

L(�p)
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+



(
C

t nρg
) 

 �t∥∥dtξ
m
.

∥
∥/

L(�p)

∥
∥dtum,h

.
∥
∥/

L(�f )

∥
∥dtum,h

.
∥
∥/

H(�f )

≤ 


�t∥∥∇dtξ
m
.

∥
∥

L(�p) +


�t

∥
∥dtξ

m
.

∥
∥

L(�p)

+
√




(
C

t nρg
)

�t∥∥dtum,h
.

∥
∥

L(�f ) · �t


∥
∥dtum,h

.
∥
∥

H(�f ). (.)

Combining (.), (.) with (.) we obtain



�t

∥
∥dtem

.
∥
∥

 +
∥
∥∇em

.
∥
∥

 –
∥
∥∇em–

.
∥
∥



+ n
d–∑

i=

∫

�

α√
τ i · Kτ i

(
em

. · τ i
) – n

d–∑

i=

∫

�

α√
τ i · Kτ i

(
em–

. · τ i
)

≤
√




[(
 +

(
C

t nρg
))

�t∥∥dtum,h
.

∥
∥

 · �t


∥
∥∇dtum,h

.
∥
∥

 + �t


∥
∥em–

.
∥
∥



∥
∥∇em–

.
∥
∥



]
.

By the induction method and Lemma ., similar to Lemma ., we complete the proof.
�

For the decoupled Algorithm ., we have the following error estimates.

Lemma . Let (ufh,φh) and (um,h
. ,φm,h

. ) be defined by the discrete models (.) and (.).
Denote em

. = (em
., ξm

.) = (um
fh – um,h

. ,φm
h – φ

m,h
. ), under the condition of (.) we have

∥
∥eJ

.
∥
∥

 +



J∑

m=

�t
∥
∥em

.
∥
∥

W � �t,
∥
∥∇eJ

.
∥
∥

 + �t
J∑

m=

∥
∥dtem

.
∥
∥

 � �t.

Proof By comparing the discrete models (.) and (.), we have the following error equa-
tion for all vh ∈ Vh and em

. with m = , . . . , J :

(
em

. – em–
.

�t
, vh

)

+ a�

(
em

., vh
)

+ a�

(
um

h – um–,h
. , vh

)

= –
∫

�

nρg
(
φ

m,h
. – φ

m–,h
.

) · vh · nf . (.)

Choosing vh = �tem
. in (.), we have

(
em

. – em–
.

�t
, �tem

.

)

+ a�

(
em

., �tem
.

)

= –a�

(
um

h – um–,h
. , �tem

.
)

– �t
∫

�

nρg
(
φ

m,h
. – φ

m–,h
.

) · em
. · nf . (.)

For the last term of the right-hand side in (.) we have

�t
∫

�

nρg
(
φ

m,h
. – φ

m–,h
.

) · em
. · nf

≤ �tnρg
∥
∥em

.
∥
∥

L(�)

∥
∥dtφ

m,h
.

∥
∥

L(�)

≤ C
t �t


 nρg

∥
∥em

.
∥
∥/

L(�p)

∥
∥dtφ

m,h
.

∥
∥/

L(�f )

∥
∥∇dtφ

m,h
.

∥
∥/

L(�f ) · �t


∥
∥∇em

.
∥
∥/

L(�p)
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≤ 


�t
∥
∥∇em

.
∥
∥

L(�p)

+



(
C

t nρg
) 

 �t∥∥dtφ
m,h
.

∥
∥/

L(�f )

∥
∥∇dtφ

m,h
.

∥
∥/

L(�f ) · �t


∥
∥em

.
∥
∥/

L(�p)

≤ 


�t
∥
∥∇em

.
∥
∥

L(�p) +


�t

∥
∥em

.
∥
∥

L(�p)

+
√




(
C

t nρg
)

�t∥∥dtφ
m,h
.

∥
∥

L(�f ) · �t
∥
∥∇dtφ

m,h
.

∥
∥

L(�f ). (.)

Combining (.)-(.), (.) with (.), one finds

∥
∥em

.
∥
∥

 –
∥
∥em–

.
∥
∥

 +



�t
∥
∥em

.
∥
∥

W +


�t

(∥
∥em

.
∥
∥

W –
∥
∥em

.
∥
∥

W

)

≤ �t
(√




(
C

t nρg
)∥∥dtφ

m,h
.

∥
∥

L(�f ) · �t
∥
∥∇dtφ

m,h
.

∥
∥

L(�f ) + Ĉ�t
∥
∥dtum

h
∥
∥

W

)

+


�t

∥
∥em

.
∥
∥

. (.)

Summing (.) over m from  to J and using Theorem ., Lemma ., and the Gronwall
lemma, we have

∥
∥eJ

.
∥
∥

 +



J∑

m=

�t
∥
∥em

.
∥
∥

W +


�t

∥
∥em

.
∥
∥

W � �t. (.)

Next, we take vh = (em
. – em–

. ) in (.) and obtain

(
em

. – em–
.

�t
, 

(
em

. – em–
.

)
)

+ a�

(
em

., 
(
em

. – em–
.

))

= –a�

(
um

h – um–,h
. , 

(
em

. – em–
.

))

– 
∫

�

nρg
(
φ

m,h
. – φ

m–,h
.

) · (em
. – em–

.
) · nf . (.)

For the first term in the right-hand side of (.), we can treat it as in (.). For the second
term, we have


∫

�

nρg
(
φ

m,h
. – φ

m–,h
.

) · (em
. – em–

.
) · nf

= �t
∫

�

nρgdtφ
m,h
. · dtem

. · nf

≤ C
t �tnρg

∥
∥dtφ

m,h
.

∥
∥/

L(�p)

∥
∥dtφ

m,h
.

∥
∥/

H(�p)

∥
∥dtem

.
∥
∥/

L(�f )

∥
∥dtem

.
∥
∥/

H(�f )

≤ 


�t∥∥∇dtem
.

∥
∥

L(�p) +


�t

∥
∥dtem

.
∥
∥

L(�p)

+
√




(
C

t nρg
)

�t∥∥dtφ
m,h
.

∥
∥

L(�f ) · �t


∥
∥dtφ

m,h
.

∥
∥

H(�f ). (.)

Combining (.), (.), (.) with (.), using the induction method we complete the
proof. �
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Finally, combining Theorem . with Lemmas .-., we have the following conclusion
for the decoupled Algorithms .-..

Corollary Under the condition (.), for the decoupled algorithms DEBS, DEBS, and
DEBS with m = , . . . , J , we have

∥
∥u(tm) – um,h

.i
∥
∥

 � �t + h, i = , , ,
∥
∥∇(

u(tm) – um,h
.i

)∥
∥

 � �t + h, i = , , .

6 Numerical experiments
In order to gain insights on the established theoretical results in the previous section, we
present some numerical tests in this section. Our main interest is to verify the perfor-
mances of the decoupled Algorithms . and .. In our experiments, let the domain � be
composed of �f = [, ] × (, ] and �p = [, ] × (, ] with the interface � = [, ] × {}.
The model parameters ρ, g, n, and α are simply set to . The boundary conditions and
right-hand side functions in the model are selected such that the exact solution is given
by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u = (x(y – ) + y) cos t,
v = (– 

 x(y – ) +  – π sin(πx)) cos t,
pf = ( – π sin(πx)) · sin( 

πy) cos t,
φ = ( – π sin(πx)) · ( – y – cos(πy)) cos t,

where the components of uf are denoted by (u, v) for convenience.
In order to show the prominent features of the decoupled Algorithms . and ., we

compare the numerical results of algorithms (.) and (.) with the coupled method
(.) and DBES (.). The finite element spaces are constructed using the well-known
MINI elements for the Stokes problem and linear Lagrangian elements for the Darcy flow.
For the coupled scheme, the GMRES routine is used to solve the coupled system. For the

Table 1 The convergence performance and CPU time of the coupled Algorithm 3.1 at time
T = 1.0, with varying mesh h but fixed time step �t = 0.01

1
h

‖uf –um,h
3.4 ‖0

‖uf ‖0

‖uf –um,h
3.4 ‖1

‖uf ‖1

‖pf –pm,h
3.4 ‖0

‖pf ‖0

‖φ–φ
m,h
3.4 ‖0

‖φ‖0

‖φ–φ
m,h
3.4 ‖1

‖φ‖1
CPU(S)

2 0.256573 0.402367 3.28684 0.449315 0.534235 8.793
4 0.0723105 0.273089 2.38616 0.169561 0.337904 8.793
8 0.0177107 0.107495 0.580117 0.0310711 0.154481 30.856
16 0.00418793 0.0497246 0.208445 0.00809378 0.0772969 108.743
32 0.00102092 0.0254185 0.0967607 0.00219088 0.0391418 451.241

Table 2 The convergence performance and CPU time of the decoupled Algorithm 3.2 at time
T = 1.0, with varying mesh h but fixed time step �t = 0.01

1
h

‖uf –um,h
3.4 ‖0

‖uf ‖0

‖uf –um,h
3.4 ‖1

‖uf ‖1

‖pf –pm,h
3.4 ‖0

‖pf ‖0

‖φ–φ
m,h
3.4 ‖0

‖φ‖0

‖φ–φ
m,h
3.4 ‖1

‖φ‖1
CPU(S)

2 0.256573 0.402367 3.29034 0.449351 0.534233 2.802
4 0.0723139 0.273084 2.38421 0.170073 0.337872 6.779
8 0.0176805 0.107496 0.580263 0.0317752 0.154487 15.092
16 0.0041693 0.0497261 0.208663 0.00894104 0.0772974 50.722
32 0.00100931 0.0254203 0.0969369 0.00323085 0.0391582 217.405
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Table 3 The convergence performance and CPU time of the decoupled Algorithm 3.3 at time
T = 1.0, with varying mesh h but fixed time step �t = 0.01

1
h

‖uf –um,h
3.4 ‖0

‖uf ‖0

‖uf –um,h
3.4 ‖1

‖uf ‖1

‖pf –pm,h
3.4 ‖0

‖pf ‖0

‖φ–φ
m,h
3.4 ‖0

‖φ‖0

‖φ–φ
m,h
3.4 ‖1

‖φ‖1
CPU(S)

2 0.256573 0.402367 3.29042 0.449315 0.534235 2.814
4 0.0723142 0.273084 2.38369 0.169569 0.337904 6.782
8 0.0176767 0.107497 0.580288 0.0310971 0.154481 13.987
16 0.00416661 0.0497265 0.208831 0.00812777 0.0772966 46.337
32 0.00100802 0.0254209 0.097102 0.00223235 0.039142 219.175

Table 4 The convergence performance and CPU time of the decoupled Algorithm 3.4 at time
T = 1.0, with varying mesh h but fixed time step �t = 0.01

1
h

‖uf –um,h
3.4 ‖0

‖uf ‖0

‖uf –um,h
3.4 ‖1

‖uf ‖1

‖pf –pm,h
3.4 ‖0

‖pf ‖0

‖φ–φ
m,h
3.4 ‖0

‖φ‖0

‖φ–φ
m,h
3.4 ‖1

‖φ‖1
CPU(S)

2 0.256573 0.402367 3.28676 0.449351 0.534233 2.867
4 0.0723103 0.273089 2.3867 0.170064 0.337873 6.766
8 0.0177147 0.107495 0.580137 0.0317483 0.154487 13.298
16 0.00419167 0.0497249 0.208433 0.00890173 0.0772969 49.513
32 0.0010238 0.0254187 0.0968278 0.00317698 0.0391566 224.978

Table 5 The convergence performance and CPU time of the coupled Algorithm 3.1 at time
T = 1.0, with varying time step �t but fixed mesh h = 1

32

�t
‖uf –um,h

3.4 ‖0
‖uf ‖0

‖uf –um,h
3.4 ‖1

‖uf ‖1

‖pf –pm,h
3.4 ‖0

‖pf ‖0

‖φ–φ
m,h
3.4 ‖0

‖φ‖0

‖φ–φ
m,h
3.4 ‖1

‖φ‖1
CPU(S)

0.1 0.00109903 0.0254407 0.106519 0.00368303 0.039155 115.325
0.05 0.000917046 0.0254249 0.0999589 0.00287082 0.0391452 162.599
0.025 0.000951743 0.025419 0.0973778 0.00244063 0.0391425 239.99
0.0125 0.00101967 0.0254187 0.09692 0.00222325 0.0391419 352.926

Table 6 The convergence performance and CPU time of the decoupled Algorithm 3.2 at time
T = 1.0, with varying time step �t but fixed mesh h = 1

32

�t
‖uf –um,h

3.4 ‖0
‖uf ‖0

‖uf –um,h
3.4 ‖1

‖uf ‖1

‖pf –pm,h
3.4 ‖0

‖pf ‖0

‖φ–φ
m,h
3.4 ‖0

‖φ‖0

‖φ–φ
m,h
3.4 ‖1

‖φ‖1
CPU(S)

0.1 0.00157101 0.0256652 0.110761 0.0160073 0.0407084 20.607
0.05 0.00109152 0.0254802 0.100058 0.00890671 0.0395539 42.095
0.025 0.000949681 0.0254322 0.0977095 0.00534402 0.0392473 88.186
0.0125 0.000992267 0.0254214 0.0969716 0.00355753 0.0391676 184.475

decoupled schemes, a Gauss Lower and Upper triangular matrix factorization is imple-
mented to solve the positive definite matrix subsystems. In the following tables, we will
use ‖ · ‖ to denote the L-norm and ‖ · ‖ to denote the H-norm.

First, we compare the errors, convergence rates and CPU times for both the coupled
scheme and the decoupled algorithms. In Tables -, we consider these schemes at time
T = ., with varying mesh h but fixed time step �t. These numerical algorithms achieve
similar precision, although the coupled scheme is slightly more accurate than the decou-
pled schemes. However, the coupled scheme takes much more CPU time than the de-
coupled algorithms. On the other hand, we consider both the coupled and the decoupled
algorithms with varying time step �t but fixed mesh h = 

 . In Tables -, four schemes
almost get the same accuracy, but the decoupled schemes need much less CPU time than
the coupled scheme. Stated succinctly, the decoupled schemes are comparable with the
coupled scheme but cheaper and more efficient.
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Table 7 The convergence performance and CPU time of the decoupled Algorithm 3.3 at time
T = 1.0, with varying time step �t but fixed mesh h = 1

32

�t
‖uf –um,h

3.4 ‖0
‖uf ‖0

‖uf –um,h
3.4 ‖1

‖uf ‖1

‖pf –pm,h
3.4 ‖0

‖pf ‖0

‖φ–φ
m,h
3.4 ‖0

‖φ‖0

‖φ–φ
m,h
3.4 ‖1

‖φ‖1
CPU(S)

0.1 0.00171481 0.025736 0.122266 0.00421803 0.0391679 22.188
0.05 0.00114236 0.0255008 0.103001 0.0030826 0.0391483 43.696
0.025 0.000973109 0.0254374 0.0987402 0.00255426 0.0391433 87.973
0.0125 0.000991764 0.0254223 0.0971713 0.00227914 0.0391421 177.212

Table 8 The convergence performance and CPU time of the decoupled Algorithm 3.4 at time
T = 1.0, with varying time step �t but fixed mesh h = 1

32

�t
‖uf –um,h

3.4 ‖0
‖uf ‖0

‖uf –um,h
3.4 ‖1

‖uf ‖1

‖pf –pm,h
3.4 ‖0

‖pf ‖0

‖φ–φ
m,h
3.4 ‖0

‖φ‖0

‖φ–φ
m,h
3.4 ‖1

‖φ‖1
CPU(S)

0.1 0.00117118 0.0254554 0.117434 0.0154497 0.0405695 20.842
0.05 0.000953404 0.0254305 0.104073 0.00862193 0.0395156 42.126
0.025 0.000958537 0.0254216 0.0984034 0.00519615 0.0392372 83.936
0.0125 0.00102454 0.0254198 0.0973373 0.00349038 0.039165 172.19

Table 9 Convergence orders of O(hμ) of the decoupled Algorithm 3.2 at time T = 1.0, with
varying mesh h but fixed time step �t = 0.01

1/h ‖um,h
3.2 – u

m, h
2

3.2 ‖0 ρuf ,h,0 ‖um,h
3.2 – u

m, h
2

3.2 ‖1 ρuf ,h,1 ‖pm,h
3.2 – p

m, h
2

3.2 ‖0 ρpf ,h,0

2 0.2151001 3.80355 1.65021 1.91075 0.940921 1.50545
4 0.0565524 3.86866 0.863644 1.93151 0.625008 2.43456
8 0.0146181 4.0458 0.447135 2.13698 0.256723 2.85632
16 0.00361315 0.209237 0.089879

1/h ‖φm,h
3.2 – φ

m, h
2

3.2 ‖0 ρφ,h,0 ‖φm,h
3.2 – φ

m, h
2

3.2 ‖1 ρφ,h,1

2 0.135254 3.31099 1.30796 1.68767
4 0.04085 4.07816 0.775011 1.90658
8 0.0100168 4.18833 0.406494 1.98302
16 0.00239159 0.204987

Next, we focus on the decoupled schemes and examine the orders of convergence with
respect to the mesh size h or the time step �t. Following [], we introduce the following
approach to examine the orders of convergence with respect to the time step �t or the
mesh size h due to the approximation errors O(�tγ ) + O(hμ). For example, assuming

v�t
h ≈ v(x, tm) + C(x, tm)�tγ + C(x, tm)hμ,

thus we have

ρv,h,j =
‖v�t

h (x, tm) – v�t
h


(x, tm)‖j

‖v�t
h


(x, tm) – v�t
h


(x, tm)‖j
≈

μ – μ

μ – 
,

ρv,�t,j =
‖v�t

h (x, tm) – v
�t


h (x, tm)‖j

‖v
�t


h (x, tm) – v
�t


h (x, tm)‖j

≈
γ – γ

γ – 
.

Here, v can take uf , pf ,φ and j can be  or . While ρv,h,j,ρv,�t,j approach . or ., the
convergence order will be . or ., respectively.
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Table 10 Convergence orders of O(hμ) of the decoupled Algorithm 3.3 at time T = 1.0, with
varying mesh h but fixed time step �t = 0.01

1/h ‖um,h
3.3 – u

m, h
2

3.3 ‖0 ρuf ,h,0 ‖um,h
3.3 – u

m, h
2

3.3 ‖1 ρuf ,h,1 ‖pm,h
3.3 – p

m, h
2

3.3 ‖0 ρpf ,h,0

2 0.215099 3.80338 1.6502 1.91072 0.940517 1.50494
4 0.0565547 3.86854 0.863652 1.93151 0.624954 2.43437
8 0.0146192 4.04581 0.447138 2.13698 0.256721 2.85629
16 0.00361342 0.209238 0.0898792

1/h ‖φm,h
3.3 – φ

m, h
2

3.3 ‖0 ρφ,h,0 ‖φm,h
3.3 – φ

m, h
2

3.3 ‖1 ρφ,h,1

2 0.135335 3.3074 1.30801 1.68713
4 0.0409188 4.07757 0.775285 1.90679
8 0.0100351 4.18889 0.406592 1.98307
16 0.00239564 0.205032

Table 11 Convergence orders of O(hμ) of the decoupled Algorithm 3.4 at time T = 1.0, with
varying mesh h but fixed time step �t = 0.01

1/h ‖um,h
3.4 – u

m, h
2

3.4 ‖0 ρuf ,h,0 ‖um,h
3.4 – u

m, h
2

3.4 ‖1 ρuf ,h,1 ‖pm,h
3.4 – p

m, h
2

3.4 ‖0 ρpf ,h,0

2 0.215106 3.80487 1.65033 1.91101 0.941814 1.50623
4 0.0565345 3.86891 0.86359 1.93145 0.625278 2.43518
8 0.0146125 4.04563 0.447119 2.13703 0.256769 2.85676
16 0.00361192 0.209225 0.0898811

1/h ‖φm,h
3.4 – φ

m, h
2

3.4 ‖0 ρφ,h,0 ‖φm,h
3.4 – φ

m, h
2

3.4 ‖1 ρφ,h,1

2 0.135175 3.3141 1.30791 1.68817
4 0.0407879 4.07829 0.774753 1.90637
8 0.0100012 4.18768 0.406401 1.98302
16 0.00238826 0.204943

Table 12 Convergence orders of O(�tγ ) of the decoupled Algorithm 3.2 at time T = 1.0, with
varying time step �t but fixed mesh h = 1

32

�t ‖um,�t
3.2 – u

m, �t
2

3.2 ‖0 ρuf ,�t,0 ‖um,�t
3.2 – u

m, �t
2

3.2 ‖1 ρuf ,�t,1 ‖pm,�t
3.2 – p

m, �t
2

3.2 ‖0 ρpf ,�t,0

0.1 0.000809376 1.95487 0.0080253 1.86026 0.0173397 1.9429
0.05 0.000414031 1.97844 0.00431408 2.02706 0.00892463 1.97378
0.025 0.000209272 1.98947 0.00212825 1.62937 0.00452159 1.98749
0.0125 0.00010519 0.00130618 0.00227502

�t ‖φm,h�t
3.2 – φ

m, �t
2

3.2 ‖0 ρφ,�t,0 ‖φm,�t
3.2 – φ

m, �t
2

3.2 ‖1 ρφ,�t,1

0.1 0.00257197 1.92495 0.0140113 1.89193
0.05 0.00133612 1.96705 0.00740581 1.94972
0.025 0.000679251 1.98468 0.0037984 1.90576
0.0125 0.000342248 0.00199312

In Tables -, we study the convergence order with a fixed time step �t = . and vary-
ing spacing h = 

 , 
 , 

 , 
 . Observe that ρuf ,h,,ρφ,h, close to . and ρuf ,h,,ρpf ,h,,ρφ,h,

approach to ., which suggest that the error estimates O(h) for the L-norm of um,h
.i

and φ
m,h
.i (i = , , ), and O(h) for the H-norm of um,h

.i and φ
m,h
.i (i = , , ) in space for

three decoupled algorithms. However, in Tables -, we study the convergence order
with a fixed spacing h = 

 and varying time step �t = ., ., ., .. The nu-
merical experiments strongly suggest that the orders of convergence in time are O(�t),
which implies that the error estimates for both the L-norm and H-norm of um,h

.i and φ
m,h
.i
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Table 13 Convergence orders of O(�tγ ) of the decoupled Algorithm 3.3 at time T = 1.0, with
varying time step �t but fixed mesh h = 1

32

�t ‖um,�t
3.3 – u

m, �t
2

3.3 ‖0 ρuf ,�t,0 ‖um,�t
3.3 – u

m, �t
2

3.3 ‖1 ρuf ,�t,1 ‖pm,�t
3.3 – p

m, �t
2

3.3 ‖0 ρpf ,�t,0

0.1 0.00090236 1.93382 0.00891485 1.85837 0.0215839 1.89965
0.05 0.00046662 1.96917 0.00479714 2.00887 0.011362 1.95491
0.025 0.000236963 1.98516 0.00238798 1.68501 0.00581205 1.97876
0.0125 0.000119368 0.00141719 0.00293722

�t ‖φm,�t
3.3 – φ

m, �t
2

3.3 ‖0 ρφ,�t,0 ‖φm,�t
3.3 – φ

m, �t
2

3.3 ‖1 ρφ,�t,1

0.1 0.00433364 1.90828 0.0174115 1.88974
0.05 0.00227097 1.95936 0.00921372 1.94985
0.025 0.00115904 1.98099 0.00472534 1.92982
0.0125 0.00058508 0.00244859

Table 14 Convergence orders of O(�tγ ) of the decoupled Algorithm 3.4 at time T = 1.0, with
varying time step �t but fixed mesh h = 1

32

�t ‖um,�t
3.4 – u

m, �t
2

3.4 ‖0 ρuf ,�t,0 ‖um,�t
3.4 – u

m, �t
2

3.4 ‖1 ρuf ,�t,1 ‖pm,h
3.4 – p

m, h
2

3.4 ‖0 ρpf ,�t,0

0.1 0.000373673 1.97879 0.00354043 1.47841 0.0150435 1.94262
0.05 0.000188839 1.99068 0.00239475 1.77955 0.00774392 1.97437
0.025 9.48618e–005 1.99568 0.0013457 0.80887 0.00392223 1.98791
0.0125 4.75336e–005 0.00166368 0.00197304

�t ‖φm,�t
3.4 – φ

m, �t
2

3.4 ‖0 ρφ,�t,0 ‖φm,�t
3.4 – φ

m, �t
2

3.4 ‖1 ρφ,�t,1

0.1 0.00410297 1.87043 0.0244922 1.86572
0.05 0.0021936 1.94215 0.0131275 1.93868
0.025 0.00112947 1.9726 0.00677134 1.84128
0.0125 0.000572579 0.00367753

(i = , , ) are optimal. Our numerical results confirm the established theoretical analy-
sis very well. Furthermore, we observe that Algorithm . may be the best one among
four algorithms to treat the non-stationary Stokes-Darcy model due to the fact that this
algorithm not only keeps good accuracy but also takes less computational time.
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