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Abstract

We present a new method to investigate some fractional integro-differential
equations involving the Caputo-Fabrizio derivation and we prove the existence of
approximate solutions for these problems. We provide three examples to illustrate our
main results. By checking those, one gets the possibility of using some discontinuous
mappings as coefficients in the fractional integro-differential equations.
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1 Introduction
The fractional calculus has an old history and several fractional derivations where defined
but the most utilized are Caputo and Riemann-Liouville derivations [1-5]. In 2015, Caputo
and Fabrizio defined a new fractional derivation without singular kernel [6]. Immediately,
Losada and Nieto wrote a paper about properties of the new fractional derivative [7] and
several researchers tried to utilize it for solving different equations (see [8—14] and the
references therein).

Let b >0, u € H'(0,b) and « € (0,1). The Caputo-Fabrizio fractional derivative of order
o for the function u is defined by “F D u(t) = (Zga)ﬁgo’) fot exp(5 (t—5))u'(s) ds, where t > 0
and M(«) is normalization constant depending on « such that M(0) = M(1) =1 [6]. Also,

Losada and Nieto showed that the fractional integral of order « for the function u is given
by CEI*u(t) = (zf(li_mu(t) + [, u(s)ds whenever 0 < & <1 [7]. They showed that

a)M(a)
M(a) = ﬁ for all 0 <« <1 [7]. Thus, the fractional Caputo-Fabrizio derivative of order
o for the function  is given by “FD¥u(¢) = ﬁ fot exp(—1% (t —5))u'(s) ds, where £ > 0 and

0<a<1[7].Ifn>1and « € [0,1], then the fractional derivative “*D**" of order n + « is
defined by “fD**"y := CED*(D"u(t)) [6]. We need the following results.

Theorem 1.1 ([6]) Let u,v € H'(0,1) and a € (0,1). If u'(0) = 0, then “FD*(“* D' (u(t))) =
CEDLCEDY (u(t))). Also, we have limg_, o “FD*u(t) = u(t) — u(0), limy—1 SED%u(t) = u/'(t) and
CED* (Au(t) + yv(t)) = AEDYu(t) + y EDYw(¢).
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Lemma 1.2 ([7]) Let O < « < 1. Then the unique solution for the problem ¥ D*u(t) = v(t)
with boundary condition u(0) = c is given by u(t) = ¢ + a,(v(t) — v(0)) + by fot v(s) ds, where

Ay = (238);\4"’2“) =1l-aandby, = % = «. Note that v(0) = 0 whenever u(0) = 0.

To discuss the existence of solutions for most fractional differential equations in analytic
methods, the well-known fixed point results such as the Banach contraction principle is
used. In fact, the existence of solutions and the existence of fixed points are equivalent.
As is well known, there are many fractional differential equations which have no exact
solutions. Thus, the researchers utilize numerical methods usually for obtaining an ap-
proximation of the exact solutions. We say that u is an approximate solution for fractional
integro-differential equation whenever we could obtain a sequence of functions {u,},>1
with u,, — u. We use this notion when we could not obtain the exact solution u. This ap-
pears usually when you want to investigate the fractional integro-differential equation in
a non-complete metric space.

In this manuscript, we prove the existence of approximate solutions analytically for some
fractional integro-differential equations involving the Caputo-Fabrizio derivative. In fact,
the approximate solution of an equation is equivalent to the approximate fixed point of
an appropriate operator. This says that by using numerical methods, one can obtain ap-
proximations of the unknown exact solution. We will not check the estimates of the exact
solution in our examples because our aim is to show the existence of approximate solu-
tions within the analytical method.

Here, we provide some basic needed notions.

Let (X,d) be a metric space, F a selfmap on X, o : X x X — [0,00) a mapping and ¢ a
positive number. We say that F is «-admissible whenever «/(x,y) > 1 implies «(Fx, Fy) > 1
[15]. An element xy € X is called e-fixed point of F whenever d(Fxy,x9) < . We say
that F has the approximate fixed point property whenever F has an e-fixed point for
all & > 0 [15]. Some mappings have approximate fixed points, while they have no fixed
points [15]. Denote by R the set of all continuous mappings g : [0, 00)° — [0, 00) satisfying
2(1,1,1,2,0) =¢(1,1,1,0,2) := h € (0,1), g(px1, hxa, 3, X, xs) < ug(x1, X2, %3, %4, %s5) for
all (x1,%9,%3,%4,%5) € [0,00)° and u > 0 and also g(xy,x2,%3,0,%4) < g(¥1,%2,¥3,0,y4) and
g(x1,20,%3,%4,0) < g(91,92,¥3,Y4,0) whenever xy,...,%x4,91,...,Ya € [0,00) with x; < y; for
i =1,2,3,4 [15]. We say that F is a generalized o-contractive mapping whenever there
exists g € R such that a(x, y)d(Fx, Fy) < g(d(x,y), d(x, Fx),d(y, Fy), d(x, Fy), d(y, Fx)) for all
x,y € X ([15]).

Theorem 1.3 ([15]) Let (X, d) be a metric space, o : X x X — [0,00) a mapping and F a
generalized a-contractive and a-admissible selfmap on X. Assume that there exists xo € X
such that a(xg, Fxg) > 1. Then F has an approximate fixed point.

2 Main results
Now, we are ready to state and prove our main results.

Lemma 2.1 Suppose that u,v € H'(0,1) and there exists a real number K such that
|u(t) - v(t)| <K

forall t € [0,1]. Then |“ED*u(t) — “ED*v(¢t)| < (fj)z K forall t € [0,1].
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Proof Note that

CFDau(t)
_ ﬁ Otexp(_%(t-s))u’(s)ds
1 1 ¢
=12 exp(—%(t—s))u(s)ﬁ) 12 /(; 111 exp(—lfa(t—s))u(s)ds

o

1 1 o t o
= 1_Olu(i,‘)— T a exp(—l_at)u(())— mfo exp(—m(t—s)>u(s)ds

and so

1

l-«

CFDau(t) _ CFDaV(t) <

| (u(®) - v(0))| + |(0) - v(0)|

1 o ;
exp| ———
- P l-«o

1 _aa)2 /0 exp (—%(t - s)) | (u(s) - v(s)) | ds

2 ke % o 2@
+ =
-« (1-a)? 1-a)?

1

+

K

for all £ € [0,1]. Hence, |F D u(t) - CED*v(2)| < (1{;032 )K for all £ € [0,1]. O

If u € H'(0,1) and there exists K > 0 such that |u(¢)| < K for all £ € [0,1], then by using
last result we get |“FDu(t)| < 2_‘:;2 )K for all ¢ € [0,1]. Also by checking the proof of the

a
last result, one can prove the next lemma.

Lemma 2.2 Suppose that u,v € H'(0,1) with u(0) = v(0) and there exists a real number
K such that |u(t) — v(t)| < K for all t € [0,1]. Then |“*D*u(t) — “FD*v(t)| < ml(for all
t e [0,1].

Lemma 2.3 Suppose that u,v € C[0,1] and there is K > 0 such that |u(t) — v(t)| < K for
all t € [0,1]. Then |“FI°u(t) — F1*v(t)| < K for all t € [0,1].

Proof Note that for each ¢ € [0,1] we have
t
CErut) — 1 u(t) = ay, (u(t) - v(t)) + by / (u(s) - V(s)) ds < au,K + b, K = K,
0

where a, and b, are given in Lemma 1.2. This completes the proof. g

If u is an element of C[0,1] such that |u(#)| < K for some K > 0 and all ¢ € [0,1], then
the last result implies that |“FI%u(t)| < K for all £ € [0,1].

Lemma2.4 Leth >0 begivenand 0 < a < 1.Ifu is an element of H(0, b) such that u(0) =
0, #'(0) = 0, ' € H(0,b) and “¥*D*u € H(0,b), then FD'(CFI?u(t)) = CF1*(FDu(t)) =
agu'(t) + bou(t) and (CF*D*u(t)) = “ED*u'(¢) for all t > 0. If u"(t) > O for all t > 0, then
Dy is increasing on [0, b)]. Also, “¥ D*u is decreasing on [0, b] whenever u’(t) < 0 for all
t>0.
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Proof Note that “F1%(“FDu(t)) = a,u'(t) + b, f '(s) ds = agut' (t) + byu(t) and

t
CEpl (CFI“u(t)) =CFpl (aau(t) + by / u(s) ds)
0
t ’
=a,u/'(t) + by (/ u(s) ds>
0
= ag /' (t) + b u(t)
forall £ > 0. Also, (“F D*u(t)) = CFDI(CFD"‘ (t )) CEDe(CEDLy(t)) = CEDY/(¢) for all £ > 0.
Since (“FDu(t)) = *D*u/(t) = 1~ fo exp(—12%(t — s))u”(s)ds for all ¢ > 0, we see that
CFDu is increasing on [0, b] whenever u” (£) 2 0 forall ¢ € [0, b]. Also, “F D*u is decreasing
on [0, b] whenever u”(£) <0 for all £ € [0, b]. O
Note that the conditions #’ € H*(0,) and “* D*u € H'(0, b) in Lemma 2.4 just impose a
unique condition on u. Let y, A : [0,1] x [0,1] — [0, 00) be two continuous maps such that
SUp,¢; | fo (t,s ds| < oo and sup,; | fo (¢,s) ds| < co. Consider the maps ¢ and ¢ defined

by (du)(t) fo s)ds and (pu)(t) = fot (¢, s)u(s) ds. Throughout this paper, we put

Yo = SUp,; | fo y(t,s) dsl, do = Sup,; | fo A(t,s)ds| and n(t) € L>®(I) with n* = sup,; [n(2)|.
Here, we investigate the fractional integro-differential problem

EDu() = f (¢, u(t), (pu)(0), (pu)(2)) 1)
with boundary condition #(0) = 0, where « € (0,1).

Theorem 2.5 Let n(t) € L*°(I) and f : I x R? — R be a continuous function such that

[f(t,x,3w) = f(t, %, 9, W) <n@)(|x -] + |y -] +|w-w])

forallt el and x,y,w,x,y',w € R. Then the problem (1) with the boundary condition has

an approximate solution whenever Ay = n*(1+ yo + Ag) < 1.

Proof Consider the space H' endowed with the metric d(u,v) = ||u — v||, where |u| =
sup,; |u(t)|. Now, define the selfmap F : H' — H! by

(Fu)(2) = aqf (¢, u(t), (9u)(®), (pu)(2)) + ba /0 £ (s,u(s), (pu)(s), (pu)(s)) ds,

where a, and b, are given in Lemma 1.2. Note that

(Fu)(2) = ao " D" u(t) + by fo f (s uls), (pu)(s), (pu)(s)) ds

= ﬂal—la /Otexp(—ﬁ(t—s))u’(s)ds

+ by /0 F(s,u(s), ($u)(s), (g2)(s)) ds
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for all ¢. This shows that F maps H! into H'. Thus, we have

|(Fu)(t) - (Fv)(2)]
< ag|f (£, u(t), (@u)(t), (pu)(®)) - f (£, v(t), ($v)(8), (eV)(2)) |

+ by, /()tV(s, u(s), (@u)(s), (pu)(s)) — f (s, v(s), (9v)(s), (¢v)(s)) | ds
< aq|1(0)|(|u(t) = v(O)] + [(@u)() = (@V)(®)] + (@) (8) - (@) (1))

+ bg /Ot(|u(s) —v(s)| + [(@u)(s) = (pV)(5)| + |(@u)(s) = (@V)(s)])|n(s)| ds
< 0" (L+ o + ho)lda + balllu —v] = 7*(L+ yo + Ao)llu — v

for all t € I and u,v € H'. Now, consider g : [0,00)° — [0,00) and « : H' x H' — [0, 00)
defined by g(t1, &2, t3, 4, t5) = A1ty and ae(x, y) = 1 for all ¢,y € H'. One can easily check that
g € R and F is a generalized «-contraction. By using Theorem 1.3, F has an approximate
fixed point which is an approximate solution for the problem (1). d

Note that H' with the sup norm is not Banach. Thus, we used a new method for inves-
tigation of the problem. Now, we investigate the fractional integro-differential problem

CEDYu(s) = M(CFDﬂu(t) + CFDyu(t))

+f (& u(®), (Pu)(t), (u)(8), “F I u(t), “* D’ u(t)) (2)
with boundary condition #(0) = ¢, where . >0 and &, 8,y,0,8 € (0,1) and c € R.

Theorem 2.6 Let 1(t) € L°(I) and f : [0,1] x R> — R be a continuous function such that

|,f(t’ XY, W, Uy, uZ) _f(t) x/;y,) W/; V1, VZ) |

<n@)(|x—o| + [y =] + [w—w|+|ug —vi| + luz — va))

forall t € I and x,y,w,x',y, W, uyuz,v1,v2» € R. Then the problem (2) with the boundary
condition has an approximate solution whenever Ay <1, where

, 1 ! 1
2= <2+y°”°+ (1—6)2>+“((1—ﬁ>2 * (1—y)2>'

Proof Consider the space H' endowed with the metric d(u,v) = ||u — v||, where ||u| =
sup,; |u(t)|. Define the map F : H' — H! by

(Fu)(t) = u(0) + ay [,u (CFDﬂu(t) +CFpr u(t))
+ £ (6, 1(8), (@) ), (90)(), I 1(8), FDPu(t)) — 2 (FDP (0) + D u(0))

= £(0,u(0), (¢u)(0), (ou)(0), “*I”u(0), “* D*u(0)) ]
+ b, ft[u (CFDﬂu(s) + CFD”u(s))
0

+f (5, 4(5), ($u)(s), (9uu)(s), L u(z), F D w(s)) ] ds,
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where a, and b, are given in Lemma 1.2. By using Lemmas 2.2 and 2.3, we obtain

|(Fu)(®) = (FV)(®)] < [u(0) = v(0)] + ao[1t| "D  u(t) - “*DFv(v)|
+u|FD u(t) - FDY v(t) | + | FDPu(0) — FDP(0)]
+ 1| FD u(0) — FDY (0)|
+|f (&, u@®), (dw)®), (puw)(®), FI u(t), “F D’ u(t))
—f (£ v(0), (@v)(), (eV)(®), FI?u(e), “* D’ (1)) |
+ £ (0,4(0), (¢u)(0), (¢u)(0), I’ u(0), “* D’ u(0))

—£(0,1(0), (¢)(0), (¢v)(0), F1°v(0), F D’ v(0)) ]
+ b / t[“‘CFD'S”(S) ~FDPu(s)| + | “FDY u(s) - FDY v(s)|
0

+ u|“FDPu(0) - FDPv(0)| + 1| “FDY u(0) - DY 1(0)]
+ |f (s, u(e), (gu)(s), (@u)(s), 17 uls), "D’ uls))
— £ (s, v(s), (@v)(s), (9v)(s), FI°(s), * D’ (s)) |] ds
< a,[ | FDPu(t) - FDPv(t)| + | “FDY u(t) - “FD v(t)|
+ @] (|u(e) = v(©)] + | (@u)(®) - (@V)(D)| + [(@u) (&) - (@V)(D)]
+[CFLu(t) - 1P| + [T D ult) - FDw(p)|)]

+ b, / [,u\CFDﬂu(s) - CEph v(s)| + ,u|CFD”u(s) - CEpr v(s)|
0

#1066 = v5)| + | 616 - 61| + | )6 — (o))
+ |1 u(s) - “F1v(s)| + | D’ uls) - “FDv(s)|)] ds

. 1 1 1
=7 (2”"“‘“<1—6>2)+“((1—ﬂ)2 +(1—V)2)HM_V”

for all u,v e H' and t € I. Hence,

. 1 1 1
| Fu—Fvl] <n <2+V0+Ko+m>+ﬂ<(l_ﬁ)2 + (1_)/)2)””—1/”

= Agflu—v

for u,v € H'. Now, consider the maps g : [0,00)”> — [0,00) and « : H' x H! — [0, 00) de-
fined by g(t, 6y, t3, ta, t5) = %(tl + 2t;) and a(x,y) =1 for all x,y € H'. One can easily see
that g € R and F is a generalized «-contractive map. By using Theorem 1.3, F has an ap-

proximate fixed point which is an approximate solution for the problem (2). g

Let k and /% be bounded functions on / = [0,1] and s an integrable bounded function

on [ with M = sup,; |k(¢)|, M = sup,.; |s(£)| < oo and M3 = sup,, |/(t)| < co. Now, we
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investigate the fractional integro-differential problem

D) = juk(OF D ul) + o) (O D (D (1))

+ £ (£ 10), (91)(8), KO D u(2)) (3)
with boundary condition #(0) = 0, where 11, 1 > 0 and «, 8,0, p, v € (0,1). Note that the
functions k, s and % are not necessarily continuous. Since the left side of equation (3)
is continuous, the right side so is as the problem (3) is a well-defined equation. For this

reason, we supposed continuity of the function f in Theorems 2.5 and 2.6 where equations
(1) and (2) are well defined.

Theorem 2.7 Let n(t) € L*°(I) and f : [0,1] x R3 — R be a function such that
6.0 £ (0, W) < 00 (] + =7 + ]

forallt € I and x,y,w,v,x’,y,w,V € R. Then the problem (3) has an approximate solution
whenever Az <1, where

1 1 1 i
Ag = (1 + (1 ~ ﬁ)2 + (1 _9)2(1 ~ p)2 + (1 ~ V)2>[M1Ml + /,Lz)»oMg +n (1 + Y0 +M3)].

Proof Consider the space H! endowed with the metric d(u,v) = ||u — v||, where
|| = ntlglx|u(t)| + nt16aIx|CFD‘3u(t)| + rrtlealx|CFD9 (CFD"u(t))| + Htlealx|CFD”u(t)|.
Define the map F : H' — H! by
(Fu)(t) = ao [ k(@) FDY (FDPu(t)) + 2 (s)()FD (FD u(t))
+f (& ule), (pu)(2), h(£) " D u(t)) ]
o Tk D (FDPu(9) + i ps) (O D (FD ()
+f(t, u(s), (pu)(s), h(s)CFD"u(s))] ds
for all t € I, where a, and b, introduced in Lemma 1.2. By using Lemma 2.2, we get

[1ak (DY (FDPu(e)) + o) (O)F D (F D (t)) + £ (& u(e), (910) (1), h()) F D" (1)) ]
~ [ak(®SF DY (FDPu(2)) + alps) () D (F D wi(e))
+f (£, v(0), (¢v) (@), W(£)F D" (1)) ]
< |[k(@®)]|FDY (CFDP (u(t) — v(©)))| + 12| (@s)(®) || D% (FD? (u(t) - v(1)))|
+ | (& u(®), (pu)(0), k()" D" u(t)) - f (£, v(2), ($v)(0), ()" D" v(t)) |
< My llu = vl + paroMyllu = vl +0* (lu = vl + yollu = vIl + Ms]|u— v])

= [Mi + paroMs + 0 (L + yo + Ms)]llu — v
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forall t € I and u, v € H'. Hence
|[(Fu)(8) = (FV)(®)] < [paMi + paroMy + 0" (L + yo + M3)|llu — vl = Asllu—v]|

for all t € I and u,v € H'. Also, we have

|“"DP (Fu - Fy)(#)] < (M + pahoMy + 1" (L + yo + My)]llu = v,

1
1-p)?
|“FD? (“FD* (Fu - Fv)(v))|

< m[ﬂlMl + taroMy + 0¥ (L+ yo + Ms) | |lu—v|,

and |“FDY(Fu—Fv)(t)| < ﬁ (M + prahoMy + 1% (1+ yo + M3)] |u—v|| forall u,v € H and
t € I. Hence, ||Fu — Fv|| < Alju—v| for all u,v € H'. Now, consider the maps g : [0, 00)° —
[0,00) and « : H' x H' — [0,00) defined by g(t1, b2, 83, ta, 5) = Az max{1, by, £3, 3 (4 + 15)}
and a(x,y) = 1 for all x,y € H'. One can check that g € R and F is a generalized a-
contraction. By using Theorem 1.3, F has an approximate fixed point which is an approx-

imate solution for the problem (3). O

Let k, s, h, g and g be bounded functions on [0,1] with M; = sup,; |k(£)| < oo, M, =
sup,; Is(2)] < 0o, M3 = sup,; |h(t)| < 00, My = sup,; |g(t)| < oo, and Ms = sup,; |g(t)| < oo.
Here, we investigate the fractional integro-differential problem

CED%u(t) = k() EDPu(t) + us(®)F 17 u(e)

+fi(t u(®), (pu)(2), h(t) I u(t), g(t) FD u(t))

+ /; fZ(S’M(S)r(QDM)(S)rq(t)CFDVM(S)) ds (4)

with boundary condition #(0) = 0, where A, u > 0 and «, B8, p,v,38, ¥ € (0,1). Note that the
maps k, s, i, g and g should be chosen such that the right side of equation (4) is continuous.

Theorem 2.8 Let &, &, &, &4, &, &}, and &} be nonnegative real numbers. Suppose that
£1:00,1] x R* - Rand f, : [0,1] x R® — R are integrable functions such that

A2y, w,v) =fi(6a,y W, V)| SElx—o| + &y -y | + &|lw—w| + E|v V|
and |f5(t,%,5,w) — (&, 5, W) <E&lx—x'| + &y — | + E|lw — W| for all real numbers x,

v, w, v, x,y andw and t € I. If Ay <1, then the problem (4) has an approximate solution,

M M
where A4 := max{ (l_lﬂ)z ) (1_15)2 ) (l_ly)z YA + Mo+ &1+ &y0 +EMs +Eu i +&[ + 500 +

; Ms ]
3(1-y)2

Proof Consider the space H! endowed with the metric d(u,v) = ||u — v||, where

||| = max{sup|u(t)|,sup|CFD’3u(t)|,sup|CFI”u(t) ,sup{CFI”u(t)|,
tel tel tel tel

sup | CEDdu(e) |, sup | CFpr u(t)| }
tel tel
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Define the map F : H' — H! by

(Fu)(t) = aq [Ak(t)CFDﬁu(t) + us(®) 1P u(t)
+fi(t u(®), (pu) (@), h(t) I u(t), g(t) F D u(t))

+ / fa(s u(s), (pu)(s), ()" D” u(s)) dS]
0

+ by [ft Ak(s)EDPu(s) + us(s)“E 1P u(s)
0
+ fi (s, 1(s), (pu)(s), () F I u(s), g(s)F D’ u(s))

+ / / So(r, u(r), (pu)(r), q(r)CFD”u(r)) dr ds] ,
0o Jo
where a, and b, are introduced in Lemma 1.2. By using Lemmas 2.2 and 2.3, we obtain
| [Ak(t)CFD’gu(t) + us(®)F I u(t) + fi(t, u(t), (pu) (@), () I' u(t), g()F D u(t))
+ / fo(s, uls), (pu)(s), g(£) " D" u(s)) dS]
0
- |:)»k(t)CFDﬁ v(t) + us@)FIPv(t) + fi (t, v(t), (@v)(t), () F I v(2), g () E DP V(t))

+ / F(s,v(), (9v)(s), g(6)F DY u(s)) dS]
0

< A|k(t)| |CFDﬂ (u(t) - V(t))| + ,u|s(t)| |CF1‘7 (u(t) - v(t))|
+ A (6 u(®), (pu)(®), h(t) I u(t), g(O) D’ u(t))
—fi(&,v(®), (@V)(@), h(6)F 1" v(2), g () F D (1)) |

- /O I (s, (), (0u)(5), () DY u(s)) = fo (s, v(s), (@v)(s), q(s)F D (s)) | ds

M;
<[ - ﬂ)zllu VIl + uMyllu = vil + & llu—v| + Eayollu — v + EsMs|lu - v||

el e =]+ Ehollu—v] + £ ﬂ}nu—vn
fa-op : 20 Ya-y)?

=|xr M1 M M M ’ " ’ M5
—[ a_pe M 2+ 81+ 50 +63 3+‘§4(1 5)? +& + 6 0+‘§3m]
X [lu—vl|
for all u,v € H' and t € I. Hence,
|(Fu)(t) - (Fv)(©)]

< aq | k()EDP (u(t) - v(t)) + us() <P (u(t) - v(t))

+ it u(t), (pu)(®), k(&) I u(t), g(6) F D u(t))
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— £ (& (), (@v)(0), (&) FI"v(8), g(£)F D’ (1))

+ /0 (o (s, us), (pu)(9),4(5) " DY us)) = fo (s, v(s), (@V)(s), 4(s) " DY V(s)) ) dis

+ fi (s, 1(s), (pu)(s), () F I us), g(s)F D’ u(s))
—fi(5,v(s), (¢v)(s), h(s) T " W(s), g(s) " D* W(s))

Ak(s)CFDP (u(s) - v(s)) + us(s)F1° (u(s) - v(s))

+ /0 (o (r u(r), (@u) (r), g(r)F DY u(r)) ) — fo (r, v(r), (V) (r), q(r)F D v(r)) dr

:

<a + UM + &+ &0 + Mz + Ey— M +§1/+$z/)~0+53/£
1-14) 1-y)?

[M
- la-s2

X |l —vl

. M
+ by /|: a-ppe + UM+ & + &y + &Mz + Ea———— + & + &

M,
(1-97
Ms
v )2}||u—v||ds

<[aq + by ][

M, My
T=p7 + UMy + 61+ &y +EMs + &4 —— a—op 5+ ko

ég(l )}Ilu vl = Au—v|

for all u,v € H'. Also by using Lemmas 2.2 and 2.3, we get

|“FDP Fu(t) - “*DP Fu(t)| < Allu v,

1- ﬂ)2

|“FD° Fu(t) — “*D°Fu(t)| < - 5)2A lw = vil, |“FDY Fu(t) — “FDY Fu(t)| < )2A lu v,
|CF 1P Fu(t) - *DPFy(t)| < A’ |lu—v| and |“F1"Fu(t) =¥ DV Fv(t)| < A’ ||lu— V|| for allu,ve H'
and ¢ € I. Hence, we obtain

1 1 1
Q-8 (1-8)?% (1-y)?

| Fu — Ev]| SmaX{ ]A/llu—VH = Agllu—vll

for all u,v € H'. Consider the maps g : [0, 00)®> — [0,00) and & : H! x H' — [0, 00) defined
by g(t1, 8, t3,ta, t5) = %(31&1 + 2ty + 4t3) and a(x, y) = 1 for all x,y € H'. One can check that
g € R and F is a generalized «-contraction. By using Theorem 1.3, F has an approximate
fixed point which is an approximate solution for the problem (4). O

Here, we provide three examples to illustrate our some main results.

Example2 1 Define the functions n € L*°([0,1]) and y, A : [0,1] x [0,1] — [0, 00) by n(t) =
~(Tt+6) "/ (t,s) = sin(1) and A(¢,s) = €. Then n* = e%, vo =sin(l) and g <e. Put a =
Con51der the problem

1
3

CED3 yy(t) = e~ Tt+0) [2t+u(t) + % /0 sin(1)u(s) ds + é /0 eu(s) ds] (5)
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with boundary condition #(0) = 0 and the function f(¢,x,y, w) = e 9 (2t + x + %y +
%w). Note that A; = n*(1 + yo + Ao) < 0.00926 < 1. By utilizing Theorem 2.5, (5) has an
approximate solution.

Example 2.2 Define the functions n € L*°([0,1]) and y, A : [0,1] x [0,1] — [0, 00) by n(t) =
e(“16 , y(t,s) =™ and A(t s) = log esnn(lt=si+1) Then p* = J6> vo < eand A <loge. Put
o= 2, 1 = 120, Uoy = 28, B = 3, 0 = 3, p=: and V= % Consider the functions k() =
sint, h(t) = tan~(¢), and s(¢) = - L whenever x = = e QN [0,1] with (m,n) =1 and s(¢) = 0
whenever x € Q°N[0,1] orx = 0. Then M = sup,(o1; [k(t)| = 1, M2 = sup,(oy; ()| =1 and

M3 = sup,o) |A(t)| = 7. Consider the fractional integro-differential problem
CE 1 CF
D? u(t) = 120 —— sin(¢) D3 u(t)

1 t .
+ % (/ log(esm(ln(rr|t—s|+1)))s(s) ds)CFDé (CFD%u(t))
0

+ e(;’m) |:t+ u(t) + fo teHu(s) ds+ tanl(t)CFD%u(t)} 6)

with boundary condition #(0) = 0. Put f(¢,x,y, w,v) = e(,’f—m)(t +x+y+w). Note that Az =
1+ (1_1‘3)2 + (1_9)21(1_0)2 + (1_1v)2)[u1M1 + MaAoMy + (1 + yo + Ms3)] < 0.5485 < 1. Then by
using Theorem 2.7, it implies that (6) has an approximate solution.

Example 2.3 Define the functions y,A : [0,1] x [0,1] — [0,00) by A(t,s) = ©— and
(t,s):O.ThenyO:OandA0<e Putoezz,ﬂ i 1 8—}1,)/ 1 J A= 200’“ 0,

=3
E1= 2,6 = 05, 4= 7050 &1 = 3350 & = 750 and & = 1. Let s be an arbltrary bounded
map, g(t) = tan~1(¢), h(t) = sin(¢) for all ¢ € I, k(t) = 1 whenever x € QN [0,1] and k(¢) =
whenever x € Q° N [0,1] and g(¢) = 0 whenever x € Q N [0,1] and g(¢) = 2 whenever
x € Q°N[0,1]. Then M; = sup,c (o [k(£)| =1, M, is a real number, M3 = sup,(o; |A(2)| = 1,
My = sup,(o1 1€(t)] = 2 and M5 = sup,(o 1) |9(¢)| = 5. Now, consider the well-defined frac-
tional integro-differential problem

CF DT u(t)

1 1 3 2 1 1 1 1
= — kO Dru(t) + —t + —u(t) + — sin(®)“FI12u(t) + — (1) F D2 u(t
300 (®) u()+40 +41u()+4881n() u()+400g() u(t)

.,./t 2 ul(s) + 1 /s e (r)dr + ! tan"t ED2 u(s) | d (7)
2 s
5 156" 320 40/, ¢ " 119 e

with boundary condition #(0) = 0. Put fi(¢t,x,y,w,v) = %t + &x + &y + Ew + &v and

falt,x,y,w) = %t +&x+ &y +&wforall t € Iand x,y,w,v € R. Note that

N 1 1 1
4 max{(l—ﬁ)z’(1—6)2’(1—)/)2}

[ M + UMs + &+ Exyo + E3M3 + £ Ma +E +ELN +g’£}
(- B2 MMz + 81+ 852Y0 +53M3 4(1 s o 240 31—y

<0.8451<1.
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Thus, taking into account Theorem 2.8 we conclude that the problem (7) has an approxi-

mate solution.
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