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where i = , , . . . , [� ] – . Here, � p is the p-Laplacian operator and D�
+ is the Caputo frac-

tional derivative,  < � � R, and the nonlinear function f � C([, ] × R,R) is given.
In [], Lu et al. studied the existence of non-negative solutions of a nonlinear fractional

boundary value problem with the p-Laplacian operator
�
��

��

D�
+(� p(D�

+u(t))) = f (t, u(t)), for  < t < ,
u() = u�() = u�() = ,
D�

+u() = D�
+u() = ,

where  < � � ,  < � � , and D�
+, D�

+ are the standard Riemann-Liouville fractional
derivatives. Green’s functions, the Guo-Krasnoselskii theorem, and the Leggett-Williams
fixed point theorems are used.

Boundary value problems with integral boundary conditions for ordinary differential
equations represent a very interesting and important class of problems. They include
two-point, three-point and multi-point boundary value problems as special cases. For an
overview of the literature on integral boundary value problems and symmetric solutions,
see [–] and the references therein.

In [], Zhi et al. studied the existence of positive solutions for nonlocal boundary value
problem of the fractional differential equations with p-Laplacian operator. The problem
is given in the following:

�
����

����

(� p(D�
+u(t)))�� = f (t, u(t), D�

+u(t)), for  < t < ,
u() = u��() = , u() =

� 
 g(s)u(s) ds,

(� p(D�
+u()))� = � (� p(D�

+u(� )))�,
� p(D�

+u()) = � (� p(D�
+u(� ))),

where  < �  � �  < ,  < � < ,  < � < � –  < ,  � � , �  < . D�
+ is the Caputo fractional

derivative of order � .
In [], Mahmudov and Unul studied the existence of the solutions of the fractional

differential equation with p-Laplacian operator and integral conditions is discussed. The
problem is given in the following:

�
�������

�������

D�
+� p(D�

+u(t)) = f (t, u(t), D�
+u(t)),

u() + µ u() = 	 
� 

 g(s, u(s)) ds,
u�() + µ u�() = 	 

� 
 h(s, u(s)) ds,

D�
+u() = ,

D�
+u() = 
 D�

+u(� ),

where D�
+, D�

+ are the Caputo fractional derivative operators with  < � < ,  < � < . µ ,
	 i (i = , ) are non-negative constants. f , g , h are continuous functions.

Motivated by the above work, we investigate the following integral boundary value prob-
lems (for short, BVP) of fractional differential equations with p-Laplacian:

�
�������

�������

D�
+� p(D�

+x(t)) = f (t, x(t), D�
+x(t)), t � (, )

(� p(D�
+x()))(i) = � p(D�

+x()) = , i = , , . . . , m – ,
x() =

� 
 g(s)x(s) ds,

x�() =
� 

 g(s)x(s) ds,
x(j)() = , j = , , . . . , n – ,

(.)
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where � p is the p-Laplacian operator,  < n –  < � < n,  < m –  < � < m, � – � > , and D�
+

and D�
+ are the Caputo fractional derivatives. gk � C([, ], [, +� )), k = , , f � C([, ] ×

[, +� ) × (–� , ], [, +� )) are given functions.
In this paper, a positive solution x = x(t) of BVP (.) means a solution of (.) satisfying

x(t) > , t � [, ].
Throughout this paper, we always assume that the following condition is satisfied.

(L) g(t) > g(t) � ,  �
� 

 g(s) ds,
� 

 g(s) ds < .

The organization of the paper is as follows. In Section , we present some necessary
definitions and lemmas which will be used to prove our main results. In Section , by using
the Avery-Peterson fixed point theorems, the results for the existence of multiple positive
solutions of BVP (.) are established. In Section , we give an example to demonstrate the
main result.

2 Preliminaries and lemmas
In this section, we give some definitions and basic lemmas that will be used and important
to us in the following.

Definition . (see []) The Riemann-Liouville integral of fractional order � >  of a func-
tion g is defined as

I �
+ g(t) :=


� (� )

� t


(t – s)� –g(s) ds.

Definition . (see []) The Caputo derivative of fractional order � >  of a function g is
defined as

D�
+g(t) =


� (n – � )

� t


(t – s)n–� –g(n)(s) ds,

where n is the smallest integer greater than or equal to � .

Definition . (see []) Let E be a real Banach space. A nonempty, closed, and convex set
P � E is a cone if the following two conditions are satisfied:

() if x � P and µ � , then µ x � P;
() if x � P and –x � P, then x = .
Every cone P � E induces the ordering in E given by x � x if and only if x – x � P.

Definition . (see []) The map � is said to be a continuous non-negative convex (con-
cave) function on a cone P of a real Banach space E provided that � : P � [, +� ) is
continuous and

�
�
tx + ( – t)y

	
� (� ) t� (x) + ( – t)� (y), x, y � P, t � [, ].

Lemma . (see []) Let � > , assume that u, D�
+ u � C(, ) 	 L(, ), then

I �
+D�

+u(t) = u(t) + C + Ct + Ct + · · · + Cn–tn–
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holds for some Ci � R, i = , , , . . . , n – ,where n is the smallest integer greater than or
equal to � .

Lemma . (see []) The Caputo fractional derivative of order n –  < � < n for t� is given
by

D�
+t� =



� (� +)

� (� –� +) t� –� , � > n – ,
, � � { , , . . . , n – }.

Lemma . Let h � C[, ] and  < m –  < � < m. Then the BVP



D�
+ u(t) = h(t),  < t < ,

u() = u(i)() = , i = , , . . . , m – ,
(.)

has an unique solution

u(t) = –
� 


H(t, s)h(s) ds, (.)

where

H(t, s) =


� (� )



( – s)� – – (t – s)� –,  � s � t � ,
( – s)� –,  � t � s � .

(.)

Proof From (.) and Lemma ., we have

u(t) =


� (� )

� t


(t – s)� –h(s) ds + C + Ct + Ct + · · · + Cm–tm–. (.)

Since u(i)() =  (i = , , . . . , m – ), we have C = C = · · · = Cm– =  and

u() =


� (� )

� 


( – s)� –h(s) ds + C. (.)

Combined with u() = , we know

C = –


� (� )

� 


( – s)� –h(s) ds.

Thus

u(t) =


� (� )

� t


(t – s)� –h(s) ds –


� (� )

� 


( – s)� –h(s) ds

=


� (� )

� t



�
(t – s)� – – ( – s)� –	 h(s) ds

–


� (� )

� 

t
( – s)� –h(s) ds

= –
� 


H(t, s)h(s) ds,

where H(t, s) is given by (.).
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The proof is completed. �

Lemma . Assume (L) holds, let y � C[, ] and  < n –  < � < n,  < m –  < � < m. Then
the following boundary value problems:

�
����

����

D�
+ x(t) = y(t),  < t < ,

x(j)() = , j = , , . . . , n – ,
x() =

� 
 g(s)x(s) ds,

x�() =
� 

 g(s)x(s) ds,

(.)

has an unique solution

x(t) = –
� 


G(t, s)y(s) ds (.)

and

D�
+x(t) =


� (� – � )

� t


(t – s)� –� –y(s) ds, (.)

where

G(t, s) = G(t, s) + G(t, s), (.)

G(t, s) =


� (� )



( – s)� – – (t – s)� –,  � s � t � ,
( – s)� –,  � t � s � ,

(.)

G(t, s) = 
�

P(t)
� 


g(� )G(� , s) d� + Q(t)

� 


g(� )G(� , s) d�

�
, (.)

here

 – = ( – M)( – N) + N( – M), (.)

P(t) =  – N + Nt, Q(t) = M –  + ( – M)t, (.)

M =
� 


g(s) ds, M =

� 


sg(s) ds, (.)

N =
� 


g(s) ds, N =

� 


sg(s) ds. (.)

Proof From Lemma ., considering BVP (.), we have

x(t) =


� (� )

� t


(t – s)� –y(s) ds + C + Ct + Ct + · · · + Cn–tn–.

Because x(j)() =  (j = , , . . . , n – ), we have C = C = · · · = Cn– = , and

x() =


� (� )

� 


( – s)� –y(s) ds + C + C.
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From the second condition of BVP (.), we have

� 


g(s)x(s) ds =


� (� )

� 


( – s)� –y(s) ds + C + C. (.)

From the last condition of BVP (.), we have

C = x�() =
� 


g(s)x(s) ds. (.)

By (.) and (.), we obtain

C =
� 


g(s)x(s) ds –

� 


g(s)x(s) ds –


� (� )

� 


( – s)� –y(s) ds. (.)

So

x(t) =


� (� )

� t


(t – s)� –y(s) ds + C + Ct

=


� (� )

� t


(t – s)� –y(s) ds +

� 


g(s)x(s) ds –

� 


g(s)x(s) ds

–


� (� )

� 


( – s)� –y(s) ds + t

� 


g(s)x(s) ds

=


� (� )

� t



�
(t – s)� – – ( – s)� –	 y(s) ds –


� (� )

� 

t
( – s)� –y(s) ds

+
� 


g(s)x(s) ds –

� 


g(s)x(s) ds + t

� 


g(s)x(s) ds

= –
� 


G(t, s)y(s) ds + A – A + tA, (.)

where G(t, s) is given in (.), and

A =
� 


g(s)x(s) ds,

A =
� 


g(s)x(s) ds.

In view of (.), we get

g(t)x(t) = –g(t)
� 


G(t, s)y(s) ds + Ag(t) – Ag(t) + tAg(t). (.)

Integrating (.) from  to , we obtain

A =
� 


g(s)x(s) ds

= –
� 


g(s)

� � 


G(s, � )y(� ) d�

�
ds
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+ A

� 


g(s) ds – A

� 


g(s) ds + A

� 


sg(s) ds

= I + AM – AM + AM, (.)

where M and M are given in (.), and

I = –
� 


g(s)

� � 


G(s, � )y(� ) d�

�
ds = –

� 



� � 


g(s)G(s, � ) ds

�
y(� ) d� .

Similarly, we obtain

A =
� 


g(s)x(s) ds

= –
� 


g(s)

� � 


G(s, � )y(� ) d�

�
ds

+ A

� 


g(s) ds – A

� 


g(s) ds + A

� 


sg(s) ds

= I + AN – AN + AN, (.)

where N and N are given in (.), and

I = –
� 


g(s)

� � 


G(s, � )y(� ) d�

�
ds = –

� 



� � 


g(s)G(s, � ) ds

�
y(� ) d� .

From (.) and (.), we get

A =
�
I(M – M) + I( + N – N)

	
 ,

A =
�
I( – M) + IN

	
 ,

where  – is given in (.). Hence,

x(t) = –
� 


G(t, s)y(s) ds + A – A + tA

= –
� 


G(t, s)y(s) ds + 

�
I(M –  + t – Mt) + I( – N + Nt)

	

= –
� 


G(t, s)y(s) ds +  IP(t) +  IQ(t)

= –
� 


G(t, s)y(s) ds –

� 


 P(t)

� � 


g(� )G(� , s) d�

�
y(s) ds

–
� 


 Q(t)

� � 


g(� )G(� , s) d�

�
y(s) ds

= –
� 


G(t, s)y(s) ds –

� 



�

P(t)
� 


g(� )G(� , s) d�

+ Q(t)
� 


g(� )G(� , s) d�

�
y(s) ds
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= –
� 


G(t, s)y(s) ds –

� 


G(t, s)y(s) ds

= –
� 


G(t, s)y(s) ds,

where G(t, s) is given in (.) and P(t), Q(t) are given in (.).
On the other hand, in view of (.), because m –  < � < � –  < n – , by Lemma ., we

have

D�
+x(t) = D�

+

�


� (� )

� t


(t – s)� –y(s) ds + C + Ct

�

= D�
+

�
I �

+y(t) + C + Ct
	

= D�
+I �

+y(t) + D�
+(C) + D�

+(Ct)

= D�
+I �

+y(t)

= I � –�
+ y(t)

=


� (� – � )

� t


(t – s)� –� –y(s) ds. (.)

The proof is completed. �

Lemma . BVP (.) equivalent to the following integral equation:

x(t) =
� 


G(t, s)� q

� � 


H(s, � )f

�
� , x(� ), D�

+x(� )
	

d�
�

ds (.)

and

D�
+x(t) = –


� (� – � )

� t


(t – s)� –� –� q

� � 


H(s, � )f

�
� , x(� ), D�

+x(� )
	

d�
�

ds, (.)

where H(t, s) and G(t, s) are given in (.) and (.).

Proof From Lemma . and Lemma ., let y(t) = � q(u(t)), h(t) = f (t, x(t), D�
+x(t)), we have

y(t) = � q
�
u(t)

	
= � q

�
–

� 


H(t, s)f

�
s, x(s), D�

+x(s)
	

ds
�

= –� q

� � 


H(t, s)f

�
s, x(s), D�

+x(s)
	

ds
�

.

Immediately we obtain

x(t) = –
� 


G(t, s)y(s) ds =

� 


G(t, s)� q

� � 


H(s, � )f

�
� , x(� ), D�

+x(� )
	

d�
�

ds.

From (.), we have (.).
The proof is completed. �

Lemma . Assume (L) holds, then the function H(t, s) defined by (.) and the function
G(t, s) defined by (.) satisfies
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() H(t, s) �  is continuous for all t, s � [, ];
() H(t, s) � H(s, s) for all t, s � [, ];
() G(t, s) �  is continuous for all t, s � [, ].

Proof () From (.), it is easy to show that H(t, s) is continuous on [, ] × [, ] and ob-
viously, H(t, s) � , for s � t.

For  � s � t � , we have

( – s)� – – (t – s)� – = ( – s)� –
�

 –
�

t – s
 – s

� � –�
� .

By (.), we know H(t, s) � , t, s � [, ], and H(t, s) > , t, s � (, ).
() For  � s � t � , we have

H(t, s) = ( – s)� – – (t – s)� – � ( – s)� – = H(s, s)

and for s � t, H(t, s) = H(s, s), so that H(t, s) � H(s, s), for all t, s � [, ].
() From (.), we know G(t, s) = G(t, s) + G(t, s). Firstly, from (.), similarly, we can

obtain G(t, s) � , t, s � [, ], and G(t, s) > , t, s � (, ). On the other hand, from (L),
we know, for t � (, ),

g(t) > tg(t) > tg(t)

and

 >
� 


g(s) ds >

� 


sg(s) ds >

� 


sg(s) ds > ,

 >
� 


g(s) ds >

� 


g(s) ds >

� 


sg(s) ds > .

That implies

 > M > M > N > ,  > M > N > N > . (.)

Therefore

 – = ( – M)( – N) + N( – M) > .

From (L) and G(t, s) � , we know

� G(t, s)
� t

= 
�

N

� 


g(� )G(� , s) d� + ( – M)

� 


g(� )G(� , s) d�

�
> , (.)

which implies that G(t, s) is a monotone increasing function with respect to t � [, ].
So, from (.), we have

G(t, s) � G(, s) = 
�

P()
� 


g(� )G(� , s) d� + Q()

� 


g(� )G(� , s) d�

�

= 
�

( – N)
� 


g(� )G(� , s) d� + (M – )

� 


g(� )G(� , s) d�

�
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= 
� � 



�
( – N)g(� ) + (M – )g(� )

	
G(� , s) d�

�

� 
� � 



�
( – N)g(� ) + (M – )g(� )

	
G(� , s) d�

�

=  (M – N)
� � 


g(� )G(� , s) d�

�

� .

So G(t, s) � . Hence, G(t, s) � .
The proof is completed. �

Lemma . Let � � (, 
 ), denote I� = [, � ] and �  =  – ( �

–� )� –, then

min
t� I�

G(t, s) � � G(s, s) = �  max
t� [,]

G(t, s). (.)

Proof For  � s < t �  and t � I� ,

G(t, s) = ( – s)� – – (t – s)� – � ( – s)� – = G(s, s)

and

G(t, s)
G(s, s)

=
( – s)� – – (t – s)� –

( – s)� –

=  –
�

t – s
 – s

� � –

�  –
�

�
 – s

� � –

�  –
�

�
 – �

� � –

= �  > . (.)

For s � t and t � I� ,

G(t, s) = G(s, s) >
�

 –
�

�
 – �

� � –�
G(s, s) = � G(s, s). (.)

Therefore,

min
t� I�

G(t, s) � � G(s, s).

The proof is completed. �

Lemma . Assume (L) holds, then the function G(t, s) satisfies the following properties:
() G(t, s) � G(, s) = maxt� [,] G(t, s);
() mint� I� G(t, s) � �  maxt� [,] G(t, s), where  < �  = M–N

–N+N
< .
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Proof From Lemma . and (.), we obtain G(t, s) >  and

max
t� [,]

G(t, s) = G(, s)

= 
�

( – N + N)
� 


g(� )G(� , s) d� + (M – M)

� 


g(� )G(� , s) d�

�

and

min
t� I�

G(t, s) = G(, s)

= 
�

( – N)
� 


g(� )G(� , s) d� + (M – )

� 


g(� )G(� , s) d�

�

� .

Furthermore,

G(, s)
G(, s)

=
( – N)

� 
 g(� )G(� , s) d� + (M – )

� 
 g(� )G(� , s) d�

( – N + N)
� 

 g(� )G(� , s) d� + (M – M)
� 

 g(� )G(� , s) d�

>
( – N)

� 
 g(� )G(� , s) d� + (M – )

� 
 g(� )G(� , s) d�

( – N + N)
� 

 g(� )G(� , s) d� + (M – M)
� 

 g(� )G(� , s) d�

>
( – N + M – )

� 
 g(� )G(� , s) d�

( – N + N)
� 

 g(� )G(� , s) d�

=
M – N

 – N + N

= � 

and

 < �  =
M – N

 – N + N
<

M – N

 – N
< .

Hence,

min
t� I�

G(t, s) � � G(, s).

The proof is completed. �

From Lemma . and Lemma ., we can easily show that the following result holds.

Lemma .

min
t� I�

G(t, s) � �
�
G(s, s) + G(, s)

	
and G(t, s) � G(s, s) + G(, s),

where � = min{� , � }.
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3 Main results
In this section we deduce the existence of positive solutions to BVP (.) by using the well-
known Avery-Peterson fixed point theorem; see [].

Let � and � be non-negative continuous convex functionals on P, � be a non-negative
continuous concave functional on P, and � be a non-negative continuous functional on P.
For a, b, c, d > , we define the following convex set:

P(� ; d) =


x � P : � (x) < d
�

,

P(� , � ; b, d) =


x � P : b � � (x), � (x) � d
�

,

P(� , � , � ; b, c, d) =


x � P : b � � (x), � (x) � c, � (x) � d
�

,

and a closed set

P(� , � ; a, d) =


x � P : a � � (x), � (x) � d
�

.

Lemma . (see []) Let P be a cone in a real Banach space E. Let � and � be non-negative
continuous convex functionals on P, � be a non-negative continuous concave functional
on P, and � be a non-negative continuous functional on P satisfying � (� x) � �� (x) for
 � � � , such that, for some positive numbers M and d,

� (x) � � (x), 
 x
 � M� (x) (.)

for all x � P(� ; d). Suppose

T : P(� ; d) � P(� ; d)

is completely continuous and there exist positive numbers a, b, and c with a < b such that
(H) {x � P(� , � , � ; b, c, d) : � (x) > b} �= Ø, and � (x) > b for x � P(� , � , � ; b, c, d);
(H) � (Tx) > b for x � P(� , � ; b, d) with � (Tx) > c;
(H)  /� P(� , � ; a, d) and � (Tx) < a for x � P(� , � ; a, d) with � (x) = a.

Then T has at least three fixed point x, x, x � P(� ; d) such that

� (xi) � d, i = , , ; � (x) > b, a < � (x), � (x) < b; � (x) < a.

Let E = {x � C[, ] : D�
+x � C[, ], x�() =

� 
 g(s)x(s) ds, x(j)() = , j = , , . . . , m – } be

endowed with the norm


 x
 = max
�

max
t� [,]

�
�x(t)

�
� , max

t� [,]

�
�D�

+x(t)
�
�
�

,

then E is a Banach space.
We define a set P � E by

P =
�

x � E : x(t) � , D�
+x(t) � , min

t� I�
x(t) � � max

t� [,]
x(t)

�
.
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For x, y � P and k, k � , it is easy to obtain

kx(t) + ky(t) � , D�
+

�
kx(t) + ky(t)

	
= kD�

+x(t) + kD�
+y(t) � 

and

min
t� I�


kx(t) + ky(t)

�
� min

t� I�


kx(t)

�
+ min

t� I�


ky(t)

�

� � max
t� [,]


kx(t)

�
+ � max

t� [,]


ky(t)

�

= �
�

max
t� [,]


kx(t)

�
+ max

t� [,]


ky(t)

� �

� � max
t� [,]


kx(t) + ky(t)

�
.

Thus, for x, y � P and k, k � , kx(t) + ky(t) � P. And if x � P, x �= , it is easy to prove
that –x /� P. Therefore, P is a cone in E.

Let T : P � E be the operator defined by

Tx(t) :=
� 


G(t, s)� q

� � 


H(s, � )f

�
� , x(� ), D�

+x(� )
	

d�
�

ds.

Then we have the following conclusion.

Lemma . Assume (L) holds, then T : P � P is a completely continuous operator.

Proof For x � P, from the non-negativity and continuity of G(t, s), H(t, s), f (t, x(t), D�
+x(t)),

we know that T is a continuous operator and Tx(t) � . By (.), we have

D�
+Tx(t) = –


� (� – � )

� t


(t – s)� –� –� q

� � 


H(s, � )f

�
� , x(� ), D�

+x(� )
	

d�
�

ds � .

Furthermore,

min
t� I�

Tx(t) = min
t� I�

� 


G(t, s)� q

� � 


H(s, � )f

�
� , x(� ), D�

+x(� )
	

d�
�

ds

=
� 


min
t� I�

G(t, s)� q

� � 


H(s, � )f

�
� , x(� ), D�

+x(� )
	

d�
�

ds

�
� 


� max

t� [,]
G(t, s)� q

� � 


H(s, � )f

�
� , x(� ), D�

+x(� )
	

d�
�

ds = � max
t� [,]

Tx(t).

Thus, T(P) � P.
Next, we show that T is uniformly bounded.
Let D � P be bounded, i.e., there exists a positive constant r such that 
 x
 � r, for all

x � D. Let M = maxt� [,],x� D |f (t, x(t), D�
+x(t))| +  > , for x � D, we have

�
�Tx(t)

�
� =

�
�
�
�

� 


G(t, s)� q

� � 


H(s, � )f

�
� , x(� ), D�

+x(� )
	

d�
�

ds
�
�
�
�

�
� 



�
�G(t, s)

�
�� q

� � 



�
�H(s, � )

�
�
�
�f

�
� , x(� ), D�

+x(� )
	 �� d�

�
ds
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� � q(M)
� 


G(t, s)� q

� � 


H(s, � )

�
ds

� � q(M)
� 



�
G(s, s) + G(, s)

	
� q

� � 


H(s, � )

�
ds := M.

Furthermore, for any x � D and t � [, ], we have

�
�D�

+Tx(t)
�
� =

�
�
�
�–


� (� – � )

� t


(t – s)� –� –� q

� � 


H(s, � )f

�
� , x(� ), D�

+x(� )
	

d�
�

ds
�
�
�
�

�


� (� – � )

� t


(t – s)� –� –� q

� � 


H(s, � )f

�
� , x(� ), D�

+x(� )
	

d�
�

ds

� � q(M)


� (� – � )

� 


( – s)� –� –� q

� � 


H(s, � ) d�

�
ds := M.

So 
 Tx
 � max{M, M}, which implies T is uniformly bounded.
In the following of the proof, we will prove that T is equicontinuous. Since G(t, s) is

continuous on [, ] × [, ], it is uniformly continuous on [, ] × [, ]. Thus, for any
� > , there exists a constant   > , such that

�
�G(t, s) – G(t, s)

�
� <

�

� q(M)
� 

 � q(
� 

 H(s, � ) d� ) ds

for t, t � [, ] with |t, t| <  . Therefore,

�
�Tx(t) – Tx(t)

�
� =

�
�
�
�

� 


G(t, s)� q

� � 


H(s, � )f

�
� , x(� ), D�

+x(� )
	

d�
�

ds

–
� 


G(t, s)� q

� � 


H(s, � )f

�
� , x(� ), D�

+x(� )
	

d�
�

ds
�
�
�
�

�
� 



�
�G(t, s) – G(t, s)

�
�� q

� � 


H(s, � )f

�
� , x(� ), D�

+x(� )
	

d�
�

ds

<
�

� q(M)
� 

 � q(
� 

 H(s, � ) d� ) ds
� q(M)

� 


� q

� � 


H(s, � ) d�

�
ds

= � .

On the other hand, for  < m –  < � < � –  < n – , t� –� is uniformly continuous on [, ].
We denote M = � q(M)

(� –� )� (� –� ) . Then there exists a constant  <   < ( �
M

)(� –� )– , such that,
for any  < t < t <  and |t – t| <  , we have

�
�t� –�

 – t� –�


�
� <

�
M

.

Thus, from Lemma ., we have

�
�D�

+Tx(t) – D�
+Tx(t)

�
�

=
�
�
�
�


� (� – � )

� t


(t – s)� –� –� q

� � 


H(s, � )f

�
� , x(� ), D�

+x(� )
	

d�
�

ds

–


� (� – � )

� t


(t – s)� –� –� q

� � 


H(s, � )f

�
� , x(� ), D�

+x(� )
	

d�
�

ds
�
�
�
�
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�


� (� – � )

� �
�
�
�

� t



�
(t – s)� –� – – (t – s)� –� –	

× � q

� � 


H(s, � )f

�
� , x(� ), D�

+x(� )
	

d�
�

ds
�
�
�
�

+
�
�
�
�

� t

t

(t – s)� –� –� q

� � 


H(s, � )f

�
� , x(� ), D�

+x(� )
	

d�
�

ds
�
�
�
�

�

�
� q(

� 
 MH(� , � ) d� )

� (� – � )

� �
�
�
�

� t



�
(t – s)� –� – – (t – s)� –� –	 ds

�
�
�
�

+
�
�
�
�

� t

t

(t – s)� –� – ds
�
�
�
�

�

= M

� �
�
�
�

� t


d

�
(t – s)� –� – (t – s)� –� �

�
�
�
� +

�
�
�
�

� t

t

d(t – s)� –�

�
�
�
�

�

= M
� �� – (t – t)� –� – t� –�

 + t� –�


�
� +

�
�(t – t)� –�

�
� 	

� M
� ��(t – t)� –�

�
� +

�
�t� –�

 – t� –�


�
�	

< M

�

��

�
M

� (� –� )– � � –�

+
�

M

�

= � .

Hence, T is equicontinuous.
According to the Arzelà-Ascoli theorem, T is a completely continuous operator.
The proof is completed. �

Denote the positive constants

J =
� 



�
G(s, s) + G(, s)

	
� q

� � 


H(s, � ) d�

�
ds,

J =


� (� – � )

� 


( – s)� –� –� q

� � 


H(s, � ) d�

�
ds,

and

J =
� 



�
G(s, s) + G(, s)

	
� q

� � �


H(s, � ) d�

�
ds.

Define the functionals as follows:

� (x) = 
 x
 , � (x) = � (x) = max
t� [,]

�
�x(t)

�
� , � (x) = min

t� I�

�
�x(t)

�
� ,

then � and � are continuous non-negative convex functionals, � is a continuous non-
negative concave functional, � is a continuous non-negative functional, and

�� (x) � � (x) � � (x) = � (x), 
 x
 � M� (x),

where M = . Therefore, condition (.) in Lemma . is satisfied.
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Theorem . Suppose (L) holds, and there exist constants  < a, b, d with a < b <
� d min{ J

J
, J

J
} and c = b

� , such that

(L) f (t, x, y) � min{� p( d
J

), � p( d
J

)}, (t, x, y) � [, ] × [, d] × [–d, ];
(L) f (t, x, y) > � p( b

� J
), (t, x, y) � [, � ] × [b, b

� ] × [–d, ];
(L) f (t, x, y) < � p( a

J
), (t, x, y) � [, ] × [, a] × [–d, ].

Then BVP (.) has at least three positive solutions x, x, x, satisfying


 xi
 � d (i = , , ), (.)

min
t� I�

�
�x(t)

�
� > b, a < min

t� I�

�
�x(t)

�
� , max

t� [,]

�
�x(t)

�
� < b, max

t� [,]

�
�x(t)

�
� < a. (.)

Proof It is clear that the fixed points of operator T are equivalent the solutions of BVP
(.). For x � P(� ; d), we have

� (x) = 
 x
 � d,

this implies

max
t� [,]

�
�x(t)

�
� � d, max

t� [,]

�
�D�

+x(t)
�
� � d,

then

 � x(t) � d, –d � D�
+x(t) � .

By (L), we have

max
t� [,]

�
�Tx(t)

�
� = max

t� [,]

� 


G(t, s)� q

� � 


H(s, � )f

�
� , x(� ), D�

+x(� )
	

d�
�

ds

�
� 



�
G(s, s) + G(, s)

	
� q

� � 


H(s, � )f

�
� , x(� ), D�

+x(� )
	

d�
�

ds

�
� 



�
G(s, s) + G(, s)

	
� q

�
� p

�
d
J

� � 


H(s, � ) d�

�
ds

=
d
J

� 



�
G(s, s) + G(, s)

	
� q

� � 


H(s, � ) d�

�
ds

= d

and

max
t� [,]

�
�D�

+Tx(t)
�
� = max

t� [,]

�
�
�
�

–
� (� – � )

� t


(t – s)� –� –

× � q

� � 


H(s, � )f

�
� , x(� ), D�

+x(� )
	

d�
�

ds
�
�
�
�

�


� (� – � )

� 


( – s)� –� –� q

�
� p

�
d
J

� � 


H(s, � ) d�

�
ds
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=
d
J


� (� – � )

� 


( – s)� –� –� q

� � 


H(s, � ) d�

�
ds

= d,

so

� (Tx) = 
 Tx
 = max
�

max
t� [,]

�
�Tx(t)

�
� , max

t� [,]

�
�D�

+Tx(t)
�
�
�

� d.

Therefore T : P(� ; d) � P(� ; d).
Let x(t) = b

� , x(t) � P(� , � , � ; b, c, d) and � ( b
� ) > b, which implies that


x � P(� , � , � ; b, c, d) : � (x) > b

�
�= ∅.

For x � P(� , � , � ; b, c, d), we know that b � x(t) � c = b
� for t � I� and –d � D�

+x(t) � .
In view of (L),

� (Tx) = min
t� I�

�
�Tx(t)

�
�

= min
t� I�

� 


G(t, s)� q

� � 


H(s, � )f

�
� , x(� ), D�

+x(� )
	

d�
�

ds

>
� 


�

�
G(s, s) + G(, s)

	
� q

� � �


H(s, � )� p

�
b

� J

�
d�

�
ds

= �
b

� J

� 



�
G(s, s) + G(, s)

	
� q

� � �


H(s, � ) d�

�
ds

= b. (.)

So � (Tx) > b for all x � P(� , � , � ; b, c, d). Hence, the condition (H) of Lemma . is satisfied.
By (.), for all x � P(� , � ; b, d) with � (Tx) > c = b

� , we have

� (Tx) � �� (Tx) > � c = �
b
�

= b.

Thus, the condition (H) of Lemma . holds.
Because of � () =  < a, then  /� P(� , � ; a, d). For x � P(� , � ; a, d) with � (x) = a, we

know � (x) � d. It means that maxt� [,] x(t) = a and –d � D�
+x(t) � .

From (L), we can obtain

� (Tx) = max
t� [,]

�
�Tx(t)

�
�

= max
t� [,]

� 


G(t, s)� q

� � 


H(s, � )f

�
� , x(� ), D�

+x(� )
	

d�
�

ds

<
� 



�
G(s, s) + G(, s)

	
� q

� � 


H(s, � )� p

�
a
J

�
d�

�
ds

=
a
J

� 



�
G(s, s) + G(, s)

	
� q

� � 


H(s, � ) d�

�
ds

= a.

Therefore, the condition (H) of Lemma . holds.
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To sum up, the conditions of Lemma . are all verified. Hence, BVP (.) has at least
three positive solutions x, x, x satisfying (.) and (.).

The proof is completed. �

4 Example
In this section, we present an example to illustrate the main result. Consider the following
boundary value problems:

�
��������

��������

D


+� 


(D



+x(t)) = f (t, x(t), D



+x(t)), t � (, ),

(� 


(D


+x()))� = � 


(D



+x()) = ,

x() =
� 

 sx(s) ds,
x�() =

� 
 sx(s) ds,

x��() = ,

(.)

where � = 
 , � = 

 , p = 
 , g(t) = t, g(t) = t, and

f (t, x, y) =



tan(.t) + .ex/x + sin(y),  � x � ,
tan(.t) + sin(y) + ,  < x � ,.

(.)

Choose a = , b = , d = ,, � = 
 . By a simple computation, we have

�  =



, �  =



, � =




, r = ,

M =



, M =



, N =



, N =



,  =



,

J = ., J = ., J = ..

We can check that the nonlinear term f (t, x, y) satisfies

(L) f (t, x, y) � min{� p( d
J

), � p( d
J

)}  ., (t, x, y) � [, ] × [, ,] × [–,, ];
(L) f (t, x, y) > � p( b

� J
)  ., (t, x, y) � [, 

 ] × [, ] × [–,, ];
(L) f (t, x, y) < � p( a

J
)  ., (t, x, y) � [, ] × [, ] × [–,, ].

Then all assumptions of Theorem . are satisfied. Thus, BVP (.) has at least three pos-
itive solutions x, x, x, satisfying


 xi
 � , (i = , , ), (.)

min
t� I�

|x| > ,  < min
t� I�

|x|, max
t� [,]

|x| < , max
t� [,]

|x| < . (.)
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