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Abstract
The concern of the paper is nonconstant positive solutions of a class of Lotka-Volterra
competition systems over 1D domains. We prove the existence of a positive
monotonous solution to the shadow system for each small diffusion rate ε > 0. Our
theoretical results provide a foundation for further theoretical analysis on the shadow
system and give insights on how diffusion and advection rates affect the pattern
formation in the advective Lotka-Volterra competition systems. The second part of
this paper includes numerical simulations of the nontrivial patterns to the shadow
system and its original model. It is demonstrated that nontrivial patterns can develop
from small perturbations of the homogeneous solution. Our numerics suggest that
this system admits very interesting and complicated spatial-temporal dynamics even
over 1D domains.
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1 Introduction
This paper is concerned with the following boundary value problem with integral con-
straint:

⎧
⎪⎪⎨

⎪⎪⎩

εv′′
ε + (a – bλεe–r�(vε ) – cvε)vε = , x ∈ (, L),

∫ L
 (a – bλεe–r�(vε ) – cvε)e–r�(vε ) dx = ,

vε(x) > , x ∈ (, L); v′
ε() = v′

ε(L) = ,

(.)

where ε is a positive constant, vε is a function of x, and λε is an unknown constant. Pa-
rameters ai, bi, ci, i = , , and r are positive constants, and � is a smooth function. System
(.) is the D shadow system to the following model:

⎧
⎪⎪⎨

⎪⎪⎩

∇ · (d∇u + χuφ(v)∇v) + (a – bu – cv)u = , x ∈ �,

d�v + (a – bu – cv)v = , x ∈ �,

∂νu = ∂νv = , x ∈ ∂�,

(.)
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which was proposed in [] to study the aggregation phenomenon of two competing species
subject to Lotka-Volterra kinetics. Here � ⊂R

N , N ≥ , is a bounded domain with piece-
wise smooth boundary ∂�, and ν is the unit outer normal on the boundary. See [] for the
derivation of this model and biological justifications for the system parameters.

System (.) serves as the shadow system of (.) on the asymptotic behaviors of (u, v) in
the limit of large advection rate χ , and it admits spatial structures such as spikes, transition
layers, and so on. To demonstrate our motivation for the study of (.), we first recall the
following results on (.) established in [] for � = (, L). Let (ui, vi) be positive solutions
of (.) with (d,i, d,i,χi) = (d, d,χ ). Suppose that χi → ∞, d,i → d ∈ (,∞), and χi

d,i
=

ri → r ∈ (,∞) as i → ∞. It is proved in Theorem . in [] that there exists a nonnegative
constant λ∞ such that

uieri�(vi) → λ∞ uniformly on [, L],

where

�(s) =
∫ s


φ(r) dr;

moreover, after passing to a subsequence if necessary, as i → ∞,

(ui, vi) → (
λ∞e–r�(v∞), v∞

)
in C([, L]

) × C([, L]
)
,

where v∞ = v∞(x) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

dv′′∞ + (a – bλ∞e–r�(v∞) – cv∞)v∞ = , x ∈ (, L),
∫ L

 (a – bλ∞e–r�(v∞) – cv∞)e–r�(v∞) dx = ,

v′∞() = v′∞(L) = .

(.)

Here v∞(x) is a nonnegative function of x. Since small diffusion rate d supports a non-
trivial solution of (.), we denote d = ε and put (v∞,λ∞) = (vε ,λε), and then (.) be-
comes (.).

In this paper, we investigate the existence of a nonconstant positive solution to system
(.). To this end, we analyze the global bifurcation properties of system (.) and show that
the global continuum of the first branch must be noncompact in certain Banach spaces. In
particular, we prove that, for each small ε > , (.) always admits a nonconstant positive
solution vε(x), which is monotone in (, L); see Theorem .. The global bifurcation is
important especially when nonconstant positive solutions are concerned, and our results
provide a foundation for further analysis on the shadow system (.), compared to the local
branches, which have been investigated in detail in [].

From the view point of mathematical modeling, a fundamental problem in mathemat-
ical ecology is to study the spatial-temporal evolutions of mutually interacting species.
In particular, one of the most interesting phenomena is the well-observed segregation
of species through interspecific competition. It is well known that the classical diffu-
sive Lotka-Volterra competition system (i.e., (.) with χ = ) only admits constant stable
steady states except when � is nonconvex and the diffusion rates di are large [–]. We
refer to [] for further discussions. In order to take into account population pressures due
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to the presence of interacting species, various cross-diffusion models have been proposed
and extensively studied over the past few decades. One celebrated system was proposed by
Shigesada, Kawasaki, and Teramoto [] in , now often referred to as the SKT model,
and it can be used to describe the aforementioned segregation phenomena. We refer to
[–] for works on the SKT competition model.

It is necessary to point out that the process of cross-diffusion is very similar to that
of chemotaxis, in which cellular organisms direct their dispersals toward or against the
concentration gradient of stimulating chemicals in the environment. The mathematical
modeling of chemotaxis dates back to the pioneering works of Keller and Segel []. Very
recently, in [] and [], there was independently proposed and studied the Keller-Segel
type chemotaxis model (.), for which it is assumed that species u takes a combination of
random and directed dispersal strategy, whereas species v only disperses randomly. In par-
ticular, both papers investigated the existence of nontrivial solutions to (.) through its
shadow system, and transition layer and boundary spike solutions to (.) have been estab-
lished. These nontrivial positive solutions to (.) describe the coexistence and segregation
of the competing species in the limit of large diffusion rate d and advection rate χ .

To illustrate how nonconstant positive solutions to (.) are established in [] and provide
necessary settings for our coming analysis, we first note that (.) has a unique positive
constant solution

(v̄, λ̄) =
(

ab – ab

bc – bc
,

ab – ab

bc – bc
e–r�(v̄)

)

,

provided that

c

c
<

a

a
<

b

b
or

b

b
<

a

a
<

c

c
. (.)

In [], Crandall-Rabinowitz bifurcation theory [] is applied to establish the existence
of nonconstant positive solutions to (.) bifurcating from (v̄, λ̄). To be precise, let

εn =
((a – cv̄)r�′(v̄) – c)v̄

(nπ/L) > , n ∈N
+. (.)

It is proved in Theorem . of [] that the steady-state bifurcation occurs at (v̄, λ̄, εn) for
each n ∈N

+, with

εn(s) = εn + Ks + O
(
s),

(.)
(
vn(x, s),λn(s)

)
= (v̄, λ̄) + s

(

cos
nπx

L
, 

)

+ O
(
s),

and there exist a constant δ >  and continuous functions (vn(x, s),λn(s), εn(s)) : s ∈
(–δ, δ) → X × R

+ × R
+ such that, for each s ∈ (–δ, δ), (vn(x, s),λn(s), εn(s)) solves sys-

tem (.), where

X =
{

w ∈ H(, L)|w′() = w′(L) = 
}

; (.)
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moreover, all nontrivial solutions (v,λ, ε) of (.) near (v̄, λ̄, εn) must be on the nth bifurca-
tion branch


n(s) :=
{(

vn(x, s),λn(s), εn(s)
)

: s ∈ (–δ, δ)
}

. (.)

We would like to mention that the stability or instability of these bifurcating solutions
(.) are also investigated in [], Theorem .. They showed that, among all the local bi-
furcating solutions, only those on the first branch 
(s), s ∈ (–δ, δ), can be stable, provided
thatK > , whereas all the remaining local branches are unstable. This corresponds to [],
where it is stated that the nonconstant stable solutions to a classical of shadow systems
must be spatially monotone. These results make the current study of the first bifurcation
branch more realistic for further applications.

One of the motivations of this paper is to study the topological behaviors of the local
branches 
n(s) to (.). To this end, we perform the global bifurcation analysis for (.);
moreover, we shall show that this shadow system always admits nonconstant positive so-
lutions for each small ε > . To be precise, the theoretical result of the paper states as
follows.

Theorem . Assume that (.) is satisfied and εn is given by (.). Then, for each ε ∈ (, ε),
there exists a positive solution (vε(x),λε) of (.) satisfying v′

ε <  on (, L).

We present the plots in Figure  to illustrate the first bifurcation branch or one of the
solution sets to (.) schematically. Each element except (v̄, λ̄, ε) on the bifurcation branch
represents a nontrivial solutions to (.). Our analysis shows that the project of each branch
onto the ε-axis must include the interval (, ε).

Remark  Theorem . indicates that (.) admits decreasing solutions for every small ε

and the proof can be carried over to show that this system also admits increasing solutions.
Indeed, let vε(x) be a decreasing solution of (.). Then, thanks to the Neumann boundary
condition, vε(L – x) is also a solution, and it is increasing in x. Therefore, we can construct

Subcritical bifurcation branch 
(s) Supercritical bifurcation branch 
(s)

Figure 1 Pitchfork-type bifurcation branches. The solid line represents stable bifurcating solution
(v1(s, x),λ1(s),ε1(s)), and the dashed line represents unstable solution.
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nonmonotone solutions by reflecting and periodically extending the monotone ones at
the end points.

According to Theorem ., the shadow system (.) admits nonconstant monotone so-
lutions for any small ε > . Therefore, from the view point of singular perturbations, we
may expect that (.) also admits nontrivial solutions when χ and d are sufficiently large,
and although rigorous mathematical analysis is quite technical and is out of our scope, we
perform extensive numerical simulations to verify this observation in Section .

2 Nonconstant positive solutions to the shadow system
To see how bifurcation analysis is performed in [] and to introduce necessary notations
and settings for our global analysis, we rewrite (.) into the abstract form

F (v,λ, ε) = , (v,λ, ε) ∈X ×R
+ ×R

+,

where

F (v,λ, ε) =

(
εv′′ + (a – bλe–r�(v) – cv)v

∫ L
 (a – cv)e–r�(v) dx – bλ

∫ L
 e–r�(v) dx

)

, (.)

and X is the Hilbert space given by (.). We remark that any nonnegative solution v of
(.) in X is a classical solution thanks to the standard elliptic embeddings.

We first collect the following facts in [] on the operator F before using the bifurcation
theory.

Lemma . [] The operator F (v,λ, ε) defined in (.) satisfies the following properties:
() F (v̄, λ̄, ε) =  for any ε ∈R

+;
() F : X ×R

+ ×R
+ → Y ×Y is analytic, where Y = L(, L);

() for any fixed (v,λ) ∈X ×R
+, the Fréchet derivative of F is given by

D(v,λ)F (v,λ, ε)(v,λ)

=

(
εv′′ + (a – cv – be–r�(v)(λ – λvr�′(v)))v – be–r�(v)vλ

∫ L
 (bλr�′(v)e–r�(v) – ce–r�(v))v – be–r�(v)λdx

)

; (.)

() D(v,λ)F (v,λ, ε) : X ×R
+ → Y ×R is a Fredholm operator with zero index.

Besides these facts, we can further show that the dimension of the null space of
D(v,λ)F (v̄, λ̄, ε) is  and the following necessary condition on the null space of operator
(.) holds:

N
(
D(v,λ)F (v̄, λ̄, ε)

) 	= {}

and, in particular,

N
(
D(v,λ)F (v̄, λ̄, ε)

)
= span

{
cos(kπx/L), 

}
, k ∈N

+. (.)
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Moreover, we can verify the following transversality condition:

d
dε

(
D(v,λ)F (v̄, λ̄, ε)

)
(vn,λn)

∣
∣
∣
∣
ε=εn

/∈R
(
D(v,λ)F (v̄, λ̄, εn)

)
, (.)

and therefore the existence of nonconstant bifurcating solutions follows from the classical
Crandall-Rabinowitz bifurcation theory [].

Remark  We want to point out that (, a
b

) is the other constant solution to (.). How-
ever, it is easy to verify that Crandall-Rabinowitz bifurcation does not occur at this trivial
solution. In fact, putting (v,λ) = (, a

b
) in (.), we see that the necessary condition (.)

becomes

εv′′ +
(

a –
ab

b

)

v = , v′() = v′(L) = ,

which has only the trivial solution, and hence the null-space N (D(v,λ)F (, a
b

, ε)) must be
trivial.

3 Global bifurcation analysis
We now proceed to extend the local bifurcation curves obtained in Theorem . by the
global bifurcation theory of Rabinowitz [] and its developed version in []. In particular,
we will only study the first bifurcation branch 
 since all the remaining (local) branches
are unstable.

Denote the solution set of (.) by

S =
{

(v,λ, ε) ∈X ×R×R
+|F (v,λ, ε) = , (v,λ) 	= (v̄, λ̄)

}

and let C be the maximal connected subset of S̄ that contains (v̄, λ̄, ε). Then C is a closed
set, and it contains (v(x, s),λ(s), ε(s)), s ∈ (–δ, δ). We show in the following lemma that
all elements on C are solutions to (.) staying positive in this set.

Lemma . Assume that (.) holds. Then, for each (v,λ, ε) ∈ C , v(x) >  on [, L], λ > ,
and (v,λ) is a solution of (.).

Proof We introduce the following connected set:

P =
{

(v,λ) ∈ C|v(x) > , x ∈ [, L],λ > 
}

.

First, we observe that P is a subset of C , and it is nonempty since at least the part of C
near (v̄, λ̄, ε) is contained in P. Therefore, in order to prove the positivity of v and λ, we
need to show that P = C . For this purpose, we prove that P is both open and closed in C
by topology arguments, and if this is done, the connectedness of S+ implies that P = S+.

To prove that P is open in C , we pick any (v,λ, ε) ∈ P and assume that there exists
a sequence (vk ,λk , εk) that converges to (v,λ, ε) in X ×R×R. Therefore vk converges to v
in C([, L]), and hence vk(x) >  on [, L] for all large k since v(x) >  on [, L]. Moreover,
λk , εk >  since λ, ε > .
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To prove that P is closed in C , we take {(vk ,λk , εk)} ∈P such that, for some (v,λ, ε) ∈ C ,
(vk ,λk , εk) converges to (v,λ, ε) in the norm of X × R

+ × R
+. Then we want to show that

(v,λ, ε) ∈ P, that is, v(x) >  on [, L], and λ > . Obviously, v(x) ≥  and λ ≥ , and we
only need to show that λ 	=  and v(x) >  for all x ∈ [, L]. We argue by contradiction. First,
suppose that λ = . Then the v(x)-equation in (.) becomes

⎧
⎨

⎩

εv′′ + (a – cv)v = , x ∈ (, L),

v′() = v′(L) = ,
(.)

and it is well known that (.) has only the trivial solution  and a
c

; therefore, vk converges
to either  or a

c
uniformly on [, L]. If vk converges to , then we can apply the Lebesgue

dominated convergence theorem to the integral constraint in (.):

 = lim
k→∞

∫ L



(
a – bλke–r�(vk ) – cvk

)
e–r�(vk ) dx = ae–r�() > ,

which is impossible. If vk converges to a
c

, then similarly we have

 = lim
k→∞

∫ L



(
a – bλεe–r�(vε ) – cvε

)
e–r�(vε ) dx =

(

a – c
a

c

)

e–r�( a
c

),

which implies that a
a

= c
c

, a contradiction to (.). Therefore, λ =  is impossible, and we
must have that λ > , as claimed.

We now prove that v(x) >  on [, L]. If not, then suppose that v(x) =  for some x ∈
[, L]. Then we can apply the strong maximum principle and Hopf ’s lemma to (.) to show
that v ≡  for all x ∈ [, L] and therefore λ = a

b
. However, this is impossible since it is easy

to check that bifurcation does not occur at (, a
b

). This is a contradiction, and we must
have that v(x) >  on [, L]. �

Remark  According to Lemma . (and the forthcoming discussion), we know that the
global continuum C cannot intersect with the ε-axis. However, we are not able to rule
out the possibility that it intersects with the V -axis, that is, X ×R

+ × {}. Details on the
limiting structures are needed for this purpose. Our main results in Theorem . establish
the existence of nonconstant solutions to (.) for any small ε, and it is out of the scope of
this paper to analyze their limiting profiles.

We proceed to show that C consists of two disjoint components and each compo-
nent contains solution v that is spatially monotone. Let Cu to be the component of
C\{(v(s, x),λ(s), ε(s))|s ∈ (–δ, )} containing {(v(s, x),λ(s), ε(s))|s ∈ [, δ)} and, cor-
respondingly, Cl = C\{(v(s, x),λ(s), ε(s))|s ∈ (, δ)} containing {(v(s, x),λ(s), ε(s))|s ∈
(–δ, ]}. Then we can readily see that C = Cu ∪ Cl and Cu ∩ Cl = {(v̄, λ̄, ε)}. We have the
following results.

Lemma . Cu\(v̄, λ̄, ε) consists of (v,λ, ε) with v′(x) >  on (, L), and Cl\(v̄, λ̄, ε) consists
of (v,λ, ε) with v′(x) <  on (, L) and λ, ε > .
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Proof Our proof is based on the same topology arguments as in the proof of Lemma ..
We introduce the following four subsets:

C
u := Cu\

{
(v̄, λ̄, ε)

}
,

P+
 :=

{
(v,λ, ε) ∈X ×R

+ ×R
+|v(x) > , v′(x) > , x ∈ (, L)

}
,

C
l := Cl\

{
(v̄, λ̄, ε)

}
,

P–
 :=

{
(v,λ, ε) ∈X ×R

+ ×R
+|v(x) > , v′(x) < , x ∈ (, L)

}
.

Then Lemma . holds if we can prove that

C
u ⊂P+

 , C
l ⊂P–

 .

We only prove the first part, and the second one can be treated in the same way. We note
that C

u is nonempty since any solution (v,λ, ε) of (.) near (v̄, λ̄, ε) is in the set C
u thanks

to (.). Since C
u is a connected subset of X ×R

+ ×R
+, we only need to show that C

u ∩P+


is both open and closed with respect to the topology of C
u , and we divide our proof into

two parts.
To prove the openness, we assume that (ṽ, λ̃, ε̃) ∈ C

u ∩ P+
 and there exists a sequence

{(ṽk , λ̃k , ε̃k)}∞k= in C
u that converges to (ṽ, λ̃, ε̃) in the norm of X × R

+ × R
+. We want to

show that, for all large k, (ṽk , λ̃k , ε̃k) ∈P+
 , that is,

ṽ′
k > , x ∈ (, L), λ̃k > , ε̃k > .

First, it is easy to see that λ̃k >  and ε̃k >  since both have positive limits λ̃ >  and ε̃ > .
On the other hand, we conclude from ṽk → ṽ in X and from the elliptic regularity theory
that ṽk → ṽ in C([, L]). Differentiating the first equation of (.) with respect to x, we
have

⎧
⎨

⎩

ε(ṽ′)′′ + (a – bλεe–r�(ṽ) + bλεe–r�(ṽ)�′(ṽ) – cṽ)ṽ′ = , x ∈ (, L),

ṽ′() = ṽ′(L) = .
(.)

By Hopf ’s lemma from the fact ṽ′(x) >  we have that ṽ′′(L) >  > ṽ′′(), and then this
second-order nondegeneracy implies that ṽ′

k(x) >  in (, L). If not, suppose that there
exists xk ∈ [, L] such that ṽ′

k(xk) = . Then we have that xk → x∞ ∈ [, L] as k → ∞. We
divide our discussions into the following two cases.

Case . x∞ = , L. We only consider x∞ =  since the same arguments can be applied for
x∞ = L. In this case,

 > ṽ′′() = lim
k→∞

ṽ′(xk) – ṽ′()
xk

= ,

a contradiction.
Case . x∞ ∈ (, L). This is also impossible by the continuity of ṽ′(x). Therefore, we have

that ṽ′(x) >  in (, l) for k large, and hence the openness is proved.
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To prove that C
u ∩ P+

 is closed in C
u , we take a sequence (ṽk , λ̃k , ε̃k) ∈ C

u ∩ P+
 and

assume that there exists (ṽ, λ̃, ε̃) in C
u such that (ṽk , λ̃k , ε̃k) → (ṽ, λ̃, ε̃) in the topology of

X ×R
+ ×R

+. We want to show that

ṽ′(x) > , x ∈ (, L), and λ̃ > .

By the same argument as before it can be easily proved that λ̃ > . We now need to show
that ṽ′(x) > . Again, we have from the elliptic regularity that ṽk → ṽ in C([, L]), and
therefore ṽ′(x) ≥ , x ∈ (, L). Applying the strong maximum principle and Hopf ’s lemma
to (.), we have that either ṽ′ >  or ṽ′ ≡  on (, L). In the latter case, we must have
(ṽ, λ̃) ≡ (v̄, λ̄), and this contradicts to the definition of C

u . Thus, we have shown that ṽ′ > 
on (, L), and this proves the closedness. The proof of Lemma . is complete. �

3.1 Global extension of the first bifurcation branch
Finally, we study the extension of the local bifurcation branch 
(s), and we present a proof
of Theorem ..

Proof of Theorem . According to Theorem . in [], Cu satisfies one of the follow-
ing three alternatives: (A) it is not compact in X × R

+ × R
+; (A) it contains a point

(v̄, λ̄, ε∗) with ε∗ 	= ε; (A) it contains a point (v̄ + v̂, λ̄ + λ̂, ε), where  	= (v̂, λ̂) ∈ Z , and Z
is a closed complement of N (D(v,λ)F (v̄, λ̄, ε)) = span{(cos πx

L , )}. We first claim that only
alternative (A) can occur.

If (A) occurs, then ε∗ must be one of the bifurcation values εk , k ≥ ; therefore, v(x) = v̄+
s cos kπx

L +o(s), s ∈ (–δ, δ), according to (.). However, this contradicts to the monotonicity
of v(x), and therefore (A) is impossible.

If (A) occurs, then we can choose the complement to be

Z =
{

(v,λ) ∈X ×R
+
∣
∣
∣
∣

∫ L


v(x) cos

πx
L

dx = 
}

,

and then, for any (v,λ) ∈Z , by integration by parts we have

 =
∫ L


v(x) cos

πx
L

dx = –
L
π

∫ L


v′(x) sin

πx
L

dx < ,

a contradiction. Therefore, only alternative (A) occurs, and Cu is not compact in X ×
R

+ ×R
+.

Now we study the behavior of Cu, and that of Cl can be investigated in the same way.
First, we claim that the projection of Cu onto the ε-axis does not contain an interval of the
form (ε,∞) for any ε >  and it is sufficient to show that there exist a positive constant ε̄

such that (.) has only constant positive solution (v̄, λ̄) if ε ∈ (ε̄,∞). To prove the claim,
we decompose the solution v(x) of (.) as

v = v̄ + w,

where v̄ = 
L
∫ L

 v dx and
∫ L

 w dx = . Then we readily see that w satisfies

⎧
⎨

⎩

εw′′ + (a – bλe–r�(v̄+w) – cv̄ – cw)(v̄ + w) = , x ∈ (, L),
∫ L

 w dx = , w′() = w′(L) = .
(.)
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Multiplying both hand sides of (.) by w and then integrating over (, L), we have that

ε

∫ L



(
w′) dx = (a – cv̄)

∫ L


w dx – bλ

∫ L


e–r�((v̄+w))(v̄ + w) dx – c

∫ L


w dx.

On the other hand, it is easy to have from the maximum principle that both ‖vε(x)‖L∞(,L)

and λε are uniformly bounded in ε. Then we have from the last equality that

ε

∫ L



(
w′) dx ≤ C

∫ L


w dx,

where C is a positive constant dependent on a, c, and v̄. We reach a contradiction if ε >
C

(π/L) unless w ≡ . Therefore, we must have that v ≡ v̄; however, this gives a contradiction
by the same arguments as in case (A). Therefore, the claim is proved.

Now we proceed to show that the projection Cu onto the ε-axis is of the form (, ε̄] for
some ε̄ ≥ ε. We argue by contradiction and assume that there exists ε >  such that (ε, ε̄)
is contained in this projection, but this projection does not contain any ε < ε. Then we
have from the uniform boundedness of ‖vε(x)‖∞ and Sobolev embedding that, for each
ε > , ‖vε‖C([,L]) ≤ C for all (vε ,λε , ε) ∈ Cu. However, this implies that Cu is compact in
X ×R

+ ×R
+, which is a contradiction to alternative (A). Therefore, Cu extends to infinity

vertically in X ×R
+ ×R

+. This finishes the proof of Theorem .. �

We have from Theorem . that there exist positive and monotone solutions vε(λε , x)
to (.) for all ε ∈ (, ε). If v(x) is an increasing solution to (.), then v(L – x) is a decreas-
ing solution. Then we can construct infinitely many nonmonotone-solutions of (.) by
reflecting and periodically extending v(x) and v(L – x) at x = ,±L,±L, . . . .

4 Numerical simulations
We proceed to investigate (.) and (.) by numerical studies. Our simulation illustrates
and supports our theoretical finding in the previous sections, that is, (.) admits non-
trivial positive constant steady states when χ and d are large and d is small. Moreover,
system (.) is able to model the well-observed phenomenon of segregation through com-
petition.

According to [], in limit of large χ and d, positive solutions (u, v) of (.) over � = (, L)
can be approximated by those of the shadow system (.). Moreover, thanks to Theo-
rem ., the boundary value problem (.) admits nonconstant solutions for any small ε > ;
therefore, we expect the emergence of nontrivial patterns in (.) for χ and d being large
and d being sufficiently small. We choose the sensitivity function to be φ(v) ≡  without
losing much generality of our numerical studies. In the remaining part of this section, we
shall numerically study the following coupled time-dependent system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = ∇ · (d∇u + χu∇v) + (a – bu – cv)u = , x ∈ �, t > ,

vt = d�v + (a – bu – cv)v = , x ∈ �, t > ,

ux(x, t) = vx(x, t) = , x = ∂�, t > ,

u(x, ) = u, v(x, ) = v(x), x ∈ �.

(.)

Then their stationary solutions correspond to those of (.). Choosing the system pa-
rameters a = a = b = c =  and b = c = , it is easy to find that (ū, v̄) = ( 

 , 
 ) is a
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trivial solution. Moreover, we choose χ = , d, and the initial data (u, v) = (ū, v̄) +
(., .) cosπx in all the simulations (except the initial data in Figure ). It is our
goal to examine the effect of d (or, equivalently, of ε in (.)) and the domain size on the
formation of nontrivial patterns in (.). Our numerics demonstrate the self-organized
spatial temporal dynamics of these systems.

4.1 Simulations over one-dimensional domains
In Figure , we plot the spatial-temporal solutions to illustrate the formation of single
boundary spike to u and boundary layer to v. The boundary spike and layer here corre-
spond to the monotone steady state obtained in Theorem .. Moreover, the numerical

Figure 2 Formation of stable single boundary spike of u and boundary layer of v to (4.1) over
� = (0, 1). The diffusion rate d2 = 0.01 is chosen, while a1 = a2 = b2 = c1 = 1, b1 = c2 = 2, χ = 500 and d1 are
fixed and the initial data (u0, v0) are small perturbations from (ū, v̄) as given above.

Figure 3 Small d2 supports stable steady states of (4.1) with boundary spike or layer, where d2 are
chosen to be 0.02, 0.01, 0.005, and 0.001, and the remaining parameters and the initial data are as in
Figure 2. We observe that the steady state u(x)(v(x)) approaches a nonconstant function with an (inverted)
boundary spike at the end point x = 1 as d2 tends to zero.
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simulations suggest that the spiky solutions are stable. The rigorous proof of the stability
is out of scope of this paper.

According to Theorem ., (.) admits nonmonotone positive solutions for any small
ε > ; therefore, it is natural to expect that the same holds for (.) when both χ and d are
large. On the other hand, we know from our proof of Theorem . that the large d inhibits
the existence of nonconstant positive solutions. Therefore, we present Figure  to investi-
gate the effect of small d on the nonconstant steady states to (.). As d tends to zero, the
boundary spike shifts to the boundary with its magnitude increases. However, rigourous
analysis of these spiky solutions is quite challenging and is out of the scope of this paper.

Figure 4 Formation of stable interior spike of u and interior layer of v. All the system parameters and
initial data are as in Figure 2 except that the interval length is L = 2.

Figure 5 Change of formation of stable multispikes over � = (0, L) with respect to the variation of
interval length L. System parameters and initial data are as in Figure 2. Numerical simulations suggest that
large domains support more stable spikes than small domains in general. However, we observe an irregular
pattern when L = 6.
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Thanks to the Neumann boundary conditions, we can construct single- and multi-
interior spikes for (.) by reflecting and periodically extending the single boundary spike
at the end points. This is numerically demonstrated in Figure .

In Figure , we continue to examine the effect of large interval on the formation of multi-
spikes in (.). We observe the reflection and periodic extension of spikes over interval
with L =  to those L =  and L = . However, we may expect steady states with three spikes
when L = , admitting a single interior instead. We are motivated to study the dynamics
of such an irregular pattern observed in Figure  when L = . To do so, we select L = 
and plot in Figure  the profile of u(x, t) for specifically chosen times. We observe u(x, t)
develops with multispikes which are meta-stable, the stability of which is destroyed at time

Figure 6 Evolution and dynamics of u(x, t) over (0, 16). The system parameters are chosen as in Figure 2.
We observe that solutions with eight spikes emerge at t ≈ 5 and develop into metastable pattern, which is
destroyed at t ≈ 46. After that, interior spikes merge and develop into a single spike, which becomes stable
finally.

Figure 7 Evolution and formation of stable steady state with a single boundary spike at corner (1, 1)
out of small perturbations from the constant solution.
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Figure 8 Qualitative behavior of stable steady states with a single boundary spike in the limit of
small d2.

Figure 9 Evolution and formation of single boundary spike that is not located at the corner. The initial
data are constant in x but constant in y.

t ≈ . Then we observe the merging and disappearing of the interior spikes, and finally
u(x, t) develops into a single interior spike afterwards.

4.2 Simulations over two-dimensional domains
We now study (.) over the square � = (, L) × (, L). Similarly as in the D case, we
shall examine the effect of d and the domain size over the formation and evolution of
nontrivial patterns, whereas the remaining system parameters and initial data are chosen
as in Figure . For example, in Figure , we plot the formation and evolution of stable
boundary spike out of small perturbations from the constant solution (ū, v̄). Similarly as
in Figure , we show in Figure  that when d becomes small, the boundary spike shifts
to the corner and its magnitude increases. It seems necessary to point out, a stable single
boundary spike does not have to stay at the corner as we observe one counter-example in
Figure . Finally, we include Figure  to demonstrate that large domains support stable
steady states with more spikes than small domains. Mathematical analysis of the spatial-
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Figure 10 Stable steady states with both interior and boundary spikes over varying squares.

temporal of these spikes is an interesting but also quite demanding question that we can
study in the future.
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