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Abstract
In this paper, an age-structured epidemiological process is considered. The disease
model is based on a SIR model with unknown parameters. We addressed two
important issues to analyzing the model and its parameters. One issue is concerned
with the theoretical existence of unique solution, the identifiability problem. The
second issue is how to estimate the parameters in the model. We propose an iterative
algorithm to study the identifiability of the system and a method to estimate the
parameters which are identifiable. A least squares approach based on a finite set of
observations helps us to estimate the initial values of the parameters. Finally, we test
the proposed algorithms.
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1 Introduction and problem statement
In the past decades, dynamical systems have been used to develop models in physics, bi-
ology, chemistry, engineering and epidemiology; see for instance [, ] and []. Usually
equations modeling these phenomena depend on several parameters. Some of them have
a scientific meaning and others might come from approximations. Unfortunately, most
of the parameters are unknown. Then the parameter estimation is essential for modeling
biological systems. Moreover, to execute a parameter estimation task, first one needs to
ensure the identifiability of the system, since if the number of unknown parameters is very
large, it is often impossible to find a unique solution to this problem.

Identification of systems deals with the problem of modeling of systems in which pre-
vious information available is not sufficient to determine all the parameters involved in
the model. The identification property has been studied on topics related with dynamic
systems [–]. Parameter estimation is the process of trying to calculate the model param-
eters based on a dataset. Often, some of the parameters can be measured, while the rest
can only be fitted. A crucial tool in the fitting process is assigning of the parameter values
so that the errors between the measured variables and the corresponding model predic-
tions are minimized. The process consists in assuming that the values of the parameters
of a given system are unknown, but that we have recorded inputs and outputs over a time
interval. The usual estimation methods include the projection algorithm, gradient algo-
rithm, and least squares algorithm [, ].
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Therefore, real data are needed to construct and validate models. The identification and
estimation problems will be used to find the model that best fits the data from a set of
candidates. Finally, it is necessary to evaluate and to validate if the model satisfies the
process properties.

In this paper, parameter estimation for an epidemic model has been tackled in the frame-
work of control theory. The algorithm is developed by exploiting the special structure of
our model.

Consider a nonlinear system representing an epidemiological model given by

x(k + ) = f
(
x(k), p

)
, k ∈ Z,

where x(k) ∈R
n is the state vector, p ∈R

l is the parameter vector and f : Rn ×R
l →R

n is a
continuously differentiable function. This system can be linearized around the disease free
equilibrium point which is defined as the equilibrium point where no disease is present in
the population. In our problem this linear system is of the type

x(k + ) = A(p)x(k) + b, k ∈ Z, ()

where A(p) ∈ R
n×n and b ∈ R

n. The matrix coefficients have a fixed structure and it is
now interesting to obtain the parameters required by the model structure. This property
is known as the identifiability problem. Given a parameterized model it is important to
uniquely identify the parameters since it is necessary to do experimental design and to
estimate the unknown parameters of the model using experimental data.

The identifiability problem is based on the determination of all parameter sets which
give the same input-output response. The identifiability of the system () depends on if
the parameters can be determined uniquely from a known output of the system []. That
is, given two parameter vectors p, p̄, if we denote by xp(k) and xp̄(k) the output of the
system (), respectively, then the equation xp(k) = xp̄(k), for all k ≥ , implies p = p̄.

For linear models there are many well-established techniques to analyze structural iden-
tifiability; see, for example, [–] and the references therein.

After analyzing the identifiability property we consider the estimation problem. Param-
eter estimation is an important issue in biological systems because it is useful for obtain-
ing predictions of computer models of biological systems step. This problem is usually
addressed by fitting model simulations to the observed experimental dataset ob(i) ∈ R

n,
i = , . . . , K . The filter is well known in control and estimation theory and has application
in a wide range of fields such as epidemiology, weather forecasting and economy.

To solve the estimation problem we rewrite the system () obtaining

x(k + ) = M(k)p + N(k), k ∈ Z.

Define e(i) = (ob(i) – x(i)), i = , . . . , K eK = col(e(i))K–
i= , and

dK = col
(
d(i)

)K
i= = col

(
ob(i) – N(i – )

)K
i=, HK = col

(
M(i)

)K–
i= .
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Then, for K observations, we want to find the parameter vector which minimizes the
quadratic cost function

JK (p) =



K∑

i=

e(i)T e(i)

=



eT
K eK

=



(dK – HK p)T (dK – HK p).

Efficient parameter estimation methods can be found in the literature. A common prin-
ciple for most of them is to minimize the error between the observed and predicted quan-
tities, often reaching a local optimum, and getting the solution requires intensive com-
putation. One of the most usual methods for estimating parameters is a gradient-based
regression algorithm. A good overview of different methods developed to estimate the
parameters can be found in [].

2 Age-structured SIR model. Identifiability
In this work we study the parameter estimation of an age-structured SIR model where
the individuals are organized in compartments from an age range. The age structure is
critical in modeling epidemics caused by certain common diseases such as measles and
influenza or sexually transmitted diseases (STD); one that many people are worried about
getting is HIV. The choice of this type of structure is because the outcome of the epi-
demic may depend sensitively on the contact structure, the recovery rate, and the death
rate. For example, to analyze an infectious disease such as measles, the population can
be divided into five age groups or compartments, the age grouping -, -, -, -
, +, corresponding to the main school grades in Spain. So, we propose a discrete
age-structured SIR model on the basis of age has great influence on the spread of infec-
tious disease. It is formulated using the usual parameters in mathematical epidemiology.
For different values of this parameter we can get different types of infections. That is,
we divide thee population into m compartments according to their ages but these com-
partments need not have the same range of ages. Thus, we have susceptible individuals
Si, infected individuals Ii and recovered individuals Ri at the ith age compartment, for
i = , . . . , m.

We consider that only the individuals of the same age range are in contact, so the
susceptible individuals only are infected from the infected individuals of its compart-
ment.

We take account the transference of individuals from the ith compartment to the (i+)th
compartment when they change the age range in the dynamic process and, moreover,
we consider the entry of new individuals in S proportional to the size of the population
β(k)N , in order for the size the population N to remain constant.

Therefore, the dynamic process is described in Figure , where there are  different pa-
rameters, five of them are associated to each age compartment and the rest are associated
to the transference of individuals between consecutive compartments, which are defined
in Table .
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Figure 1 Dynamic process between m age compartments at time k.

Table 1 Parameters in an age compartment-structured SIR model.

Parameters at ith compartment

pi , qi , ri Survival rates of Si , Ii , Ri .
αi Exposition rate of susceptible individuals Si by contact with infected individuals Ii .
γi Rate of infected individuals becoming recovered individuals.
σi , μi , νi Rate individuals changing of age-compartment without changing the state.
εi , δi Rate individuals changing of age-compartment with changing the state.

Without loss of generality we consider the model with three compartments, m = , and
its mathematical representation is given by the nonlinear discrete-time system x(k + ) =
f (x(k)):

i = 

⎧
⎪⎪⎨

⎪⎪⎩

S(k + ) = (p – σ – α
I(k)

N )S(k) + β(k)N ,

I(k + ) = (q – γ – μ)I(k) + ( – ε)α
I(k)

N S(k),

R(k + ) = (r – ν)R(k) + ( – δ)γI(k),

i = 

⎧
⎪⎪⎨

⎪⎪⎩

S(k + ) = σS(k) + (p – σ – α
I(k)

N )S(k),

I(k + ) = μI(k) + (q – γ – μ)I(k) + εαS(k) I(k)
N + ( – ε)αS(k) I(k)

N ,

R(k + ) = νR(k) + (r – ν)R(k) + δγI(k) + ( – δ)γI(k),

i = 

⎧
⎪⎪⎨

⎪⎪⎩

S(k + ) = σS(k) + (p – α
I(k)

N )S(k),

I(k + ) = μI(k) + (q – γ)I(k) + εαS(k) I(k)
N + αS(k) I(k)

N ,

R(k + ) = νR(k) + rR(k) + δγI(k) + γI(k),

with

β(k)N = N –
∑

i=

piSi(k) –
∑

i=

qiIi(k) –
∑

i=

riRi(k).

Taking x(k) = col(xi(k))
i= with xi(k) = (Si(k) Ii(k) Ri(k))T , i = , , , and linearizing around

the disease-free equilibrium point x	 = f (x	, p), which is given by Pf = (Sf
 , , , Sf

, , , Sf
,

, ) with

Sf
 =

N( – p + σ)( – p)
K

, Sf
 =

σN( – p)
K

, Sf
 =

σσN
K

,
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where K = ( – p + σ + σ)( – p) + σσ, we obtain the following linear discrete-time
system:

x(k + ) = A(p)x(k) + b, ()

where b = (N        )T and

A(p) =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–σ –(f + q) –r –p –q –r –p –q –r


h – γ

+
( – ε)f

      

 γ( – δ) r – ν      
σ   p – σ –f    

 μ + εf  
h – γ

+
( – ε)f

   

 γδ ν  γ( – δ) r – ν   
   σ   p –f 

    μ + εf  
q – γ

+
f



    γδ ν  γ r

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

with

h = q – μ, h = q – μ,

f = α
S∗


N

, f = α
S∗


N

, f = α
S∗


N

.

From the above equations we obtain some sufficient conditions to ensure that the system
has positive solutions, that is, Si(k), Ii(k), and Ri(k), i = , , , are nonnegative for all initial
conditions. For this purpose, we give the next result.

Proposition  Consider the parameters pi, qi, ri, αi, γi, νi, i = , , , and σj, μj, j = , 
of the model. If pi ≥ σi + αi, qi ≥ γi + μi, i = , , p ≥ α, q ≥ γ and I(k) ≤ θN where
θ = mini=,,{ pi–σi

αi
}, with σ = , then Si(k), Ii(k), Ri(k), i = , , , are nonnegative for all

initial conditions.

Note that these conditions on the parameters are consistent. It is logical that the rate of
individuals who move from one compartment to another plus the rate of individuals who
recover from the disease do not exceed the rate of survival in each compartment.

2.1 Algorithm to identifiability of the parameters
We assume that the rates σi, μi and νi, i = , , , and the rates εi and δi, i = , , are known.
Then the parameters to identify are the following:

p = (pi, qi, ri,γi,αi, i = , , ).

Model predictions depend on the parameters, some of which must be estimated from
experimental data. The most important characteristic is that the parameters have physi-
cal significance and that it is possible to determine their values from observed data. The
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identifiability helps us test the unique relationship between parameter sets and model re-
sponse and guarantees that the parameters can be estimated under ideal conditions. It is
important to check the identifiability property since if a model is not correctly formulated,
problems can appear in the parameter estimation.

Denoting the solution of the system () by xp(k) we have xp(k) = A(p)kx()+
∑k–

i= A(p)ib.
To identify the parameters we consider different initial states x() and suppose xp(k) =
xp̄(k) for all k ≥  from two parameters p and p̄. Then we want to prove that p = p̄. Specif-
ically, we identify all the parameters, except p.

In order to solve this identifiability problem in general, that is, when we have m ≥  age
compartments, we give the following algorithm.

Algorithm
Step  Input data: m (number of compartments), N (population); σi, μi and νi,

i = , , ; εi and δi, i = , .
Step  Input variable parameters: pi, qi, ri, γi, fi, i = , , , and p̄i, q̄i, r̄i, γ̄i, f̄i, i = , , .
Step  Obtain n = m and introduce canonical vectors {ei}n

i=.
Step  Construct b, A(p), and A(p̄) as in ().
Step  For each i = , . . . , n, construct the output xp() and xp̄() of the system ()

obtained from x() = Nei, which we denote by {x(i, , p)}n
i= and {x(i, , p̄)}n

i=,
respectively.

Step  For i = , . . . , n:
Step . For each l = , . . . , n, the lth row of x(i, , p) is denoted as x(i, , p)l .
Step . If x(i, , p)l ≥  for all l, then solve x(i, , p) = x(i, , p̄) and save the

identified variable parameters.
Step . Else check if all parameters are identified and go to Step . Otherwise,

go to Step .
Step  t = i

Step . Input initial data {S
h , I

h } such that S
h + I

h = N being t = (h – ) +  and
construct initial conditions x() = S

het– + I
h et , denoted by x̂(t, ).

Step . Construct the output of the system () at time k =  obtained from
x̂(t, ) for each parameter p, and p̄ which we denote by {x̂(t, , p)}n

t=
and {x̂(t, , p̄)}n

i=, respectively.
Step . Solve x̂(t, , p) = x̂(t, , p̄) and save the identified parameters.
Step . i = t + . If i = n + , then go to Step . Otherwise, return to Step ..

Step  Using the definition of Sf
i and fi, the parameters αi are identified.

Step  All parameters are identified, except p, END.

In the process specified in the algorithm we have considered the nonnegativity of the
solution. For this purpose, we have had to use the solution of the system to the initial
conditions constructed at Step  to obtain nonnegativity outputs.

It is clear that we not only want to know if the model is or is not identifiable. Even if it is
not, we want to know the parameters which can be identified, because in some cases we
need only estimate some of the parameters to verify that it fulfills a hypothesis. Further,
if a parameter is not identifiable, it is not estimable. Observe that the parameter p is not
identified due to the condition that the population is kept constant N at each time. In
addition, the identifiability of the parameters does not guarantee that can be estimated as
an even in the case that a parameter is identifiable, it may be difficult to estimate.
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3 Parameter estimation
Now, we consider that the survival rates pi = p, qi = q and ri = r are known. It assumes
what ecologists refer to as Type II mortality, which is a constant mortality rate over the
entire life span. This pattern is approached by most birds and some mammals []. Basi-
cally, Type II mortality is a good approximation for the survival rate of human populations
in the developed world. Furthermore, we suppose known the transference rates between
consecutive compartments σi, μi, and νi, i = , , , and εi and δi, i = , . Thus, from an
observed dataset our goal is to find an approximate value of the parameters fi (from them
we have αi) and the parameters γi, using the mathematical model given by (). Note that
αi and γi are the most important rates since they give us information as regards the dis-
ease under consideration. That is, for each age range, we want to have an estimated value
of the rate of infection of a susceptible individual and the rate of recovery of an infected
individual, which allow us to draw conclusions on the incidence of the disease according
to the age of the individual.

From an initial observation ob(), we consider an observed dataset

{
ob(k)

}K
k= =

{(
S(k) S(k) S(k) I(k) I(k) I(k) R(k) R(k) R(k)

)T}K
k=,

in K steps, K ≥ , and, on the other hand, we have the fit mathematical model

x(k + ) = A(p)x(k) + B, x() = ob(), k ≥ ,

where, from now on, the parameter vector to estimate is

p =
(

f f f γ γ γ

)T
.

Rewriting the system () we have

x(k + ) = M(k)p + N(k) =

⎛

⎜
⎝

M(k) M(k)
M(k) M(k)
M(k) M(k)

⎞

⎟
⎠p + N(k), ()

where

M(k) =

⎛

⎜
⎝

–I(k)  
( – ε)I(k)  

  

⎞

⎟
⎠ , M(k) =

⎛

⎜
⎝

  
–I(k)  

( – δ)I(k)  

⎞

⎟
⎠ ,

M(k) =

⎛

⎜
⎝

 –I(k) 
εI(k) ( – ε)I(k) 

  

⎞

⎟
⎠ , M(k) =

⎛

⎜
⎝

  
 –I(k) 

δI(k) ( – δ)I(k) 

⎞

⎟
⎠ ,

M(k) =

⎛

⎜
⎝

  –I(k)
 εI(k) I(k)
  

⎞

⎟
⎠ , M(k) =

⎛

⎜
⎝

  
  –I(k)
 δI(k) I(k)

⎞

⎟
⎠ ,
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and N(k) = col(Ni(k))
i= where

N(k) = N – p
∑

i=

Si(k) – q
∑

i=

Ii(k) – r
∑

i=

Ri(k) – σS(k),

N(k) = hI(k), N(k) = (r – ν)R(k),

N(k) = σS(k) + (p – σ)S(k), N(k) = μI(k) + hI(k),

N(k) = νR(k) + (r – ν)R(k), N(k) = σS(k) + pS(k),

N(k) = μI(k) + qI(k), N(k) = νR(k) + rR(k).

From the K data of the observed dataset we want to estimate the value of p, that is, we
want to find the parameter vector which minimizes the quadratic function

JK (p) =



(dK – HK p)T (dK – HK p).

Thus, p satisfies

∂JK (p)
∂p

= HT
K HK p – HT

K dK = .

Note that if SK = HT
k HK is nonsingular, then the solution is p = S–

K HT
K dK , and if it is singu-

lar, then p = S†
K HT

K dK where † denotes the M-Penrose generalized inverse matrix. In this
last case, p is not identifiable since we have infinite values for the parameter and a unique
output of the mathematical model.

From the structure of the matrices we can establish the following result.

Proposition  Let the system be (). The estimation problem has a unique solution if and
only if for each i, i = , , , there exists ki,  ≤ ki ≤ K such that Ii(ki) �= .

Proof If for each i, i = , ,  there exists ki,  ≤ ki ≤ K such that Ii(ki) �=  then rank(Hk ) =
 for k = max{ki}. Hence, rank(SK ) = . Conversely, if rank(SK ) = , from SK = HT

K HK and
using the structure of the matrices HK and M(k) the condition is proved. Therefore, we
can ensure that SK is definite positive, that is, all eigenvalues are positive and there exists
S–

K for all K > k. �

Under the above assumption, we could obtain an approximated value of p, for instance,
using the descendent gradient method. That is, from an initial p the (i+)th step provides
us

pi+ = pi – ai
(
SK pi – HT

K dK
)

= pi + aiHT
K (dK – HK pi),

where ai is the minimum of the curve h(a) = JK (pi – a(SK pi – HT
K dK )). Thus, we have given

a numerical procedure to achieve the best fit between observed data and the parameters of
the model. This algorithm is based on iterative local search in a down-hill direction from
the initial point.
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The parameter p ≥  chosen in this epidemiological model satisfies ‖p‖ < , where
‖ · ‖ denote the spectral norm. In the next result we establish a condition on the observed
dataset in order to keep this property in the process of parameter estimation.

Proposition  Let the system be (). For each i, i = , , , we suppose that there exists ki,
 ≤ ki ≤ K such that Ii(ki) �= .

If ‖dK‖ <


ρ(S–
K )

√
ρ(SK )

then ‖pK‖ < ,

where pK = S–
K HT

K dK is the parameter which minimizes the problem associated with K
observation data and ρ(·) denoting the spectral radius.

Proof From pK = S–
k HT

K dK and taking into account that SK is a symmetric matrix

‖pK‖ =
∥∥S–

K HT
K dK

∥∥
 ≤ ρ

(
S–

K
)‖HK‖‖dk‖ < ρ

(
S–

K
)√

ρ(SK )‖dK‖ < . �

3.1 Adding more observations. Algorithm
Consider K data of the observed dataset, such that Ii(ki) �=  for some ki,  ≤ ki ≤ K and for
each i, i = , , . This fact implies that there exists k such that H(k) is full rank. Now, we
want to improve the approximated value of parameter p adding one observation ob(K + )
and fitting the mathematical model to the K +  data of the observed dataset. Using that

HT
K+HK+ = HT

K HK + MT (K)M(K),

HT
K+dK+ = HT

K dK + MT (K)d(K + ),

we obtain the following discrete-time variable system to represent the dynamic of the
parameter vector:

pK+ = AK pK + BK , K ≥ , ()

where AK = S–
K+SK and BK = S–

K+MT (K)d(K + ), where SK = HT
K HK .

The solution of this system is

pK = 
A(K , k)pk +
K–∑

j=k+


A(K , j + )Bj, K > k,

with the monodromy matrix 
A(K , k) defined as 
A(K , k) = AK– · · ·Ak if K > k and

A(K , k) = I if K = k.

Note that if AK is asymptotically stable, that is, ρ(AK ) <  for all K > k, then the
monodromy matrix is also asymptotically stable, since ρ(
A(K , k)) = ‖
A(K , k)‖ ≤
∏K–

k=k
ρ(Ak) <  (this is followed from the symmetry of the matrix SK for K > k). Hence,

we can ensure that the recurrence sequence of the parameter vector {pK }K≥ obtained as
solution of () is bounded if BK is also bounded.

Finally, we establish a condition on the new data K +  in order that the consecutive
approximations of the parameter are sufficiently close.



Cantó et al. Advances in Difference Equations  (2017) 2017:33 Page 10 of 13

Proposition  Let the system be (). Suppose that there exists k such that rank(H(k))
is full rank, and ρ(AK ) <  for all K > k. Consider the observation data such that
‖ob(K + ) – x(K + )‖ < ε

ρ(S–
K+)ρ(MT (K )M(K )) , for some ε > . Then

‖pK+ – pK‖ < ε.

Proof Given K observation data and AK = S–
K+SK , BK = S–

K+MT (K)d(K + ) we have

‖pK+ – pK‖ = ‖AK pK + BK – pK‖

≤ ∥
∥S–

K+
∥
∥



∥
∥(SK – SK+)pK + MT (K)d(K + )

∥
∥



≤ ρ
(
S–

K+
)∥∥MT (K)

∥
∥



∥
∥d(K + ) – M(K)pK

∥
∥



= ρ
(
S–

K+
)
ρ
(
MT (K)M(K)

)∥∥ob(K + ) – x(K + )
∥∥

 < ε. �

Remark  The parameters involved in an epidemiological process are not always known.
To obtain a value of these sufficiently reliable, it is necessary to know if it can be identified
from a set of observations of the process, and then estimate its value. In the literature, there
exist several approaches to the identifiability problem and to the estimation problem. From
a set of observations, for instance in engineering, it is usual to consider the transfer matrix,
in chemicals, if we consider the input-output response and the parameters of Markov [,
], or directly from the solution of the system. Generally the estimation approach is based
in the gradient algorithm and the least squares algorithm, [, ]. In our case, we identify
the case using the structure of the matrices and asking whether the performance of the
estimation process is constructive, using a least squares algorithm. Then the algorithm
proposed can be used to identify and estimate the parameters of other time-discrete age-
structured models taking into account only the structure one has when performing the
steps of our algorithm.

4 Numerical example
Consider an age-structured population in three compartments which may suffer a con-
tagious disease. We consider that the survival rate of susceptible, infected, and recovered
individuals are independent from the age. Concretely, we have p = ., q = ., r = ..
Let us consider that the rates of individuals changing compartment due to increasing age
are known. Specifically, we consider σi = μi = . and ε = νi = δi = ., for all i.

In this process we want to obtain an estimation of the exposition and the recovered rates
which we suppose different according to the age of the individual.

We make an experiment on a sample of size N = , from the initial condi-
tion ob() = (,, ,, , ,, ,, , ,, ,, ) and an observed dataset
{ob(k), k = , . . . , }, given in Table .

We see that the matrix H is full rank and the coefficient matrix Ak of the discrete-time
linear system given by () is stable, ρ(Ak) < , for all k = , . . . , . Applying this recurrence
equation we obtain the approximations of the parameter vector p given in Table .

Note that these approximations satisfy ‖pk‖ ≈ . and ‖pk+ – pk‖ < –, for all
k = , . . . , . In fact, at time k, the condition established in Proposition  holds when we
compare the observed data ob(k) and the output x(k) of the system () obtained from pk :

∥∥ob(k) – x(k)
∥∥

 <
–

ρ(S–
k )ρ(MT (k – )M(k – ))

, k = , . . . , .
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Table 2 Observed dataset of SIR individuals in a population.

k Observed SIR data at time k, ob(k): (S1(k), I1(k), R1(k), S2(k), I2(k), R2(k), S3(k), I3(k), R3(k))

k = 1 (66,701, 1,680, 74, 15,075, 986, 67, 4,400, 964, 53)
k = 2 (66,398, 1,522, 140, 15,442, 886, 126, 4,505, 881, 100)
k = 3 (66,090, 1,385, 198, 15,798, 796, 176, 4,615, 797, 145)
k = 4 (65,778, 1,256, 248, 16,141, 717, 220, 4,723, 738, 179)
k = 5 (65,466, 1,144, 295, 16,476, 642, 260, 4,835, 670, 212)
k = 6 (65,152, 1,040, 336, 16,791, 584, 294, 4,947, 615, 241)
k = 7 (64,836, 960, 370, 17,105, 516, 326, 5,066, 544, 277)
k = 8 (64,521, 870, 400, 17,408, 474, 347, 5,185, 505, 290)
k = 9 (64,210, 772, 429, 17,705, 447, 368, 5,310, 450, 309)
k = 10 (63,892, 721, 449, 17,981, 395, 386, 5,439, 410, 327)
k = 11 (63,580, 665, 468, 18,264, 353, 401, 5,543, 384, 342)
k = 12 (63,269, 620, 484, 18,529, 292, 415, 5,679, 358, 354)
k = 13 (62,960, 545, 498, 18,800, 268, 425, 5,808, 331, 365)
k = 14 (62,645, 510, 509, 19,043, 260, 430, 5,930, 301, 372)
k = 15 (62,351, 459, 519, 19,298, 218, 440, 6,067, 266, 382)

Table 3 Estimated values of the parameter p.

Estimated value pi of p from dataset {ob(k)}i
k=1

p1 = (0.00956693, 0.000751478, 0.00521651, 0.0407453, 0.0610622, 0.0490052)
p2 = (0.00907106, 0.000369321, 0.00390195, 0.0410328, 0.0604876, 0.049093)
p3 = (0.00933411, 0.000142124, 0.00248374, 0.0407704, 0.0600328, 0.0503554)
p4 = (0.00927112, 0.000579406, 0.00335454, 0.0407454, 0.0599345, 0.0491128)
p5 = (0.00938896, 0.000491274, 0.00304479, 0.040709, 0.060185, 0.0493809)
p6 = (0.00941313, 0.00179466, 0.00343295, 0.0407295, 0.0603492, 0.0493287)
p7 = (0.00981096, 0.0015837, 0.00287703, 0.0403433, 0.0609501, 0.0508397)
p8 = (0.00970246, 0.00194832, 0.00285248, 0.0403566, 0.0604301, 0.0498377)
p9 = (0.00927398, 0.00247651, 0.00222736, 0.0407216, 0.0597542, 0.0499973)
p10 = (0.00967561, 0.00282768, 0.00192291, 0.0404139, 0.0601675, 0.0499162)
p11 = (0.0100975, 0.00258414, 0.00326115, 0.0415127, 0.0617572, 0.0517111)
p12 = (0.0105733, 0.00229971, 0.00304286, 0.0423655, 0.0637888, 0.0525927)
p13 = (0.0105774, 0.00208498, 0.00314224, 0.0435171, 0.0644926, 0.0535962)
p14 = (0.0110997, 0.00268321, 0.00341103, 0.0441655, 0.0650516, 0.0546224)
p15 = (0.0110427, 0.00218739, 0.00309953, 0.0447639, 0.0659736, 0.0555352)

Then a good estimation of the vector can be p = (., ., ., ., ., .), such
as we can see in the Figure , where the infected individuals of each age class are compared
with the signal obtained when the above value of p is considered.

Note that from the definition of p = (f f f γ γ γ)T and f, f, f we see that the esti-
mated value to the exposition rate are α = ., α = ., α = ., and the recovery
rates are γ = ., γ = ., γ = ..

5 Conclusions
An infectious disease acting on a population has been considered. This population is struc-
tured at age compartments with susceptible, infected, and recovered individuals. The epi-
demiological process is modeled by a dynamic system with unknown parameters. First, we
have established a condition to ensure the nonnegativity of the solution. Next, the identi-
fiability problem has been analyzed and an algorithm to identify the parameters has been
constructed. The following issue considered has been how to estimate the parameters in
the model. Using a least square method we have showed the descendent gradient method
and a condition to ensure that the estimated parameter has norm less than . Moreover,
we have constructed a recurrence equation when more observed data are considered and
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(a) obI
 observed and xI

 estimated (b) obI
 observed and xI

 estimated

infected individuals at class  infected individuals at class 

(c) obI
 observed and xI

 estimated

infected individuals at class 

Figure 2 Evolution of infected individuals at each age compartment.

we have established a condition to ensure that the consecutive approximations of the pa-
rameter are sufficiently close. Finally, an illustrative example has been showed.
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