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Abstract

In this paper, we deal with the asymptotics and oscillation of the solutions of
higher-order nonlinear dynamic equations with Laplacian and mixed nonlinearities of
the form

{01 Oy [ OC -+ (1 O, [COD™ - )2}

N
+ Y o0y, (x(9,(0)) =0
v=0

on an above-unbounded time scale. By using a generalized Riccati transformation
and integral averaging technique we study asymptotic behavior and derive some
new oscillation criteria for the cases without any restrictions on g(t) and o (t) and
when nis even and odd. Our results obtained here extend and improve the results of
Chen and Qu (J. Appl. Math. Comput. 44(1-2):357-377,2014) and Zhang et al. (Appl.
Math. Comput. 275:324-334, 2016).
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1 Introduction
We are concerned with the asymptotic and oscillatory behavior of the higher-order non-

linear functional dynamic equation

[t e, [(raa O (O [x2©])*--)) ]}

N
£ POy, (x(e0)) =0 (L1)

v=0

on an above-unbounded time scale T, assuming without loss of generality that #, € T. For
A C T and B C R, we denote by C,4(A, B) the space of right-dense continuous functions
from A to B and by Crld (A, B) the set of functions in Cq(4, B) with right-dense continuous
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A-derivatives. We refer the readers to the books by Bohner and Peterson [3, 4] for an
excellent introduction of calculus of time scales. Throughout this paper, we suppose that:
(i) n,N €N, n>2,and ¢pp(u) := [ul’u, B > 0;
(if) r; € Ca([tg, 00)T,(0,00)) for i =1,2,...,n —1 are such that

o0
/ M (2) AT = o0; (1.2)
to
(iii) @;>0,i=1,2,...,n—1,and y, >0,v =0,1,...,N, are constants such that
Yo>%, v=12,...,0 and 9y, <y, v=I[+11+2,...,N; (1.3)

(iv) py € Cua([to, o0)1,[0,00)), v =0,1,...,N, are such that not all of the p, (£) vanish in
a neighborhood of infinity;
(v) g : T — T are rd-continuous functions such that lim;_, » g,(£) =00, v =0,1,...,N.
By a solution of equation (1.1) we mean a function x € Crld([Tx, oo)1, R) for some T, > 0
such that ¥ € C([T}, 00)1,R),i =1,2,...,n — 1, that satisfies equation (1.1) on [T, c0)r,
where

xl = ri¢ai[(x[i’1])A], i=1,2,...,n,withr, =1, =1,and x% = x. (1.4)

A solution x(£) of equation (1.1) is said to be oscillatory if it is neither eventually positive
nor eventually negative. Otherwise, it is nonoscillatory.

Oscillation criteria for higher-order dynamic equations on time scales have been studied
by many authors. For instance, Grace et al. [5] obtained sufficient conditions for oscillation
for the higher-order nonlinear dynamic equation

x (1) + p(8) (x° (g0)))" =0,

where y is the quotient of positive odd integers, and where g(¢) < ¢. In [5], some compari-
son criteria have been studied when g(¢) < ¢, and some oscillation criteria are given when
n is even and g(¢) = ¢. The results in [5] have been proved when

[ OOp(u)AuAsAt:oo. 1.5)
L1

Wu et al. [6] established Kamanev-type oscillation criteria for the higher-order nonlinear
dynamic equation

{raaO[ (a2 (- (@2 @) ")) 1) + £ (62(g(®)) =0,

where « is the quotient of positive odd integers, g : T — T with g(¢) > ¢ and lim;_,  g(£) =
00, and there exists a positive rd-continuous function p(t) such that % > p(t) for u # 0.
Sun et al. [7] proved some criteria for oscillation and asymptotic behavior of the dynamic
equation

{raa@[(ra2 O (n@x*®©) ")) T} + £ (6 2(g®)) = 0,
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where « > 1 is the quotient of positive odd integers, g : T — T is an increasing differen-
tiable function with g(t) <t,goo =0 og, and lim;_, o g(£) = 00, and there exists a positive
rd-continuous function p(t) such that % > p(t) for u # 0 and B > 1 is the quotient of
positive odd integers. Sun et al. [8] studied quasilinear dynamic equations of the form

[ O[(raa @ (- (n@Ox2 @) )] + p0xP @) = 0,

where «, B are the quotients of positive odd integers. Also, the results obtained in [6—8]
are presented when

* 1 or ] 00 Ve
/to rn-z(t){/z [rn_l(s)/s p(u)Au:| AS}At:C’o' (1.6)

Hassan and Kong [9] obtained asymptotics and oscillation criteria for the nth-order half-

linear dynamic equation

(x[n—l])A(t) + p(O)bannn (x(g(®))) = 0,

where a[1,n—1] := oy - - - oty_1, and Grace and Hassan [10] further studied the asymptotics
and oscillation for the higher-order nonlinear dynamic equation

() 2(@) + pO)d, (+* (2(2))) = 0.

However, the establishment of the results in [10] requires the restriction on the time scale
T that g* o 0 = 0 o g* with g*(¢£) = min{t, g(¢)}, which is hardly satisfied. Hassan [11] im-
proved the results in [9, 10] and established oscillation criteria for the higher-order quasi-

linear dynamic equation

()2 + pOs, ((20)) = 0

when # is even or odd and when o > y, @ = y,and o < y with @ = o1 - - - ,_1. Chen and Qu
[1] considered the even-order advanced type dynamic equation with mixed nonlinearities

N

{r©g,, (=" )} + Y POy, (x(, 1)) = 0, (17)

v=0

wheren > 2iseven, y, >0,g,(f) > t,and 1 > - >y > Yo > Vis1 > - -- > Yn > 0. Zhang et al.
[2] studied the dynamic equation (1.7), where n > 2 is integer and g2 (¢) > 0, and obtained
some of the results in [2] when yy > 1. Also, the results obtained in [1, 2] are given when

o o w N 170
/to |:/V (r_l(s)/s ‘Z:O:pv(r)At) Asi|Av:oo. (1.8)

Huang [12] extended the work in [1] to the neutral advanced dynamic equation

N

{rOea (™" )} + Y 201y, (x(20(1)) = 0,

v=0
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where n > 2 is integer, ¥(£) := x(¢t) + p(£)x(g(2)), y» > 0, g(t) < ¢, and g, (¢) > ¢. For more
results on dynamic equations, we refer the reader to the papers [13-29].

In this paper, we will discuss the higher-order nonlinear dynamic equation (1.1) with
mixed nonlinearities on a general time scale without any restrictions on g(¢) and o (¢) and
also without conditions (1.5), (1.6), and (1.8). The results in this paper improve the results
in [1, 2, 5-10] on the oscillation of various dynamic equations.

2 Main results
We introduce the following notations:

k, := max{k, 0}, k_:=max{-k,0} foranykeR,

and

ay -0, hSk}

2.1
1, h>k, @D

alh k] = {

witha = yp =«a[l,n—-1] and B; = «[1,i]. For any ¢,s € T and for a fixed m € {0,1,...,n -1},
define the functions R,,(t,5), j = 0,1,...,m, and p;(t), j = 0,1,...,n — 1, by the following

recurrence formulas:

1 j=0,
Rm,/‘(t’ 8) = tr Rmj1(t8) 11/a,, s , (2.2)
[ G e AT, j=1,2,...,m,
and
Jon Yoo 2u(8), j=0,
i\l) = A oy, .
! [,ﬂ%j(t)ftmp;_l(t)m] o j=12,..,n-1

For a fixed m € {0,...,n — 1}, define the functions p,,;(,s), j = 0,1,2,...,n — 1, by the re-

currence formula

_ Pm(t;s), j: 0:
i(t,8):= 00 — i . 2.3
Pmit6s) {[,nll.(t)ft BT, 9)AT]™ T, j=1,2,.,mn -1, 23)
with

L &) = o),

Pm, (t’tl) = Ryn,m (8v (8),
" O g,(8) <o (0),

and

|:pv (t)¢yu (‘/)m,v (t,5) :| ﬂv

N
pm(tr S) =p0(t)¢a ((/)m,O(ti S)) + l_[ n

v=1

such that

N N
Y vm=o and Y n=1, (2.4)
v=1 v=1
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where

_ 1Bm-1

s(t5) i | e Prnma(2,9)A7] Pl 0<Ba<1,
T R @), Bn=1,

provided that the improper integrals involved are convergent.

In the sequel, we present conditions that guarantee the following conclusions:

(C) (i) every solution of equation (1.1) is oscillatory if # is even;
(ii) every solution of equation (1.1) either is oscillatory or tends to zero eventually if
n is odd.

Theorem 2.1 Let conditions (i)-(v) hold. Furthermore, for eachi € {1,2,...,n—1} and suf-
ficiently large T, T} € [ty, 00)T, one of the following conditions is satisfied:
(a) either [;° Pin-io1(t, T1) AT = 00, 0r [ Pin-i-1(t, T1) AT < 00 and either

o0
lim supr;i(t, Tl)f Pin-ia(t, TH)AT > 1
t

t—00

or

00 1p;
lim sup R;;(t, T1) ( / Pin-i-1(7, TI)AT> >1;
t

t—00

(b) there exists p; € Cly([£o,00)T, (0, 00)) such that

t A
. i, (p; (1))+
limsu / [ (T Pin—i- (‘E,T)—‘liilAT:OO; (2.5)
P T pROPn=1TE 21 Rf;(a(r),Tl)
(c) there exists p; € Crld([to, o0), (0, 00)) such that
t
timsup [ [p,»(r)p,-,n_i_l(r,n)
t—00 T
R [(pf(r)p}“ﬂf[ n (@) ]"”‘“} At = 00; 2.6)
pliryL 1+8; Riia(7, Th) ' '

(d) there exist p; € Crld([to, o0)T, (0,00)) and H;, h; € Crq(D,R), where
D={(t,t):t>1 > 1y}, such that

Hl'(t, t) =0, t>ty, Hi(t,‘[) >0, t>1>1H, (27)

and H; has a nonpositive continuous A-partial derivative HiA * (¢, T) with respect to

the second variable and satisfies

A (1) hi(tr":)Hﬁi/(Hﬂt)(t’T)

H (t,7) + Hi(t, 7) (2.8)

A
P @
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and

. 1 £ _
limsup ——— / |:Pi(T)Pi,n-i—1(T, Ty)H;(¢, )
T

t—00 Hi(t, T)
1 [(h(t7))- 1+ﬂ1|: n(z) ]ﬁi/al} -
) Pfi(f) [ 1+ B } Riia(7, Th) AT =00; (2.9)

(e) there exists p; € Cl4([£o,00)T, (0, 00)) such that

t
limsup / [p,-(r)ﬁ,-,,,_i_l(r,n)

t—>00 T
(o2 (1)) nm 1.
" 1Bp(0)5° (4, T) [Ri,u(f, Tl)} ]A’ =00 (2.10)

(f) there exist p; € Crld([to, o), (0,00)) and H;, h; € Cq(D, R), where
D={(t,t):t >t > to}, such that (2.7) holds and H; has a nonpositive continuous
A-partial derivative Hl.Ar (¢, T) with respect to the second variable and satisfies

A .
HE (0 + (e 2D - 20D ) o)
pf (7) o7 (1)
and
1 t
lim sup - /T |:pi(f)}_7i,n—i—1(7:> T)H;(t,7)
o) [ ne 1@
- 4,31'/)1'('5)80 (T, Tl) I:Ri,i—l(f; Tl):| :|AT = 0. (212)

Moreover, for the case where n is odd, assume that, for an integer j € {0,1,...,n -1},

/oofﬂ,'(t)Ar = 00. (2.13)
T

Then conclusions (C) hold.

Example 2.1 Consider the higher-order nonlinear dynamic equation (1.1), where g; =
a[l,i] <1and ri(t) := g with

£ - >0 ifniseven,
- <0 ifnisodd,
and where
O=2, iza 1 and pol®) £ ith ¢ >0
ri(t)i=—, i=2,...,n—1 an = Wi > 0.
Bi po e (9;0(t, o))

Choose an n-tuple (171,72, ...,1,) with 0 < 7; <1 satisfying (2.4). It is clear that conditions
(1.2) hold since

o * AT e [ AT
) AT = pA =00 and r () AT = B — =0
1 1 £l i i
t n T to o T
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by [3], Example 5.60. By the Pétzsche chain rule we get

o9 1/ayq
ﬁl(t)=[ ! / ﬁo(T)AT]

Tn-1 (t)

1/ety—
> gl P i AT 1
- ton-1 7Bn-1+1

A 1/oy-1
> é—l/an—l L > -1 AT
t%n-1 ¢ 7hn1

Cl/an,l gl/a [n-1,n-1]

- tﬂn—Z‘*’l B tﬂn—2+1

Piv (t,Th

Also, since (1.2) implies lim;_, o e to)) =1, we obtain

1/ay,—1

_ 1 o _
pint, Th) = [Vn——l(t)/t Pi,o(f,Tl)AT}

1oty
> glen-1 P - AT "
- ton-1 f, 7Bn-1+1

;l/a[n—l,n—l]

tﬁn—Z"‘l
It is easy to see that

Cl/a[n—j,n—l]

A

Dj(8), pij(t, Th) = , j=0,1,...,n-2.

tlsn—j—l*'l

Therefore, we can find T, > T > Tj such that R;; 1(¢, T1) > 1 for ¢ > T,. Let us take p;(£) =
tPi. Then, by the Pétzsche chain rule,

0= ()" =B, f (e ha0) i =
0

Hence,

t
limsup / [pi(r)pi,n_i_l(r,Tl)

t—00 T

1 [(pﬁ(m]“ﬁf[ n(x) ]ﬁf’“l]
-z AT
oli(r)L 1+Bi Riia(t, Th)

Bile 1+B; t
> [C“”“*“’-H_[i] 1[ b ] :|1imsup/ Lac
o 1+8 tooo Jrx T
(0.@]

if

Bila 1+B;
é.lloz[iﬂ,n—l] > l ' Bi '
o1 1+ ,Bl' ’
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and hence (2.6) holds. Also,

1 00 1/ay
Dua(t) = | — Dua(T)AT
a0 [n(t)/t Bur() ]
00 1/o
Vo | %1 1
Z; |:t§ \/t .[oq+1 AT]
1 00 -1 A 1/ay é—l/a
V| — - _
z¢ |:ts/t (.L—oq> Ar] Tt
If n is odd, then

A _ el _
/T Prna(T)AT=¢ /T et = O

so that condition (2.13) holds. Then, by Theorem 2.1(c) conclusions (C) hold if

ilo 1+B;
é.1/oz[i+1,n—1] > l pilea :Bi P
o1 1+ ,3,'

3 Lemmas

In order to prove the main results, we need the following lemmas. The first two lemmas
are extensions of Lemmas 1 and 2 in [9] to the nonlinear equation (1.1) with exactly the

same proof.

Lemma 3.1 Let x(t) € C}y(T, [0, 00)). Assume that (x"1)A(2) is of eventually one sign and
not identically zero. Then there exists an integer m € {0,1,...,n — 1} with m + n odd for
1A () < 0 or with m + n even for (x""1)2(¢) > 0 such that

AM@)y >0 fork=0,1,...,m (3.1)
and

)" M@y >0 fork=mm+1,...,n—-1 (3.2)
eventually.

Lemma 3.2 Assume that equation (1.1) has an eventually positive solution x(t) and m €
{0,1,...,n—1} is given in Lemma 3.1 such that (3.1) and (3.2) hold for t € [t;, 00)T for some
4 € [to, 00)1. Then the following hold for t € (t1,00)r:

(@) fori=0,1,...,m,

KM= ()

m is strictly decreasing; (3.3)

(b) forie{0,1,...,m}andj=0,1,...,m—1i,

alm=i ()

1 -1
2(t) > Paljtm—i) [m

:|Rm,m—j(t: tl)- (34)

Page 8 of 21
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Lemma 3.3 Assume that equation (1.1) has an eventually positive solution x(t) and m
is given in Lemma 3.1 such that m € {1,2,...,n — 1} and (3.1) and (3.2) hold for t > t; €
[t0,00)1. Then, for t € [ty,00)T, where g,(¢) > ty for t > ty, and forj=m,m+1,...,n-1,

oo
/ Pmn-j-1(T, 1) AT <00
t
and
(—1)m+ix[/] (&) = ¢o¢[1,j] (x“ (If)) f ﬁm,n—j—l(f, tH)AT. (3.5)
¢

Proof We show it by a backward induction. By Lemma 3.1 with m > 1 we see that x(z)
is strictly increasing on [f;,00)1. As a result, (3.1) and (3.2) hold for ¢ € [#,00)T. Let
t € [t1,00)T be fixed. Then, for v = 0,1,...,N, if g,(t) > o(t), then x(g,(¢)) > x(¢) by the
fact that x(¢) is strictly increasing. Now consider the case where g,(f) < o (£). In view of
Lemma 3.2(a), we see that for i = m, o (() is decreasing on (t;, 00) and that there exists

ty > t; such that g,(¢) > ¢, for t > 13, so that

x( U(t))Z mm(g\)(t tl)

Rom(o (0 z)” ) for £ € [f2,00)r.

In both cases, we have

%(g0(£)) = @ (£,10)x° (£)  for £ € [z, 00)r.

Therefore,

va(t)qsyu (g, (1)) Zm(t)% P (1)) [27 (8)]”

v=0 v=0

N
= 0o (x7 () Y po(Oy, (@ma(t,0)) [x7 ()]
v=0

Using the arithmetic-geometric mean inequality (see [30], p.17), we have
N
vavv>1_[v”” foranyv, >0,v=1,...,N.

v=1

Then, for ¢t > T,

N
> 2Oy, (@& 1)) [5° O]
v=0

nvpv (t)¢yu (wm,v (& t)) [xa (t)]yv —a

My

M=

= po()a (@mo(t, 1)) +

I
—_

v

1=

> Po (t)Pa ((pm,O (¢t tl)) + |:pv(t)¢yv (‘pm,v(t, t)) :| Ny [xa (t)]nu(yv—a)'

Ny

Il
—_

v
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In view of (2.4), we have

N N
Y nm-a) n=0.
v=1 v=1

Hence,

N

> 2Oy, (@mu(t, ) [47 ()]

v=0

N v
> po (t)¢a (‘pm,O (t, tl)) + l_[ |:pv(t)¢yv (n‘pm,v(t, tl)):|

v=1

:p(t’ tl)'

This, together with (1.1), shows that, for ¢ € [£;, 00)T,

—( D) 2 pt, )b (3 (1)) = Pty 1) b (3 (0)- (3.6)

Replacing ¢ by t in (3.6), integrating from ¢ € [t,,00) to v € [£,00)T, and using (3.2), we
have

A7) > V() 1 2 > / Bl 1) (3 (1)) AT

z%(x"(t))/ Dmo(T,t)AT.

Hence, by taking limits as v — oo we obtain that
[o¢]
A0 2 0, 0) [ pole,n)br
t
This shows that ftoo[am,o(r,tl)Ar < oo and (3.5) holds for j = n — 1. Assume that

f;oo]_?m,n—jfl(f,tl)A‘L' < 00 and (3.5) holds for some j € {m+1,m +2,...,n —1}. Then, for
(3.5),

[/
1y (9] = (—1)m+f¢;;[x (t)}

ri(¢)
L 1 00 l/a}-

> ¢ a1/ (t — Prn-j-1(T, f1) A

> ¢a/. {¢ 17 (%7 ( ))}I:l”j(t) /t Pmn-j-1(T, 11) T:|

= daf1-1) (57 () Pimuj(t, 11).
Replacing ¢ by t and then integrating it from ¢ € [t;, 00)T to v € [£, 00)1, we have

(-1 (e) > (-1 (5D () - )
> / Pa1j-1) (87 (0)) Pimni(T, 51) AT
t

> Pu1,j-1] (x"(t))/ Pmn—j(T, ) AT,
t
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Taking limits as v — 00, we obtain that

1) = oy (7 (0) / (T2 1) AT
t

This shows that ftoo Pmn-j(T,t1) AT <00 and (3.5) holds for j — 1. Therefore, the conclusion
holds. O

The following lemma improves [31], Lemma 1; also see [32-34].

Lemma 3.4 Let (1.3) hold. Then, there exists an N-tuple (n1,12,...,n0n) with 1, > 0 satis-
fying (2.4).

Lemma 3.5 (see [35]) Let w(u) = au — bu'*V?, where a,u > 0 and b, 8 > 0. Then

ﬂ B a 1+8
w0=(5) (5) -

4 Proofs of main results

Proof of Theorem 2.1 Assume that equation (1.1) has a nonoscillatory solution x(¢). Then,
without loss of generality, assume that x(¢) > 0 and x(g,(¢)) > 0 for ¢ € [¢y, 00)r. It follows
from Lemma 3.1 that there exists an integer m € {0,1,...,n — 1} with m + n odd such that
(3.1) and (3.2) hold for ¢ € [£;, 0o)t for some #; € [£y, 00)1. Let £ > £ be such that g, (£) >
for t € [ty,00)T.

(i) Assume that m > 1.

Part I: Assume that (a) holds. By Lemma 3.3 we have that, for j = m,
oo
/ pm,n—m—l(fy H)AT < 00,
t

which contradicts ftoof)m,,,,m,l(t, t)AT = o00. If ftmﬁm,n,m,l(t,tl)Ar < 00, then by Lem-
ma 3.3 we have that, for j = m,

o0
x[m](t) = ¢a[1,m] (xg (t)) / ﬁm,n—m—l(fr tl)AT
t
> 0, (50) [ B ma(m) (1)
t
By Lemma 3.2(b) with i = 0 and j = 0 we get

x(8) = Gy (<" (O) R, 11)

= ¢ (") Ry (8, 1) (4.2)

Substituting (4.2) into (4.1), we obtain that

o0
1> Rl (t,1) / Pmn-m1(T, 1) AT,
t
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which contradicts lim supHooR,ﬁ,,’,”m(t, t) ftoo Pmpn-m-1(T,t1) At > 1. Substituting (4.1) into
(4.2), we obtain that

1Bm

oo
1 2 Rm,m(t: tl) (/ pm,n—m—l(‘[r tl)AT) )
t

which contradicts limsup,_, o, Ryum(t, 1) ([ Prmn-m-1(T, 1) AT)VEm > 1.
Part II: Assume that (b) holds. Define

xlml (2)
xbPm(t)’

Win(t) := pm(2)

By the product rule and the quotient rule we have

. . x[m](t) A A x[’”](t) o

wh(t) = pm(t)<xﬂm(t)) + pm(t)<xﬂm(t)>
_ wn (O (D)2 — (P ()5(E)\ (A7)
= pm(t)< e O P (0) ) + Ot (xﬂm(t)>

GO ) At(x[m](t)>"
@hn(e)e P () (e O b))

From Lemma 3.3 with j = m + 1 we have
oo
_x[m+1] (t) = ¢a[1,m+1] (xa (t)) / ﬁm,n—m—Z(fr tl) AT: (45)
t

which, together with (2.3), implies that, for ¢ € [, 00)T,

_(x[m] (t))A > d’a[l m] (xa (t)) [ 1 /mﬁm n—m—Z(T¢ tl) Af]llam+l
- ' rm+1(t) t '

= ¢/3m (x(r (t)) i)m,n—m—l (t; t1)~ (46)

Substituting (4.6) into (4.4), we obtain

x[”‘](t)>{7 5 (Pm ()2 ()
xbn(t) ) T (b (2))o xPm(t)”

Wi (8) < ~pm(t) Pnpm-1(t,11) + p,ﬁ(t)(

When 0 < 8,, <1, since x(¢) is strictly increasing, by P6tzsche chain rule ([3], Thm. 1.90)

we obtain

1

(&) = By /0 [x(@) + b (0] dh x> (2)

= B / 1[(1 —x(®) + hx” ()] dh x*(2)
0

> B [ (0] %2 ).
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Hence,
[m] o A [m) o
A . PN EAEO) x2(2) (x"(¢)
Wm(t) =< _Iom(t) pm,n—m—l(t) tl) + Iom (t) ( xﬁm (t) ) - ﬁmpm(t) x° (t) (xﬁm (t) )
[m] o
< —pm(t) ﬁm,n—m—l(t» h) + P,ﬁ(t) (zﬂm ((;)> . (4.7)

When B,, > 1, since x(t) is strictly increasing, again by Pétzsche chain rule we obtain

1

(@ (®)" = B fo [x(6) + b (x> 0] di x*(2)

1
= B / [ = m)x(e) + (O] dh 25 (2)
0

> B [x0]" x5 ).

Therefore,
Ay < _ NELIOMN X8 (t) (*(8)\°
Wm(t) < —pm(t) pm,n—m—l(tr h)+ P (®) (xﬁm @ ) — Binom(t) x(2) (xﬁm (L‘))
[m] o
< _pm(t) ﬁm,n—m—l(t’ tl) + p;ﬁ (t) (fcﬂm ((z))) . (4‘8)

Then, for §,, > 0,

A - A 2 \?
Wm(t) =< _pm(t) pm,n—m—l(t; tl) + Pm (t) . (4'9)
By using Lemma 3.2 (b) with i = 0 and j = 0 we see that
X(8) = Gy (5O R (£, 1),
which implies
bml (¢ 1
a0 (4.10)

©bm(t) T Rom (1)
Substituting (4.10) into (4.9), we get

o ()
Rii(a(t), t1)

(02(t)).
RU(o(t), t1)

Wﬁ,(t) =< _pm(t) ﬁm,rz—m—l(t’ tl) +

< —pm(t) i)m,nfm—l(t; h)+ for t € [ty, 00)T.

Integrating both sides from #; to t we get

T< Wm(tZ) - Wm(t) =< Wm(tZ)r

(o (T))+
|
Rm,m(a(t); tl)

/ |:pm(7:) i)m,n—m—l(t’ tl) -

2

which contradicts (2.5).
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Part III: Assume that (c) holds. When 0 < 8,, < 1, by the definition of w,,(¢), since x(¢) is
strictly increasing, (4.7) can be written as

A _ NAZIOM x2(t) (wi(t)\°
Wm(t) < _pm(t) pm,n—m—l(ti tl) + :Om (t)<,0m(t)> - lgmpm(t) X0 (t) (,Om(t)) . (411)

By using Lemma 3.2 (b) with i = 0 and j = 1 we see that

x1(2) = ol g (O R ma (8, 11), (4.12)

which implies

xA(t) > ¢(;[11,m](x[m](t)) |:Rm,m1(t: tl)]llal
x() — x() r(2)

-1 [m] 1/
> ¢a[1,m] (x (t)) |:Rm,m1(t: tl) ]

x°(2) n(t)
(@7 R (62 T
- [(xﬂm(t)> } [ ri(t) }
_ Wm(t) o Rm,m—l(t:tl) Ve
- [(pm(t)) } [ () ] ' (+.13)

Substituting (4.13) into (4.11), we get, for 0 < 8,, <1,

WA (8) < —om(0) Brmemr (6 11) + P2 t)<wm(t)>
Pm(2)
(

- Ryt ) ”"1[<wm t))”]““ﬂm
e |

When 8,, > 1, by the definition of w,,(£), (4.8) can be written as

A _ A Wi (£)\” x2(8) ((win(8)\°
30) = =000 P60 #2320 200 ) = o= (220) - e

By using Lemma 3.2 (b) with i = 0 and j = 1 we see that

2(0) = Gy (" O) R (8,11),

which implies

2O 52O Pl @O [Rm,m_la, m}““l
x(e) w0 T a() ni(t)

- ¢(;[11,m] (x[m] () |:Rm,m1(t, f) ] ey
= x(t) r1(2)

T AONT T R () ]
) [(xﬁm(t)) ] [ ri(t) ]

~ Wm(lf) o1/Bm Rm,m—l(tytl) 1/
B [(w(ﬂ) } [T] ' (4.15)




Hassan Advances in Difference Equations (2017) 2017:14 Page 15 of 21

Substituting (4.15) into (4.14), we get, for 8, > 1,

Wi () < =pin(®) Pnn-m1 (&, t1)+pm(t)< ((tt)))

R (t,) 7" (Wm(t)>a]1+1/ﬁm
_ﬂmpm(t)[ P 0) ] [ oD )

Hence, for 8,, > 0 and ¢ € [t,, 00)T,

WA < —p®) Bt (6, 11) + 02 (W’”(t;)
(0

_— 1(t tl) 1/a oq1+1/Bm
om0 L (55 ] 10

< =pn(®) Brn-ma (1) + (0 (0)), (V/:m((tt))>

Rt (6, 6) TV { win() \ O T
_ ﬁmpm(t)[T] |:< ,Om(t)) ] . (4.17)

Using Lemma 3.5 with

A = Rm,m—l(t, t) Ve . . Wi (£) 7
a:= (pm(t))+’ b L :Bmpm(t)|: rl(t) :| ’ :B T IBWI and u:= <pm(t)) ’

we obtain

o 1/ o1+1/Bm
o), (525) -pnemo| =252 || (525 |
<< B [ n(?) ]Ml> [( (D) T‘-“m
T\ Bnom(t) [ Rumm-1(t, 1) 1+ Bm
1 [<pm(t>)+]“ﬁm[ ri(t) Tm/”l
@)L 1+ B Ry (L, 1) )

From this and from (4.17) we have

N _ 1 [e2), 1" ne 7P«
Wm(t) < _pm(t)pm,n—m—l(t’ tl) + pglm (t) |: 1+ ,Bm ] |:Rm,m_1(t; tl)] .

Integrating both sides from ¢, to ¢, we get

/ [pm(f)pm,nml("—" tl)

1 [(pm(r)p}““”m[ n(r)
o)L 1+ Bm Rym (7, 1)

ﬂm/al
} ]Ar < W(ts) = Wn(8) < Wim(t2),

which contradicts (2.6).
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Part IV: Assume that (d) holds. Multiplying both sides of (4.16), with ¢ replaced by t, by
H,,(t, ) and integrating with respect to tfrom ¢, to t € [t;, 00)T, we have

t
/ pm(f)pm,n—m—l(fr tl)Hm(t’ T)AT
t:

2
t

§—f Hm(t,t)wﬁl(t)Ar
o

‘ A Wm(f)>a
+/t‘2 Hm(t’T)pm(T)<pm(r) AT

t Ryt (1, 80) TV Wi (2) \ YA
_ﬂmL pm(T)Hm(t,T)I:T} I:(pm(r)> ] Ar

Integrating by parts and using (2.7) and (2.8), we obtain

t
/ Pm (T)ﬁm,n—m—l(f, t)H,(t, T)At

12}

t
< Hylt, ta)wm(82) + / HA (6, 0w, (1) AT
2

! A Wm(f)>0
' / Honlts 0 ’"(f)<pm(r) AT

t Rm,m—l(l’,tl) /ey Win(T) o141/ Bm
_ﬂm/”pm(r)HM(t’T)[T} [(m(r)) } Ar

< Hy(t, ta)w(t) + / [(hm(t,r))_(Hm(t,r))m(t’”—((;)>

1/ay oq1+1/Bm
- ﬂmpm(f)Hm(t,r)[M} [(W’”(T)) ] ]Ar. (4.18)
ri(7) Pm(T)

Using Lemma 3.5 with

1/
Rm,m—l(f; tl) ] “

= (h H 1/+3Tm b= H,
a:= (It 1)_(Halt, D))", b= Bupm(c) m(“)[ (o)

and

B A wa@®)\°
ﬂ‘_ﬂmr u_(pm(t)) ’

we get

(6, D)) (Hi(t, 7)) P <W’”—(t))a

om(T)
1/ o1+1/Bm
—ﬁmpmmHm(t,f)[M] [(wmm)]
ri(z) Pm(T)

- 1 [(B,(t, 7)) -] Pm |: n(7) i|ﬁm/a1
= 1+ B)tPm P (1) R (0.0)

_ 1 [(hm(t,r))j|1+ﬂm|:Lj|ﬂm/a1
) pr}zm (T) 1+ ﬂm Rm,m—l(f, tl) :
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From this last inequality and from (4.18) we have

/ [pm(f)ﬁm,n—m—l(rr tl)Hm(tr T)

1 [ 0)- 1" no)
] s

Bmlen
_ [ AT < H, (t, t)w,,(£2),
pﬁ{" (7,') 1+ ﬁm m,m—l(fx tl)] ] " "

which implies that

1 t
—_— Dinn-m-1(T, 1) H,,(t,
H (2, 12) A |:/Om(7:)l9m,n m1 (T, t1)H (£, T)

1 (hu(t, 7)) THHPm () Bley
_pf:"(r)[ L+ B ] [m] ]Affwmuz),

contradicting assumption (2.9).
Part V: Assume that (e) holds. From (4.16) we have

Win(8) < =P (OPmn-ma(t, fl)”m(t)(vvm((;) )

o l(t f 1/o oq1+1/Bm
_ﬂ’”p’”“)[ o) ] [(pm(t)> }

< pm(t)pmn m— l(t tl) + pﬁ(t)(WWI(t))

ot (6 ’( )T’ﬂlewm(t))”]z
ﬂ’”””(t)[ () ] [pm(t) ) |

When 0 < 8,, <1, in view of the definition of w and (4.1), we get

Wm(t) o1/ Bm-1 x[Wl](t) oq1/Bm-1 oo V-1
|:(Iom(t)> :| - [(xﬁm(t)) :| z |:/;(t)pm,nm1(f7t1)A‘L'i| .

When 8,, > 1, in view of the definition of w and (4.2), we get

m(t) 01/Bm-1 [m](t) oq1/Bm-1 i -
|:<];}m(t)> :| - [(zﬂm(t)> :| Z[Rm,m(trtl)]ﬂ 1~

Thus, by (4.20), (4.21), and the definition of §(¢, 1), (4.19) becomes

Wi () < ~om(OBmp-m(t, tl)””fq(t)( ((;)))

Ve o2
_ﬁmpm(t)SU(t, t1)|:Rm,m—l(t, tl):| |:(Wm(t)> :| .

ri(£) Pm(£)

Now,

noof W)\ ; Roma(60) 17 ( win®) 7
g '”‘”(mt)) = P2} “’“’[ O } [(pmm)]
_ (@ [ n(?) ]”‘“
4‘ﬁmﬂm(t)80 (t: tl) Rm,m—l(t; tl)

Page 17 of 21

(4.19)

(4.20)

(4.21)

(4.22)
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i R (6,8) 7T ( w8\
_[\/’3 P2 (t’“)[ o) ] [(pm(t))]

~ 0] ]2
2B (057 (6, 0) 220 i

r1(t)

(o (1) [ ri(2) }”‘”
_4:3mpm(t)86(trtl) Rm,m—l(trtl) '

Therefore,

1/
Wo (&) < =P (ODPmn-m(t, 1) + (P (8))? [ () )} '

4,3um (t)(S(r (t’ tl) Rm,m—l(t’ tl

Integrating both sides from ¢, to ¢, we get

/ [pm(f)pm,n—m—l(f; t)

(o (2))? [ n(r)
R

1/
- ) | (m)] }Ar < (1) = Win(8) < W),

which contradicts (2.10).
Part VI: Assume that (f) holds. Multiplying both sides of (4.22), with ¢ replaced by t, by

H,,(t, ) and integrating with respect to tfrom ¢, to t € [t;, 00)T, we have

t
/ pm(T)l_?m,n—m—l (t,t1)Hu(t, T)AT

ty

< —/t:Hm(t,r)wﬁ,(t)Ar + ‘/t:Hm(t,t)pﬁ(r)(ijéii)gAr

‘ , Ruma(T,0) 17U ( w0\ T
b | ntertte | S | (B |

Integrating by parts and using (2.7) and (2.11), we obtain

t
/ pm(t)i)m,n—m—l(l'r tl)Hm(t; T)AT
t

2

= Hyp(t, 22)Wi(12) +/tHnAq’ &, T)wy, (1) AT +/th(t,r)p,ﬁ(r)<2}mg))>0Af

t o Rm,m—l(fytl) Ve Wm(r) “1?
B / (0 Hi(£, )3 (m)[iw) ] [(pm(f)) } At

< H,(t, tr)w(ty)

' Ve o2
‘/ [ﬂmpm(f)Hm%f)a”(r,tﬁ[w] [(wmm> ]
? ri(z) (T

— (8, 0))_VHA (&, z)(zm((z))y}m.
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Now,

1/oq o2
ﬂmpm(f)Hm(t,r)S”(r,tl)[M] [(wmm) }
ri(7) Pm(T)

— (2, D)) _VHu(t, r)(zm—((;))a

Rm,m_m,tl)]“‘“ (wm(r))“
r(z) Pm(T)

_ (hu(t, T))- :|2
2\/ﬁm,0m(f)8“(r, tl)[lz%’:'lfflr(;m]l/al

_ [(hm(t, ‘L'))_]2 |: rl(T) ]l/al
4B pm(1)8° (T, 1) [ R )

)P [ n () ]”“1
- 4'ﬁmpm(r)80(rrtl) R ) ’

= [\/ﬂmpm(r)Hm(t, r)Sa(f,t1)|:

m,m—l(tr tl

m,m—1 (T, tl

Consequently,
1 t
Tr 7. 2\ pm(t)ﬁm,n—m— (t:t )Hm(t: f)
Hu(t,t:) ), [ o

[t 0) P [ oo
4‘ﬂml0m(f)86(f’tl) Rm,m—l(f:tl)

1/o
] }Ar < Wi(t2),

which contradicts assumption (2.12).
(ii) We show that if m = 0, then lim;_, o, x(¢) = 0. In fact, from Lemma 3.1 we see that it

is only possible when 7 is odd. In this case,

(-1*x™@#) >0 and
N (4.23)
(D)™ ()" <0 forte[t,00)randk=0,1,...,n-1.

Hence,
tlim DM@y =, >0 fork=0,1,...,n-1.
—00

We claim that lim;_, o x(£) = lp = 0. Assume that [, > 0. Then, for sufficiently large t; €
[f1, 00)T, we have x(g, (¢)) > lo for t > t,. It follows that

¢y, (¥(g(®)) = Iy = L fort € [t5,00)r,

where L := minlv\io{lg“} > 0. Then from (1.1) we obtain

N
_(x[n—I] (t))A > va(t) = Lpo(t).
v=0
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Integrating this from ¢ to v € [t, 00)T, we get

L) 4 ) > 1 / Po(0)AT,

t

and by (4.23) we see that x"J(v) > 0. Hence, by taking limits as v — oo we have
A1 [ pooiar.
t

If ftoo Po(T)AT = 00, then we have reached a contradiction. Otherwise,

1
Vn—l(t)

o) /ey
n—. A Oy ~ Ay—1 2
(x"2(@2))® = LMo 1[ / Po(t)AT} = LYoy (2).
t

Integrating this from ¢ to v € [, 00)t and letting v — o0, by (4.23) we get

0]
—x"2(g) = LMo / p(T)AT.

t

If ftoo P1(t) At = 00, then we have reached a contradiction. Otherwise,

1
rn—Z(t)

00 1/ay_o
_(x[n_g](t))A > Ll/a[n—Z,n—l] |: / ﬁl(T)AT] = Ll/a[Vl—Z,n—I]ﬁ2(t)'
t

Continuing this process, we get

[e e}
—l(£) > et / Pra(T) AT

t

If ftoo Pno(T)AT = 00, then we have reached a contradiction. Otherwise,

1 00 1/o
A CEL ] Pl RGNS B2 WG}
ri(t) Ji

Again, integrating from £, to £ € [£p,00)T, we get

t

—x(t)+x(t2)ZLl/“/ Pna(T)At.

t

If ftoo Pn-1(t)AT = 00, then we have lim,_, o, x(£) = —00, which contradicts the assumption
that x(¢) > 0 eventually. This shows that if m = 0, then lim,_, o, x(¢) = 0. This completes the
proof. d
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